
Unit 1 Java
everywhere

Putting Java to work

M257 Unit 1

Java everywhere

1Unit
UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M257 Putting
Java to work. Details of this and other Open University courses can be
obtained from the Student Registration and Enquiry Service, The Open
University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide range of
courses and packs offered at all levels by The Open University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide, Michael
Young Building, Walton Hall, Milton Keynes MK7 6AA, United Kingdom for
a brochure. tel. +44 (0)1908 858785; fax +44 (0)1908 858787;
email ouwenq@open.ac.uk

The Open University
Walton Hall, Milton Keynes
MK7 6AA

First published 2007.

2007 The Open University ªCopyright

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, transmitted or utilised in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
written permission from the publisher or a licence from the Copyright
Licensing Agency Ltd. Details of such licences (for reprographic
reproduction) may be obtained from the Copyright Licensing Agency Ltd,

10 Kirby Street, London EC1N 8TS; –6Saffron House,
website http://www.cla.co.uk/.

Open University course materials may also be made available in electronic
formats for use by students of the University. All rights, including copyright
and related rights and database rights, in electronic course materials and
their contents are owned by or licensed to The Open University, or
otherwise used by The Open University as permitted by applicable law.

In using electronic course materials and their contents you agree that your
use will be solely for the purposes of following an Open University course
of study or otherwise as licensed by The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website), distribute,
transmit or retransmit, broadcast, modify or show in public such electronic
materials in whole or in part without the prior written consent of
The Open University or in accordance with the Copyright, Designs and
Patents Act 1988.

Edited, designed and typeset by The Open University.

Printed and bound in the United Kingdom by Martins the Printers, Berwick-
on-Tweed.

4 ISBN 978 0 7492 6796

2.1

CONTENTS

5

6

2.1 6

2.2 6

2.3 7

2.4 8

9

3.1 9

3.2 10

11

4.1 11

4.2 11

12

5.1 12

5.2 15

5.3 17

18

21

7.1 21

7.2 22

7.3 23

7.4 23

7.5 24

7.6 Constructors 26

7.7 main method 28

7.8 29

31

8.1 31

8.2 – 32

8.3 35

8.4 37

41

Index 43

1 Introduction

2 Java background

The aims of the Java language

Versions and editions of Java

A simple Java program

Using comments in Java programs

3 The system

How the Java compiler works

The Java Software Development Kit

4 Getting Java running

Applications and applets

Running Java applications and Java applets

5 Objects

A simple robot world

A more complex robot world

Robot talk

6 State changes

7 Classes in Java

Defining a Java class

Naming guidelines for Java programs

Creating and using objects

Methods that return a value

Methods that have arguments

The role of the

Information hiding

8 Inheritance

The definition of inheritance

Inheritance example magic robots

Overriding methods

Overloading methods

9 Summary

M257 COURSE TEAM

M257 Putting Java to work was adapted from M254 Java everywhere.

M254 was produced by the following team.

Martin Smith, Course Team Chair and Author

Anton Dil, Author

Brendan Quinn, Author

Janet Van der Linden, Academic Editor

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Critical readers
Pauline Curtis, Associate Lecturer

David Knowles, Associate Lecturer

Robin Walker, Associate Lecturer

Richard Walker, Associate Lecturer

The M257 adaptation was produced by:

Darrel Ince, Course Team Chair and Author

Richard Walker, Consultant Author and Critical Reader

Matthew Nelson, Critical Reader

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Media development staff
Andrew Seddon, Media Project Manager

Ian Blackham, Editor

Anna Edgley-Smith, Editor

Jenny Brown, Freelance Editor

Andrew Whitehead, Designer and Graphic Artist

Glen Derby, Designer

Phillip Howe, Compositor

Lisa Hale, Compositor

Thanks are due to the Desktop Publishing Unit of the Faculty of Mathematics and
Computing.

1 Introduction 5

1 Introduction

During the early days of the internet, Sun Microsystems introduced the Java language,
with great fanfare, in 1995. Java immediately generated huge interest and excitement –
use of the language took off more rapidly than any computer language before or since.

Java is the language most identified with the internet and its friendly face, the web. In
this course, you will learn how Java originated and how it is used nowadays. Most
importantly, you will learn the language used to build systems that power so much of the
web in applications ranging from e-commerce to online games, downloadable music to
online banking. Java runs on servers, PCs, mobile phones and PDAs (personal digital
assistants). It can be found in TV set-top boxes, in embedded devices (forming part of
larger systems such as cars, robots or printers), in smart cards and even in wearable
computers. Java really is everywhere.

In this unit, we aim to:

c briefly outline the history of the Java programming language and the aims of its
designers;

c highlight the wide range of platforms for which Java is available and the implications
of this;

c show you what a simple Java program looks like and enable you to run a simple
Java application, using the course software tools;

c explain the basic concepts of a system as a collection of interacting objects;

c outline the role of classes in object-orientation;

c show how inheritance is used to design class hierarchies.

PDAs are hand-held
computers.

6 Unit 1 Java everywhere

2 Java background

In this section we look briefly at what the designers of Java tried to achieve. As with
many successful inventions, it eventually went in directions that its designers had not
expected. We explore how the different versions of Java are distinguished, including the
concept of Java editions to cater for systems of differing scales. We also take our first
look at a simple Java program.

2.1 The aims of the Java language
The developers of the Java language had a number of design goals. These were set out
in their so-called 'white paper' on the Java Programming Language Environment. Later
in the course we assess how successful the designers have been in meeting their aims.
We list below some of the characteristics the language was to have.

c Simple: Java has a small, consistent core of fundamental concepts, which should
make it simple to learn.

c Familiar: the language syntax is closely based on the popular C++ language,
although reduced in complexity.

c Object-oriented: Java programs are structured around objects – we will explore this
later in the unit.

c Robust: Java programs are strictly checked by software before they run and the
language omits various error-prone features of C and C++.

c Secure: Java has special security features to ensure that programs running over
networks cannot damage your computer files or introduce viruses.

c Portable: Java programs can easily be transferred from one platform (such as
Windows on a PC) to run on another platform (such as Linux on a specialized server)
with little or no change.

c High performance: Java programs can run fast enough for what is needed in each
aspect of a program.

c Interpreted: we explain interpreted languages later, in Section 3, but at this stage we
will just note that this is a key aspect of Java portability.

c Threaded: threaded languages allow a program to do several things at once, which
can greatly improve performance.

c Dynamic: Java programs can adapt to changes in their environment even while the
program is running.

2.2 Versions and editions of Java
Java has undergone some significant changes since its early versions, so it is important
to have some appreciation of the way these versions are distinguished.

The first publicly available version of the language was Java 1.0. Although it was widely
promoted as a serious language for the internet, it actually had a number of significant
deficiencies. Many of these were remedied in later versions, with Java 1.2 being a
standard and stable version for quite some time.

2 Java background 7

To emphasize the change, and perhaps also as a marketing tool, Sun changed the
name of Java 1.2 to Java 2 version 1.2. Subsequent versions to date have followed this
naming convention. At the time of writing, Java 2 is the standard language, and there
have been a number of further versions (Java 2 version 1.3, Java 2 version 1.4, Java 2
version 1.5 and so on), each introducing relatively minor improvements.

In 1999, Sun recognized that the concept that one standard Java language package
could apply to all sorts of platforms was not really feasible. So the concept of Java
editions was introduced, to cater for the different needs of, say, large international
business systems running on extensive networks with many servers as opposed to
software running on mobile phones with very limited hardware resources. We will mostly
be interested in the Java 2 Standard Edition (J2SE). Large-scale systems are catered for
by the Java 2 Enterprise Edition (J2EE), which we will not consider in detail in this
course. In Unit 10 we will look at Java 2 Micro Edition (J2ME), designed for use on
smaller systems with limited resources.

2.3 A simple Java program
In order to give you a flavour of what Java looks like we have reproduced a very simple
Java program below.

public class HelloWalrus
{

public static void main (String []args)
{

System.out.println("The time has come");

System.out.println("the walrus said");

}

}

This program produces screen output as follows:

The time has come

the walrus said

The first line of the program introduces a class, called HelloWalrus. When the
program runs, the class gives rise to an object, which executes the code of the class.
There are more details about classes and object-oriented programming later in this unit.

This class is defined as public, which means that objects of this class can be freely
accessed by other objects in a larger system. The curly bracket on the line following
HelloWalrus matches the closing bracket at the end of the example, as these enclose
the whole class definition.

The code in this class is in the form of a method, in this case a method called main. The
first line of the method is called the method header. We defer explaining the words
static and void until later, but they are always used with main methods like this one.
These two words are examples of Java keywords – words that have a special meaning
in a Java program, and that cannot be used for any other purpose. The other keywords
in this example are public and class.

The method header defines the name of the method (in this case, main) and is followed
by the method body, which is enclosed in curly brackets. The System.out.println
method displays, in a screen window, the exact text between the quotes.

Each of these two lines of code within the main method constitutes a statement, a single
command to be carried out. Each statement is terminated by a semicolon.

8 Unit 1 Java everywhere

2.4 Using comments in Java programs
Comments in Java can be delineated by /* and */. For example, we can add some
additional information to the sample program from the previous section, to explain its
purpose and to document its creation:

/* A simple Java program
Author: The Course Team
Date of creation: 01/01/01 */

public class HelloWalrus

. . .

There are two different notations to indicate that the text is a comment, and therefore to
be ignored by the computer system.

Text enclosed in the symbols /* and */ is treated entirely as comment text, even if it
extends over more than one line. We call this a block comment.

Text occurring on a line after the symbol // is treated as comment text.

If the symbol // is the first item on the line, this defines a line comment. These are
convenient for brief comments, typically occupying one or two lines as follows:

// display a poetic message

There can also be valid code at the start of the line, followed by the symbol // and then
an in-line comment. This is useful for a short comment applying only to the item on that
particular line. For example:

} // end of class HelloWalrus

3 The system 9

3 The system

3.1

In this section we describe the implementation of the Java language in a little more
detail. In particular, we discuss the portability issue: that is, the way that programs
written in Java can be run on many different platforms.

How the Java compiler works
In Figure 1 we show the implementation of a conventional programming language.

c executes

source
code

native
code

ompiles to

Figure 1 The action of a standard compiler

The programmer develops a program expressed in what is known as source code. This
source code is translated by a compiler to the base language of the computer, known
as native code. This is then executed and the program carries out its function.

There are strict rules governing the way source code can be written. If errors have been
made, the compiler will not carry out the translation but will identify one or more
compilation errors. It will issue a number of error messages to tell the programmer what
has gone wrong.

This conventional way of implementing a programming language suffers from one
problem – the end product is specific to just one type of computer. The native code that
has been generated can be executed only by the particular type of computer that
recognizes it.

In order to produce a portable implementation the developers of Java adopted the
strategy shown in Figure 2.

interpreted executes

Java
source
code

native code
for A

bytecode
native code

for B

native code
for C

compiles to

Figure 2 The Java compilation process showing interpretation of bytecode on
platforms A, B and C

10 Unit 1 Java everywhere

The Java portability slogan
was modified by cynics to
'write once, debug
everywhere'.

In the case of Java, the compiler does not translate the source code to the native code of
the computer but translates it into an intermediate form, known as bytecode. This is a
language that is capable of being executed by any computer with a suitable interpreter.
The interpreter is a program that translates bytecode into the native code of the
computer it runs on, so that it can be executed. Normally the effort in constructing a new
interpreter is relatively small, and Java interpreters are available for many different
platforms.

In Figure 2, the bytecode for the given Java source code is the same for the three
distinct platforms A, B and C. However, there is a different interpreter for each platform
A, B and C, so as to translate the bytecode into the appropriate native code for each
platform.

This means that once a Java program has been compiled to bytecode it can, in theory,
be sent to any computer that has a Java interpreter and run on that computer without
any changes to the bytecode. This is the 'write once, run anywhere' philosophy
promoted by Sun.

3.2 The Java Software Development Kit
The basic tools for compiling and running Java programs on a variety of platforms are
freely available from Sun Microsystems. This collection of tools is known as the Java
Software Development Kit, often abbreviated to the Java SDK or the JDK. This kit
includes a number of important components, listed below. The names of the programs
are shown in brackets but you do not need to remember these if you are using an
integrated development environment, like the tool supplied with this course.

c The Java compiler (javac) translates Java source into bytecode.

c The Java interpreter (java) translates and executes Java bytecode. Java
interpreters are available for many different computer systems.

c The document generator (javadoc) processes Java source files to produce useful
documentation, such as standardized descriptions of what each component of Java
code does.

c The Java debugger (jdb) helps developers to look for errors in programs, for
example, by running only small sections of program at a time and examining the
effect this has after each step.

c The Java disassembler (javap) reads bytecode files created using the Java
compiler and displays the corresponding source code.

c The applet viewer (appletviewer) allows you to run and debug Java applets
without a web browser. Java applets are explained in the next section.

4 Getting Java running 11

4 Getting Java running

HTML

4.1

One of the main applications of the internet that has expanded well beyond the wildest
hopes of its inventors has been the World Wide Web. Web documents have traditionally
been written in a simple language known as (Hyper Text Markup Language).

Applications and applets
Java programmers can produce two types of software, applications and applets.
Applications are stand-alone programs, which can run independently. Applets are
programs that can be included in web documents and are run using a browser. The
inclusion of Java code in such documents marked a transition point in the development
of the web. From being mainly a passive repository of data it became a vast array of
interactive applications. Under certain conditions, users of browsers that recognize Java
code can execute programs that have the functionality of programs written in any other
programming language. Applets heralded a new era in dynamic content and were
followed by a host of other technologies.

4.2
applets
Running Java applications and Java

Before looking at the language in a little more detail, we will describe how to develop
and execute Java programs. There are two main sorts of software tools that can be
used.

First, you can use the Java SDK described in Section 3 (freely available from Sun),
together with any text editor. In this case, the details of compiling and running a Java
program may differ depending on the platform you are using for development. The
various programs are normally run from a 'command line' rather than a graphical user
interface (GUI) and are not seamlessly linked together.

The second approach is to use an integrated development environment (IDE), such as
the tool supplied with this course. There are many IDEs available for Java, and they
typically build on top of the free software from Sun, providing a sophisticated GUI and
editor, with integrated facilities for compiling, running and debugging programs. Some
IDEs are available for a number of different platforms. The detailed instructions for using
the course IDE are supplied in a separate handbook.

In both cases, the basic development process is the same – arguably the IDE just
makes things more convenient. In general, the IDE hides the details such as which
compiler program is being run, or the names of the Java files at each stage.

A command line requires
the user to type in the
commands, rather than
use a mouse and click on
buttons. An example is the
MS-DOS prompt on a PC.

12 Unit 1 Java everywhere

takes.

5.1

In the following sections we briefly introduce the topic of object-orientation. This will
serve as revision and an outline of the approach to object-orientation that this course

A simple robot world

5 Objects

We start with a simple example, which models robots moving around a two-dimensional
grid, displayed on a computer screen. The position of a robot on the grid is expressed
as x- and y-coordinates, which can take any integer value within the limits of the grid.
Figure 3 shows an example of a grid containing three robots. If you are not keen on
robots, then you can think of this as a traffic simulation or perhaps a board game –
similar principles apply.

8

7

6

5

4

3

2

1

meetoo

deetoo

artoo
1 2 3 4 5 6 7 8

Figure 3 Grid showing the current positions of three robots

Each robot is represented by an object in the computer system. Each object has some
stored data associated with it – in this case, each robot object stores its current position on
the grid. The values of the data stored by an object determine the state of the object. For the
moment, we assume that when the state of a robot object changes, the screen automatically
updates and displays that robot in its new position.

5 Objects 13

We also need some way to identify each robot object, so we can manipulate the
appropriate object. For simplicity at present, we assume that each robot object has a
name – later on we will see that things in Java are a little more complex. So, we can think
of the three robots as software objects, each with a unique name and some stored data,
as shown in Figure 4.

y

x

y

x

y

x

artoo deetoo meetoo

7

7

5

2

1

1

Figure 4 Software objects corresponding to three named robots

Each object can respond to a number of commands or requests. For example, a robot
object may be asked to:

c move one position on the grid in a north, south, east or west direction;

c indicate its current position;

c move to an arbitrary position on the grid.

Objects typically have a number of operations that they can carry out on request, such
as those operations listed above for robot objects. The Java code that carries out an
operation is known as a method. Requesting the operation is known as invoking the
method – if the method is invoked correctly, the object is then said to execute the
method.

For example, let us invoke a method to move the robot named artoo one grid position
to the north:

artoo.moveNorth();

This method invocation has two components – the name of the object, artoo, followed
by the name of the method, moveNorth. The empty brackets will be explained later.

To move the robot named deetoo one position east and then one position south, we can
write:

deetoo.moveEast();
deetoo.moveSouth();

To move the robot named meetoo to the position with x- and y-coordinates 5 and 3
respectively, we can write:

meetoo.moveTo(5,3);

Notice here that the brackets after the method name are no longer empty. The two
numbers within the brackets are known as arguments – these supply information to
complete the details of the request. Methods in Java can be defined to have any number
of arguments. Suppose we were to omit the arguments, as follows:

meetoo.moveTo();

This would be an error – it is not clear to which position the robot should move.

14 Unit 1 Java everywhere

Now we can see the reason for the empty brackets in the method invocations for
moveNorth and other examples above. These are methods where no additional
information is required and so these methods have no arguments. However, in such
cases, the method name must be followed by empty brackets – omitting the brackets
causes an error.

The effect of the method invocations above on the grid showing the three robots is
shown in Figure 5.

8

7

6

5

4

3

2

1

deetoo

meetoo

artoo

1 2 3 4 5 6 7 8

Figure 5 Grid showing the new positions of the three robots

The methods we have invoked result in the robot objects having new states, as shown in
Figure 6.

5 Objects 15

y

x

y

x

y

x

3

5

4

3

2

1

artoo deetoo meetoo

Figure 6 New states of the software objects corresponding to three robots

A software system normally consists of a number of objects, possibly many objects,
which collaborate and communicate to achieve the overall aims of that system. A key
idea in object-orientation is that the state of each object can normally be changed only
by invoking a method.

All the methods we have seen so far can have an effect on the state of the object – such
methods are known as mutator methods (from mutation, meaning change). Sometimes
methods correspond to a simple request for information and cannot alter the state of the
object. Such methods are known as accessor methods. For example, if we want a robot
object to indicate its x position, we could write:

artoo.getX();

This is an example of a method that produces a result. It is said to return a value – in this
case, the x-coordinate of the robot artoo. This method and the corresponding method
getY do not change the state of the object.

5.2 A more complex robot world
In the previous simple example, there was only one type of object – robots. In more
realistic software systems there are many objects and a variety of different types of
object. It is also possible to build up more complex compound objects, whose
components are themselves objects. In this subsection, we extend the previous
example to look at such compound objects.

We consider a more complex but still two-dimensional world, in which robots may be
free-standing or they may travel around the grid in 'robot ships'. The robot ships are
themselves named objects and they have an internal state as well as a number of
methods, similar to robots. Figure 7 shows a grid containing three robot ships, each
potentially containing a number of robots, together with one individual robot.

In the course M255
Object-oriented
programming with Java,
the term ‘accessor
method’ is used to
describe both methods
that set and methods that
get data.

16 Unit 1 Java everywhere

1 2 3 4 5 6 7 8

1

8

7

6

5

4

3

2

argo

deetoo

odyssey

enterprise

Figure 7 Grid showing position of three robot ships and an individual robot

A robot ship object can contain up to five robots. Its internal data consists of the robot
objects it holds, together with a count of how many objects there are available. Viewed in
terms of their internal state, the robot ships in the above grid can be represented as
shown in Figure 8.

x

count

x

count

x

count

robots

y

robots

y

robots

y

odysseyargoenterprise

4

0

3

1

1

3

524

Figure 8 Compound software objects corresponding to three robot ships

5 Objects 17

All free-standing robots have an internal state indicating their position, as before. Robots
enclosed in a robot ship will all have the same internal state, since they have the same
position (as far as this crude grid is concerned). We will need the further assumption that
a robot behaves differently depending on whether it is embarked (currently in a ship) or
disembarked (not in a ship). Otherwise we could have robots emerging from ships in all
directions!

We would expect a robot ship to respond to similar movement requests and position­
reporting requests as for an individual robot. Additionally, a robot ship should be able to
do a number of additional operations. For example, to embark a robot we could invoke a
method as follows:

enterprise.embark(artoo);

The following example shows how to disembark a robot (if there are any):

argo.disembark();

In this case, the method would have to return the 'name' of the disembarked robot, so
that it is available to receive requests. We shall see more detail of how this might work
later in the course. The position of a newly disembarked robot is the same as that of the
robot ship.

To report on the number of robots held by the robot ship odyssey, we could write:

odyssey.getCount();

Again this method must return a value, in this case the number of robots contained in
this robot ship (which may be zero).

5.3 Robot talk
We have seen that objects have a state, represented by the values of their internal data.
Compound objects have internal data consisting of one or more objects. An object can
also have a number of methods, which allow other objects to access or change the state
of that object. But so far, we have not seen where the method invocation comes from. Let
us look at an example from the robot ship world of the previous subsection.

We have seen that a robot ship should respond to a method invocation as follows:

enterprise.moveTo(7, 6);

This should result in the robot ship enterprise and any robots it contains moving to
position (7, 6) on the grid. Therefore the internal states of the robots within the ship
should also change to ensure that they are consistent with the ship's position. But how
can this be achieved? Recall that in object-oriented systems, objects cannot change the
internal states of other objects directly. However, we can affect the object state by
invoking an appropriate method. So when the robot ship enterprise moves to position
(7, 6), it will need to invoke the corresponding method for any robots it contains. For
example:

artoo.moveTo(7, 6);
meetoo.moveTo(7, 6);

This ensures that the robots move along with the robot ship to the new position. If the
robots are subsequently disembarked from the robot ship, they will be in the correct
(new) position.

18 Unit 1 Java everywhere

6 State changes

In the previous section we told you that an object has state: the data that is contained in
that object. The question that we want to address in this section is: how can we modify
this data? This section aims to show this with respect to what are known as primitive
data types.

Java has facilities for a number of primitive data types. These are values that are simple,
for example integers, characters and floating-point numbers, as opposed to objects,
which have a more complex structure. In this section, we are going to concentrate on
integers. Since integers occupy a set amount of space somewhere in the memory of the
computer and need to be identified, Java provides a declaration facility. An example of
this is shown below:

int x;
int y;
int z;

These declarations notify the Java system that we will use three variables x, y and z.
We can also declare several variables at once when we write:

int x, y, z;

It is normally better practice to declare each variable separately. This is easier to read
and allows you to add an in-line comment describing the purpose of that variable. For
example:

int x; // x-coordinate of robot position
int y; // y-coordinate of robot position
int z; // z-coordinate of robot position

These declarations cause three memory locations to be allocated. Each of these
locations is uniquely identified by a label. This is shown in Figure 9. Depending on
circumstances we shall explain later, these variables may have an undefined value or
may have been initialized to a default value by the Java system (the default value for
integers is zero).

x y z ???

Figure 9 Primitive variables after declaration – they may or may not have a known value

The three primitive variables x, y and z usually need to be given values explicitly. This is
achieved in Java by means of a statement known as an assignment statement, which
takes the following form:

variable = expression;

where expression delivers some value that can be stored in variable. The effect of
this statement is to copy the value on the right-hand side of the '=' into the variable on
the left-hand side.

6 State changes 19

Initially, we consider only examples where expression delivers an integer result. An
example of three assignment statements is shown below:

x = 23;
y = 333;
z = 99;

This results in the values being deposited in the areas of computer memory identified by
x, y and z, as shown in Figure 10.

x y z 9933323

Figure 10 The effect of assignment

Assignments can be combined with declarations. For example, the statement:

int newPos = 99;

is equivalent to the code:

int newPos;
newPos = 99;

Some brief examples of more complicated expressions are shown below. In Java, +
stands for addition, * for multiplication and – for subtraction. Variables on the right-hand
side of an assignment are unchanged.

First, we declare and initialize some variables:

int oldPos = 33;
int newPos;
int increment = 3;

Here, we use the variables in mathematical expressions:

newPos = 12 + oldPos;
oldPos = (2 * increment) – 12;
oldPos = (x + y) * (x + z);

The first statement places 45 (33 + 12) into the location labelled newPos. The contents
of oldPos are unchanged.

The second statement multiplies the contents of increment by 2, subtracts 12 from the
result and then places the resultant value into the location labelled oldPos. The effect of
the third statement is to add together the integers in the locations x and y, and then
multiply this result by the sum of the integers in x and z, storing the final total in the
location labelled oldPos.

In order to explain how this is programmed, let us examine a single Java assignment
statement:

y = y + 1;

The symbol = in Java is not a mathematical statement of equality. It means 'place in the
variable on the left-hand side the value of the expression on the right-hand side'. In order
to explain this meaning, let us assume that the variable y contains the value 333. Then
when this statement is executed, the action that is carried out is to extract the current
value of the variable (333), add one to it and then place this new value (334) into the
variable. This is shown in Figure 11.

20 Unit 1 Java everywhere

y

y

y

extract c y (333)333

add 1 to 333, giving 334333

copy k to y334

ontents of

334 bac

Figure 11 The effect of the statement y = y + 1

Some further examples of this style of assignment statement are shown below:

x = x + 12;
oldPos = oldPos * 2;
newPos = newPos * 3 + 1;

The first statement adds 12 to the value of the variable x and writes it back; the second
doubles the value of the variable oldPos and writes that back; and the third trebles the
value of newPos, adds one to it and places the result back in newPos.

This concludes the section on state changes. This section has been very limited in
concept. All that we have tried to do is to show how primitive variables can be changed
– in particular, we have concentrated on integer variables.

Activity 1.1
Executing some simple
assignment statements.

7 Classes in Java 21

7 Classes in Java

Our previous description of objects was, of necessity, brief and introductory. The aim of
this section is to look at objects in more detail.

Objects in Java are defined by means of a mechanism known as a class. A class is very
much like a template that defines the structure of the stored data associated with an
object and the program code that is executed when particular methods are invoked. For
example, all the robot objects in Section 5 could be defined as instances of a class
called Robot. Each object of the class has the same methods and the same structure
for its stored data. Only the values of the data (the state of the object) may differ
between objects.

7.1 Defining a Java class
The general structure of a Java class is as follows:

class ClassName

{

Data declarations
Method definitions

}

The Java keyword class is used with an appropriate identifier as the name of the
class. Class names conventionally start with an upper-case letter. The body of the class
is delimited by curly brackets and contains both data declarations and details of the
methods for the class. These items may be arranged in any order, but we will follow the
convention of listing data declarations first, followed by method definitions, as shown
above.

For example, the first part of the Java class definition for a robot is shown below:

public class Robot
{

private int x; // x-position(W-E) of robot
private int y; // y-position(N-S) of robot
...

This shows that the data for objects of the Robot class consists of two instance
variables, x and y, which define where the robot is on the grid; these variables will hold
integer values. These instance variables are declared as private, to ensure that this
data cannot be directly accessed by objects of other classes.

The rest of the definition of the Robot class is made up of definitions of the methods that
can be invoked on Robot objects. The definition of the moveNorth method is shown
below:

public void moveNorth ()

{

y = y + 1;

}

The first line of the definition, the method header, begins with two Java keywords,
public and void. Methods are normally declared public, which means that they can

22 Unit 1 Java everywhere

be invoked by objects of other classes. The keyword void indicates that the method
does not return a value. These keywords are followed by the name of the method and a
list of its arguments; in this case there are no arguments, so the brackets are empty.

The method body is enclosed in curly brackets – this defines the code to be executed
when the method is invoked. In this case, it consists of a single statement that
increments the value of the instance variable y. This has the effect of moving the current
position of the Robot object one grid square to the north. In the discussion that follows,
we shall ignore the possibility that a robot might attempt to travel beyond the limits of the
grid.

The definition of the moveSouth method is similar:

public void moveSouth ()

{

y = y – 1;

}

This decrements the instance variable y by one, hence moving the robot one square to
the south.

SAQ 1

Write the code for the methods moveEast and moveWest; each of these should cause
the robot to move one grid square in the appropriate direction.

ANSWER...

The code for method moveEast: The code for method moveWest:

public void moveEast () public void moveWest ()
{ {

x = x + 1; x = x – 1;
} }

7.2 Naming guidelines for Java programs
Note the style of names we have used for items in Java. The language is case-sensitive,
so that it does matter whether you write a variable name in upper case, lower case or a
mixture. Java keywords such as class or public must always be in lower case. You
can choose the names, or identifiers, for other items such as classes and variables that
you introduce.

There are standard Java conventions for identifiers, which are aimed at making
programs consistent and readable – for example, a consistent naming convention helps
distinguish identifiers for methods from identifiers for classes or variables.

In this course, we shall follow the standard naming convention for Java. For the parts of
Java we have met so far, this is as follows.

c Class names are in mixed case, always starting with an upper-case letter, and using
further upper-case letters for the start of any new word within the name. Class
names will normally consist of one or more nouns.

c Variable names are in mixed case, always starting with a lower-case letter, and using
upper-case letters for the start of any new word within the name.

c Method names are in mixed case, always starting with a lower-case letter, and using
upper-case letters for the start of any new word within the name. Normally a method
name should start with a verb.

7 Classes in Java 23

There are similar standard naming conventions for other items, which we shall see later
in the course.

7.3 Creating and using objects
Although we have not yet completed the definition of the Robot class, let us have a look
at how the partial definition so far could be used.

In Section 6, we saw that objects have a state, methods and a name (loosely speaking).
We now make the concept of an object name more precise. If we want to have a Robot
object accessed by the identifier artoo, we declare a variable as follows:

Robot artoo;

This declares a variable called artoo, which can be used to access a Robot object. It
is very important to realize that this declaration does not create a Robot object. To
create an object we use the keyword new, for example:

artoo = new Robot();

This statement allocates memory space for the data stored by a Robot object. The
variable artoo is said to reference the Robot object.

It is possible to combine the two previous statements into one statement that declares a
variable, creates an object and sets the variable to reference the object, as follows:

Robot artoo = new Robot();

To declare variables and create objects for three robots, as in the example of Section 5,
we would need the following code:

Robot artoo;
Robot deetoo;
Robot meetoo;

artoo = new Robot();
deetoo = new Robot();
meetoo = new Robot();

Following these statements, we can now invoke methods on the newly created objects,
using the syntax we have seen earlier. For example:

artoo.moveNorth();
meetoo.moveEast();

Executing these methods will cause the Robot objects referenced by artoo and
meetoo to move one grid square to the north and one grid square to the east
respectively.

7.4 Methods that return a value
As well as methods that move the robot, we also have methods that indicate the current
position of the robot. The two methods we need are called getX and getY. These
methods each return a value, the current x or y position of the Robot object.

24 Unit 1 Java everywhere

The code for these two methods is shown below:

public int getX()

{

return x;

}

public int getY()

{

return y;

}

The method header includes the keyword int (rather than void as before) to indicate
that the method will return an integer value. In the body of the method, the return
keyword precedes the value to be returned. In this case, the methods simply return the
value of the appropriate instance variable.

In previous discussions of methods that return a value, we have not explained what
happens to the returned value after the method has done its work. By way of
explanation, we now look at the method getX. We can invoke this method to find the
current x position of the Robot object referenced by deetoo as follows:

deetoo.getX();

However, this statement is not very useful as we have not made use of the returned value
– in this case, it would be discarded. The simplest thing to do is to save the value by
assigning it to an integer variable as follows:

int currentX;
currentX = deetoo.getX();

We can then use this saved value in any way appropriate to an integer value. For
example, we could display it in a message:

System.out.println("Robot at x = " + currentX);

7.5 Methods that have arguments
Most methods we have described so far have had no arguments. Invoking the moveTo
method causes a robot to move from its current position to a new point, specified by two
arguments as follows:

meetoo.moveTo(5, 1);

The code to be executed in response to such a method invocation is defined within the
Robot class. The code required for this method is shown below:

public void moveTo (int nextXPos, int nextYPos)
{

x = nextXPos;
y = nextYPos;

}

The method header shows that this method returns no value and has two integer
arguments, nextXPos and nextYPos. The two arguments specify the desired next
position of the robot.

7 Classes in Java 25

s nextXPos and nextYPos

.

–

moveTo

:

;
;

x and y Robot object.

signature

SAQ 2

(a) moveTo

(b)

(c) getX

(a)

int

–
int,

(b))

(c) getX()

s
.

The argument are known as formal arguments. The values
used as arguments when the method is invoked (such as 5 and 1 in the above example)
are known as actual arguments

To put it another way when the method is invoked, every occurrence of a formal
argument in the method body is replaced by the value of the corresponding actual
argument. So if we have the following method invocation:

meetoo.moveTo(3, 2);

then the code of the method will be executed as follows:

replace formal argument nextXPos by actual argument 3;
replace formal argument nextYPos by actual argument 2;

Here is the original code for the method body

x = nextXPos
y = nextYPos

Making the replacements results in the following statements to be executed:

x = 3;
y = 2;

This updates the instance variables , and hence the state of the

The name of a method together with the number and types of its arguments is known as
the method . This defines what is needed in order to invoke the method.

What is the signature of each of the following methods?

moveNorth

ANSWERS ..

moveTo(int, int)

This shows that the method has two arguments, both of which are of type . Note
that only the number and type of the arguments need be shown the formal
argument name is not necessary. So far, we have seen only arguments of type
but many other types are possible.

moveNorth(

The empty brackets make it clear that no arguments are required.

Again, no arguments are required. Although this method returns a value, thi
information is not part of the signature

26 Unit 1 Java everywhere

7.6 Constructors
We have seen earlier that objects are created using the new operator, for example:

Robot meetoo = new Robot();

This allocates memory space for a Robot object that is referenced by the variable
meetoo. Given what we have done so far, this particular form of object creation would
initialize the instance variables of the object with default values. The default value for
variables of type int is zero, so this would create a robot initially at position (0, 0).

Java allows us to give an object a specific initial state when it is created. To do this, you
must declare a constructor within the class.

For example, in our Robot class we would need to define the constructor as follows:

public Robot ()
{

x = 1;
y = 1;

}

The effect of this is that whenever you create a Robot object, for example in:

Robot artoo;
artoo = new Robot();

the resulting robot will be positioned at (1, 1). The occurrence of the class name
Robot following the new operator is actually a way of invoking the constructor.

Like methods, constructors can have arguments – these allow initial values to be
specified for the object when the constructor is invoked, rather than having fixed initial
values coded into the body of the constructor.

For example, a Robot constructor that sets the initial x position and y position of a robot
is shown below:

public Robot (int xPos, int yPos)
{

x = xPos;
y = yPos;

}

We could invoke the constructor as follows:

Robot deetoo;

deetoo = new Robot(6, 5);

7 Classes in Java 27

To summarize, we set out the complete code for the Robot class; notice that two
constructors are used:

// models an on-screen robot on a 2-D grid

public class Robot

{

// instance variables

private int x; // x-position(W-E) of robot

private int y; // y-position(N-S) of robot

// constructors

public Robot ()

{

x = 1;

y = 1;

}

public Robot (int xPos, int yPos)
{

x = xPos;

y = yPos;

}

// methods

public void moveNorth ()

{

y = y + 1;

}

public void moveSouth ()

{

y = y – 1;

}

public void moveEast ()

{

x = x + 1;

}

public void moveWest ()

{

x = x – 1;

}

public void setX (int xPos)

{

x = xPos;

}

public void setY (int yPos)

{

y = yPos;

}

public int getX ()

{

return x;

}

{
;

}

{

}

28

public int getY ()

return y

public void moveTo (int xPos, int yPos)

x = xPos;
y = yPos;

} // end of class

Unit 1 Java everywhere

SAQ 3

(a)	 What are the standard Java naming conventions that apply to variables, classes and
methods?

(b) What is the standard way to format these names?

(i)	 A variable called thelastrobot.

(ii) A class called flyingrobot.

(iii) A method called movetherobotforward.

ANSWERS ..

(a)	 All of them use mixed-case naming where the separate words making up a name
are written together, without any spaces and in lower case except for the first letter of
each word being in upper case. For variables and for methods, the first letter of the
whole name should also be in lower case. For classes the first letter of the whole
name should be in upper case.

There are some additional grammatical conventions in addition to the conventions
on upper and lower case in names. For example, method names normally start with
a verb.

None of the Java naming conventions are enforced by the compiler. You can call
items almost anything you like, but note that the compiler is case-sensitive; for
example, userID is different from UserId.

(b) The convention for these names is:

(i)	 theLastRobot

(ii)	 FlyingRobot

(iii) d

7.7 main method

the main main Robot
class.

moveTheRobotForwar

The role of the
All Java code is structured into classes and these give rise to objects when a program is
run. So the methods of an object must be invoked by some code in another object (or
even a method in the same object). This just leads to the further question of how this
object gets created, and so on, indefinitely. Clearly, there must be a starting point for the
whole business of creating objects and invoking their methods. In Java, this is the role of

method. Let us now see how we can use a method to test the

7 Classes in Java 29

First, we need to define a class that can be used to carry out the testing – let us call it
TestRobot. This class will have a main method, defined in the way we saw earlier, as
follows:

public class TestRobot
{

public static void main (String []args)

{

...

All main methods are declared in this way.

When we run a compiled program made up of the classes Robot and TestRobot, the
Java system starts at the main method and follows the Java instructions there. In this
case we need to test some robots, so we must create one or more robots and then
invoke their methods:

public class TestRobot
{

public static void main (String []args)

{

// declare variables to reference Robots

Robot artoo;

Robot deetoo;

// create two Robot objects

artoo = new Robot(); // default starting position (1, 1)

deetoo = new Robot(2, 5); // initially at x = 2, y = 5

// move the Robot named artoo one position East

artoo.moveEast();

// move the Robot named deetoo

// one position West and then one position North

deetoo.moveWest();

deetoo.moveNorth();

}

}

It would actually be possible to put this main method into the class Robot, rather than
creating a new TestRobot class. However, this is not normally good practice. It is
better for the Robot class to be more general purpose, so it could potentially be used in
lots of different programs. Keeping the main method separate makes the Robot class
more flexible.

7.8 Information hiding
This approach of defining classes and objects to control access to data may seem
rather elaborate. Why would we want to do things this way?

Later in this unit you will see how inheritance, one of the more advanced facilities related
to classes, can facilitate code reuse – that is, you can extend and adapt classes written
for one purpose to reduce the effort involved in producing a different software system.

Apart from reuse there is also the advantage of maintainability.

Activity 1.2
Developing a simple
Robot class.

30 Unit 1 Java everywhere

Software systems are subject to major changes in their lifetime. Surveys have suggested
that as much as 80% of the development effort expended by many software companies
is devoted to modifying existing systems.

When you define objects using classes you can restrict access to the instance variables
of an object: normally all access to the information stored in an object is via methods.
This principle is known as information hiding: the code using an object cannot access
or make use of the details of how that object is implemented.

This means that when a developer wants to change the implementation of an object (for
example, to improve its performance or security) then the instance variables and
program code of the methods may change but the external interface to the object – the
method names and arguments themselves – does not change. So, there is no need to
change any other parts of the software system that invoke the methods of this revised
object, as long as the external interface has not changed.

8 Inheritance 31

8 Inheritance

So far we have outlined how to construct objects in Java and how to define their
methods. We have also seen how classes are a sort of template to define the data
structures and methods of similar objects. This section introduces another important
concept in Java – inheritance.

In order to introduce the idea, we will look at some simple extensions to the robot world
discussed earlier. Later units of the course show how inheritance is used in more
complex applications.

8.1 The definition of inheritance
Inheritance is a relationship between classes. We have seen the example of the Robot
class – all objects of this class have exactly the same structure for their data (their
instance variables) and exactly the same methods that can be invoked.

In more complex systems, we often identify a need for various objects that are similar in
structure, but not exactly the same. Inheritance gives us a way of documenting this
similarity and of using it in the Java implementation. We will start with a broad definition,
which we will make more precise in a later unit.

When a class B inherits from a class A, then objects of class B are in some sense
extended versions of class A objects. They have all the same methods and instance
variables as class A objects; they can also have additional methods and instance
variables, or can modify the methods they inherit, so that a class B object typically
behaves in some ways like a class A object, but in other ways behaves differently.

When a class B inherits methods and variables from a class A, then B is known as the
subclass of A and A is known as the superclass of B. There is a standard graphical
notation for this, as shown in Figure 12 – the arrow always points from the subclass to the
superclass. The diagrammatic notation used here is part of the Unified Modeling
Language (or UML for short).

B

A

Figure 12 UML diagram of class B inheriting from class A

In Java, a class can inherit directly from only one other class: that is, it can have only one
immediate superclass. This is not true of all object-oriented languages, but it is a
deliberate choice by the Java language designers to avoid some well-known problems
that might otherwise arise. On the other hand, a class can have more than one subclass,
as shown in Figure 13. In fact, it can have any number of subclasses.

32 Unit 1 Java everywhere

A

B C

Figure 13 UML diagram of classes B and C inheriting from class A

It is also possible to have more levels of inheritance, as shown in Figure 14. Subclass B
may itself have a subclass, class D. Objects of class D are extended versions of class B
objects. They have all the same methods and instance variables as class B objects,
including those that B inherited from class A. They can also have additional methods
and instance variables, or can modify the methods they inherit.

A

B C

D F

G

E

Figure 14 UML diagram showing several levels of class inheritance

This form of diagram, which shows the inheritance relationships between classes, is
known as a class hierarchy diagram. Class hierarchies are a very powerful way of
describing the relationship between classes. This relationship lies at the heart of the use
of an object-oriented programming language as a medium for software reuse.

8.2 –Inheritance example magic robots
As an example of inheritance, let us consider broadening the world of robots to admit a
different sort of Robot with additional special abilities. We can define a MagicRobot
that is able to move around in the same way as an ordinary robot, but is also able to
become invisible, so that it does not show up on the screen display. This property could
clearly be useful if we are using the robots as part of a game. Perhaps less obviously, it
could be used in a practical robotics application, to reduce clutter by allowing selective
display on a grid containing many robots.

In Java we say that the subclass extends its superclass – for example, the start of the
MagicRobot class definition looks like this:

public class MagicRobot extends Robot

{

...

This is shown diagrammatically in Figure 15, using UML notation.

8 Inheritance 33

MagicRobot

Robot

Figure 15 UML diagram showing MagicRobot inheriting from Robot

Since a MagicRobot is just a special kind of Robot, you can invoke all the standard
methods of the Robot class to move it around or to find out its position. To control the
visibility of MagicRobot objects, we need some additional methods. For example, we
can define methods called makeVisible and makeInvisible, which could be used
as follows:

...
gandalf.makeVisible(); // only for magic robots
gandalf.moveTo(3, 3); // just like a Robot
...
gandalf.makeInvisible(); // only magic robots
gandalf.moveEast(); // just like a Robot
...

It is also useful to be able to check whether or not a magic robot is currently visible. For
this we need another method, called isVisible, which returns a suitable value.

What sort of value should be returned here? Clearly, there are two possible meanings to
the return value – either the robot is visible or invisible. So perhaps we could return an
integer where different numbers are used to indicate whether a robot is visible or
invisible. This is a possible approach, but has some drawbacks. It is very common for a
result or a variable to have only two possible values like this, so Java offers us a special
data type known as boolean. Data like this has only two possible values, true or
false.

This seems to be exactly what we need. So the method isVisible should be defined
to return a boolean (that is, true or false) value as shown below:

public boolean isVisible ()

{

...

}

To make this work, the magic robot also needs some data to allow it to 'remember'
whether or not it is visible. An instance variable that holds boolean data is just the thing.
This is defined as follows:

private boolean visible; // true or false

The name boolean
derives from the
nineteenth-century
English mathematician,
George Boole, who
pioneered the study of
mathematical logic.

34 Unit 1 Java everywhere

Activity 1.3
Using inheritance with a
MagicRobot.

So the definition for the MagicRobot class has three additional methods and one
additional instance variable, compared to the Robot superclass. Here is an almost
complete definition:

public class MagicRobot extends Robot // incomplete

{

private boolean visible; // true or false

public void makeVisible ()

{

visible = true;

}

public void makeInvisible ()

{

visible = false;

}

public boolean isVisible ()

{

return visible;

}

}

Notice that we do not have to repeat any of the methods or the instance variables of the
Robot class. The extends keyword ensures that, broadly speaking, these are available
to MagicRobot objects automatically. There are some complexities about inheritance but
to keep things simple here, we are deferring these to a later unit.

There is one slight flaw in this definition. Can you spot it? It is related to the initial state of
a MagicRobot. We do not yet have a constructor for MagicRobot objects – so when
we create a MagicRobot object, it is not obvious whether it is visible or invisible. It
seems safest to make them invisible at first (so they will not show up unless you want
them to). We can add a constructor as follows:

public MagicRobot()

{

makeInvisible();

}

In this case, the constructor for MagicRobot will automatically invoke the constructor for
its superclass, the Robot class, before it does anything else. This ensures that the initial
position of a MagicRobot object is set when it is created, just as for ordinary Robot
objects. Sometimes the situation for constructors is more complex than this, but the
details of this will be explained in a later unit.

8 Inheritance 35

8.3 Overriding methods
There is one further important rule about inheritance that needs to be explained. As
before, we will start with a broad definition of the concept and follow this with a specific
example.

When we defined inheritance above, we explained that subclasses could have
additional instance variables and methods compared to those of the superclass. We
also said that subclasses can modify the methods they inherit from a superclass. This
modification is limited in that the body of the method can be modified, but the method
signature must stay the same. This form of modification is known as overriding the
method.

Suppose we want to define another specialized kind of robot, this time a variable-speed
robot, modelled by the class SpeedRobot. This robot can move across the grid at
different speeds depending on an internally stored step size, rather than always taking
one step for basic moves, as for ordinary Robot objects.

So we can define a new subclass of Robot, with an additional instance variable to hold
the step size and additional methods to allow us to set or find out the step size, or
speed. The first attempt at defining the SpeedRobot class is as follows:

public class SpeedRobot extends Robot // incomplete

{

private int speed; // step size for moves

// constructor
public SpeedRobot (int initialSpeed)
{

speed = initialSpeed;

}

public void setSpeed (int newSpeed)

{

speed = newSpeed;

}

public int getSpeed ()
{

return speed;
}
...

}

We can invoke the standard move methods, moveNorth, moveWest and so on, as the
SpeedRobot class inherits them from the Robot class. However, these do not take
account of the new speed data, so we need to rewrite them appropriately.

The method headers can remain unchanged, and therefore what we need is to override
these methods as follows:

36

{

}

{
-

}

{

}

{
-

}

Robot and

,

...
d

5
...

!

...

5

...

SAQ 4

Robot

which Robot?

Robot
Robot

c Robot;

c Robot;

c Robot.

// new version, overriding previous methods
public void moveNorth ()

setY (getY() + speed);

public void moveSouth ()

setY (getY() speed);

public void moveEast ()

setX (getX() + speed);

public void moveWest ()

setX (getX() speed);

Note that the other methods of the class, like moveTo getXPosition, still
work perfectly well for SpeedRobot objects and so do not need to be overridden. Only
methods that correspond to different behaviour in the subclass objects need to be
overridden. Here we show an example of using both the original and the new
overridden versions of these methods.

SpeedRobot gonzales;
gonzales = new SpeedRobot(5); // 5 steps
Robot crawler;
crawler = new Robot(); // create normal one

// invoke original, then overridden metho
crawler.moveNorth(); // moves one square only
gonzales.moveNorth(); // speedy robot moves

gonzales.moveTo(3, 3); // just like a Robot
crawler.moveTo(3, 3); // it is a Robot

// now they are in the same place

crawler.moveEast(); // moves one square only
gonzales.moveEast(); // speedy robot moves
// now they are in different places again

Given a class SpecialRobot that inherits from a class , what are the ways in
SpecialRobot can differ from

ANSWER...

The class SpecialRobot can add functionality to that of or modify the
functionality it inherits from or both. It can do this in the following ways:

by adding instance variables to those inherited from

by adding methods to those inherited from

by overriding methods that it inherits from

Unit 1 Java everywhere

8 Inheritance 37

8.4 Overloading methods
We complete our initial look at Java classes by explaining one further concept, method
overloading. This is not directly related to inheritance, but it is important to understand
overloading when dealing with classes in an inheritance hierarchy. First we give a
definition and then we consider a specific example, which might just include a few
robots ...

A class may have more than one method of the same name. However, each of these
identically named methods must have a different signature; that is, it must be possible to
distinguish each method from the others by the number and/or the type of its arguments.
We then say that the method is overloaded: it has more than one possible
implementation, depending on the arguments with which it is invoked.

So, for example, we could extend the SpeedRobot class to have alternative versions of
each basic move method – one that always moves the current standard step size and
the other that accepts an argument specifying the size for that step only:

public class VariableSpeedRobot extends SpeedRobot
{

...

// define OVERLOADED method – not OVERRIDING

public void moveNorth (int theSpeed)

{

setY (getY() + theSpeed);

}

...

// and for other directions, MoveEast etc.

...

This allows us to use either of these two versions of the moveNorth method applied to a
suitable object:

VariableSpeedRobot sillyWalker;

// create a speed robot with "normal" speed 5

sillyWalker = new VariableSpeedRobot(5);

...

sillyWalker.moveNorth();// move 5 steps

sillyWalker.moveNorth(3); // 3 steps this time

sillyWalker.moveEast(); // move 5 steps

sillyWalker.moveEast(2);// 2 steps this time

...

The appropriate version of the overloaded method is selected for execution according to
the pattern of arguments used when the method is invoked. This is the same approach
we saw earlier for classes that have more than one constructor.

Activity 1.4
Robot world – inheritance,
overriding and
overloading.

38 Unit 1 Java everywhere

Figure 16 summarizes the inheritance relationships between the classes for the various
types of robots.

Robot

MagicRobot SpeedRobot

VariableSpeedRobot

Figure 16 Inheritance hierarchy for robot classes

Figure 17 displays the positions of the robots from the different classes, after applying
various method invocations.

8

7

6

5

4

3

2

1

sillyWalker

gonzales

gandalf deetoo

meetoo

artoo

1 2 3 4 5 6 7 8

Figure 17 Grid showing the positions of objects of the various types of robots

SAQ 5

.

(a) ;

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(a)

or false canSee r mr
.

(c)

Robot

(e)

(f)

Robot

(h) x = 5, y

(i) moveTo
Robot

For each type of robot in Figure 16, we declare a variable and create an object of that
robot type, as follows:

Robot r = new Robot();
MagicRobot mr = new MagicRobot();
SpeedRobot sr = new SpeedRobot(3);
VariableSpeedRobot vsr = new VariableSpeedRobot(2);

For each method invocation below, say whether or not it is valid. If it is, say what the
effect of executing this code will be. If it is not valid, explain why

sr.makeInvisible()

boolean canSee = mr.isVisible();

r.moveNorth;

sr.moveNorth(5);

vsr.moveEast();

vsr.moveEast(4);

sr.moveNorth();

mr.makeInvisible(); mr.moveTo(5, 3);

vsr.moveTo(4);

ANSWERS ..

Invalid. This method is defined only for MagicRobot objects.

(b) Valid. Stores true in variable depending on whethe is visible
or invisible

Invalid. Need empty brackets after the method name, even though this method has
no arguments.

(d) Invalid. Class SpeedRobot overrides this method, inherited from , but it does
not have any arguments.

Valid. The VariableSpeedRobot class inherits this method from the SpeedRobot
class. The robot moves to the east by 2 grid squares (which is its standard moving
distance).

Valid. The VariableSpeedRobot class defines this method as a new overloaded
method. The robot moves to the east by 4 grid squares.

(g) Valid. Class SpeedRobot overrides this method, inherited from . The robot
moves to the north by 3 grid squares (which is its standard moving distance).

Valid. The robot makes itself invisible and then moves to position = 3 on the
grid, where it remains invisible.

Invalid. The VariableSpeedRobot class inherits a method from the
class, but it requires two arguments, not one.

8 Inheritance 39

There are two final points about overloaded methods. First, it is not enough for two
versions of an overloaded method to have different return types, if they have the same
argument pattern. This is not enough of a difference to allow the compiler to infer which
version to use when the method is invoked. For example, these two versions of a method
called moveNorth would not be acceptable in the same class:

public int moveNorth (int theSpeed)

public void moveNorth (int theSpeed)

Second, the overloading may occur entirely within one class, or one or more versions of
an overloaded method may be inherited from one of the superclasses. We saw an
example of the latter in the VariableSpeedRobot class where it inherited one version
of the method moveNorth, but also defined another overloaded version within the
VariableSpeedRobot class itself.

Unit 1 Java everywhere 40

9 Summary 41

9 Summary

This unit has described the origins of Java as a web technology and the aims of the
language designers. Java can be used to develop both applications (stand-alone
programs) and applets (code that can be included in a web page).

We have seen a number of important points when considering systems as a collection of
objects.

c Collections of objects carry out the functions of a system by invoking each other's
methods.

c Objects in a system can be simple or can be collections of other objects.

c Objects follow the principle of information hiding – their internal data is normally
private and can be accessed or changed only by invoking the methods of that
object.

We have introduced the important idea of inheritance, which defines a relationship
between classes. This is the main mechanism for reuse in an object-oriented
programming language like Java. We have also described an important graphical
notation known as an inheritance hierarchy, often called a class hierarchy. This shows
how classes are related to each other in terms of the methods and instance variables
they inherit from each other. We have also explained the concept of overriding methods
inherited from a superclass and contrasted this with overloading methods.

Much more detail about classes will be presented later in Unit 3. Before this, it is
necessary to provide a tour of the programming facilities within Java. This is the subject
of the next unit.

42 Unit 1 Java everywhere

SLEARNING OUTCOME

When you have completed this unit, you should be able to:

c briefly outline the history of the Java programming language and the aims of its
designers;

c have an appreciation of the wide range of platforms for which Java is available and
the implications of this;

c recognize what a simple Java program looks like;

c distinguish between Java applications and Java applets;

c run a simple Java application, using the course software tool;

c explain the basic concepts of a system as a collection of interacting objects;

c understand the role of classes in object-orientation;

c explain how inheritance is used to design class hierarchies and to facilitate reuse of
classes.

Concepts
The following concepts have been introduced in this unit:

accessor method, actual argument, applet, application, argument, assignment, block
comment, bytecode, class, class hierarchy, compiler, constructor, declaration, default
value, execute, formal argument, HTML, identifier, information hiding, inheritance, in-line
comment, instance variable, internet, interpreter, Java, Java edition, Java version,
keyword, line comment, method, method header, method invocation, mutator method,
native code, object, overloading, overriding, portability, primitive data type, signature,
source code, state, statement, subclass, superclass, variable.

C

Index 43

Index

A

accessor methods 15

actual arguments 25

aims of Java language 6

applets 11

applications 11

arguments 13

assignment 18

B

boolean 33

bytecode 10

class hierarchy 32

classes 21

comments 8

in-line comment 8

line comment 8

compilers 9

constructors 34

D

declaration 18

default value 18

E

editions 6

extends 34

F

formal arguments 25

H
HTML 11

I

inheritance 31

instance variables 21

integers 18

interpreter 10

J

J2EE 7

J2ME 7

J2SE 7

Java Software Development Kit 10

K

keywords 7

M

main method 28

maintainability 29

methods 13

accessor 15

method header 7

method invocation 13

mutator 15

mutator methods 15

N

naming conventions 21

native code 9

new operator 26

O

object-orientation 12, 15

objects 12

objects communicating 15

state 12, 15

overloading 37, 39

overriding 35–36

P

portability 6, 9

primitive data types 18

R

return 24

reuse 29, 32

S

signature 25

source code 9

state 12, 15

statements 7

subclass 31

superclass 31, 35

U
Unified Modeling Language 31

V

variables 18

versions 6

