M255 Unit 14
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Software development

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006.
Copyright © 2006 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London
EC1N 8TS; website http://www.cla.co.uk.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

ISBN 0 7492 1358 2
1.1

CONTENTS

Introduction 5
1 What is software development? 6
2 Development phases 10
3 Models 13
3.1 Modelling and diagrams 13
3.2 UML 14
4. Using UML 17
4.1 Modelling with class diagrams 17
4.2 Modelling with object diagrams 19
4.3 Modelling with sequence diagrams 23
5 Software development methods 31
5.1 What is a software development method? 31
5.2 The waterfall method 32
5.3 lterative methods 33
6 Software engineering 36
6.1 Project failure 36
6.2 Teamwork 37
6.2 Documentation 38
6.3 Software tools 39
7 Summary 41
Glossary 43
Acknowledgement 46
Index 47

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

In this, the final unit of M255, you will be introduced to the idea of software development
— a set of activities, phases (stages) and modelling techniques which help individuals
and teams create software that meets its users’ requirements.

By now you will have written a fair number of programs in Java and, from what you have
learnt so far, you might reasonably question whether anything other than writing code is
required in order to create a finished software product. However, the development of
software can be far from straightforward and, generally speaking, the larger the
application, the more complex the development process will be. In order to manage
such complexity, it is useful to breakdown the development of software into phases.
Each phase may involve different activities and/or modelling techniques which software
developers can employ as they work towards the final product.

It is important to realise just how big and complex major software projects can be.
Requirements for a software system might include:

P interacting with other complex systems — for example, a banking system will need to
interact with the BACS (Bankers Automated Clearing Services) system;

» supporting thousands of users simultaneously — for example, a mobile phone
network;

» monitoring and controlling mechanical and electrical devices — for example, a car’s
engine management computer;

» responding to critical conditions that affect safety — for example, a railway
monitoring system;

» running continuously for months or years at a time — for example, a system for
maintaining a power station;

Even fairly small software projects may have some of these characteristics.

A large project can easily involve hundreds of people working over a period of years to
produce programs millions of lines long. In these circumstances software development
must be a highly systematic and professional activity, or there is little chance of writing
programs that work correctly and meet the customers’ requirements.

In this unit we describe some of the techniques used in software development. You will
not be learning about these techniques in detail, rather the intention is to give you the
flavour of some of them, to allow the work you have done in earlier units to be set in a
wider context.

Section 1 describes what is meant by the term ‘software development’, then, in
Section 2, you will look at what phases may be involved in software development.

In Sections 3 and 4 you will look at the modelling techniques that are employed when
designing software, while Section 5 contains a discussion of how the various phases of
software development can be combined to form a software development method. The
unit ends by examining ‘software engineering’, a term used to refer to a wide range of
topics related to software development.

Unit 14 Software development

What is software development?

When you are writing code you naturally concentrate on how to make the code do what
is required. But how do you know what is required? Where does this information come
from? Consider the types of question you might ask before starting to write code, for
example:

What should the software do?

What classes will the software use?

What information must objects record and to what messages should they respond?
How will the user interact with the software?

How can we test that the software works as it is supposed to?

VVvVvYyYVvYyYvYyyYy

How easy will it be to adapt the software if things change later?

Software development is the process of getting from a customer’s needs to operational
software which meets those needs. It involves finding answers to the questions posed
above and a range of related ones. Notice the term development — this implies
something that emerges gradually, as part of a process, and does not happen all at
once. Much of software development is about planning the software, and this involves
building models described by text or diagrams, or both. You have already met some
kinds of diagrams; for example, sequence diagrams and object-state diagrams.

If you were writing a very small program, perhaps as part of an exercise, you might not
need to do much, if any, planning. For example, a program to accept two integers and
output the larger might be something that you could write by typing the code straight
into the computer and fixing any problems as you went along. You would obviously have
to think ahead a bit, but you would not need to start by developing any models. If you
did it would probably just slow you down without contributing anything.

But this only applies to very simple cases. After all, finding the bigger of two numbers is
not that useful, since this is something we could easily do without a computer. Software
which does really useful things is going to be more complicated. So consider a more
complex example.

You have a friend who works in the administration of a local school and wants an
application to help her do her job. In particular she would like some software that will
support her in fulfilling the following tasks.

» For a given form (group of pupils), list information about its pupils and its teacher.
» Record the enrolment of a new pupil into a form.

» Provide the name of the teacher with the most pupils in their form.

» Provide the name of the oldest pupil in a form.

She gives you the following information.

» A record is kept of each pupil’'s name and date of birth.
All pupils are aged between 4 and 18 inclusive.

Each teacher’'s name is recorded.

vyvyy

Each form has a name (e.g. ‘Form 1b’), contains up to 10 pupils and is taught by a
single teacher.

Naturally you want to help your friend, but how will you start? Of course you might try to
write the code as you went along, as for the simple program we described earlier to

1 What is software development?

compare two integers. Unfortunately this approach will not work any longer. True, you
have a description of what the software has to do, however there are many questions
that must be answered before any code can be written. For example.

» What classes will you use?

What Java class libraries are needed?

What instance variables and methods will you define for any new classes?
How are the classes related to one another?

When the program runs, what objects will exist, and how will they be created?

vVvyvVvyyvyy

What messages will be sent, and to what objects?

You might be able to make a stab at the answers to some of these, but we hope you can
see that, even with this relatively simple example, there is almost no chance of writing
some working software without doing some careful planning.

To demonstrate various aspects of software development in this unit we have developed
such a school management application, and you will start to explore it in the following
activity.

ACTIVITY 1

Launch BlueJ, open the project called Unit14_Project, and then open the OUWorkspace.
In the Code Pane execute the following code:

new SchoolGUI();

You should be presented with the user interface shown in Figure 1.

% Sehoal

Seer:t Fumn Fin Dt
Findriy Frewrn 1
Teachar | Malpas Diident pogd | Ko puapds. in His T
Pugss Spaces ee | 10
Frind Pupll
Seteul & lom valh lres spaces sl anler pud delidy belosy
Nane
Diate of Bath [ddf et Age muir! be betwesr 4 and 18 | Eviel |
Diacnms
Tinacher 'With Mnsi Pupds
Al foemer ot emply
| Py seionl

Figure 1 A simple graphical user interface for the School Management application
1 Using the user interface carry out the following tasks.
(i) View the details of each form.
(ii) Enrol, into the form named Form 1b, pupils with the following details:
Rosie Webster, who has the date of birth: 24/12/00;
Chesney Brown, who has the date of birth: 05/05/01;
David Platt, who has the date of birth: 25/12/00.

Note that the software
interprets the year 45 as
1945 and 19 as 2019.

Recall that a form contains
up to 10 pupils.

Recall the restriction that
the school only accepts
pupils aged between 4 and
18.

Remember from Unit 1,
that the domain model

is that part of the software
that simulates the part of
the real world with which
we are concerned (and is
not directly concerned with
how communication with
the user is achieved).

Unit 14 Software development

Enrol, into Form 1c, the following pupil:
Sophie Webster, who has the date of birth: 04/11/00.

What do you see in the user interface as a result of your actions? View the details
of Forms 1b and 1c.

(iii) Try to enrol pupils with the following details into Form 1a:
Vera Duckworth, who has the date of birth: 12/03/45;
Joshua Peacock, who has the date of birth: 08/04/19;

What occurs in the user interface as a result of your actions?

Do not enrol any more pupils into the school yet. If you do so accidentally, or if you
make a mistake and enter any incorrect details, click on the Reset school button to
restore the application to its initial state. For simplicity, our basic application allows no
other way of correcting errors.

Look briefly at the classes in the project. There is no expectation that you will
understand all the details. Which classes in the project would you expect to have
instances corresponding to real-world entities (i.e. ‘things’ in the real world)? Of the
classes which do not correspond to real-world entities, what are their purposes?

DISCUSSION OF
ACTIVITY 1

The widgets in the user interface should be familiar and hopefully the tasks were
straightforward.

(iy To view the details of each form, select the form’s name in the list of forms. As
well as the form’s name you should have found that the following are initially
displayed:

» the name of the form’s teacher;

» a message informing you that there are no pupils in the form;
» the number of spaces left in the form.

Initially each form is empty, so they have 10 spaces.

(i) To enrol a pupil, select the form’s name, enter the pupil’s name and date of birth
into the relevant fields and click on the Enrol button. Do this for each of the four
pupils in turn.

Each time a pupil is enrolled the message ‘Pupil enrolled (age x)' — where x is
the age of the pupil in the current year — is displayed in both an Information
dialogue box, and in the Outcome field. When the pupil has been successfully
enrolled, the name and date of birth fields are cleared.

Selecting each form’s name in turn should reveal that Form 1b and Form 1c
have pupils in them, whose names and dates of birth are displayed. The name
of the oldest pupil in each form is displayed, as is the number of spaces
remaining in the form. The other forms remain empty. The name of the teacher
with the most pupils is displayed.

(iii) An attempt to enrol the pupil named Vera Duckworth with the date of birth 12/03/45
results in a Warning dialogue box carrying the message ‘Pupil too old! (age y)’, where

y is Vera’s age in the current year. The error message is also displayed in the
Outcome field. The name and date of birth fields are not cleared.

An attempt to enrol the pupil named Joshua Peacock with date of birth 08/04/19
results in the error message ‘Pupil too young! (age -1).

Form, Teacher and Pupil objects correspond to real-world forms, teachers and
pupils, respectively. You can deduce this from the names of these classes, and from
the class comments. These classes constitute the domain model.

1 What is software development?

An object of the class SchoolCoord does not correspond directly with a real-world
entity but is used to handle communication with the user interface and to coordinate
the interaction between forms, teachers and pupils — much like the
BarnDanceCaller class you encountered in Unit 7.

SchoolGUI contains the code for implementing the graphical user interface. Much
of the code for this class was automatically generated using a more powerful IDE
than Blued called NetBeans (a widely used IDE from Sun Microsystems). Since the
code is automatically generated it is rather verbose, and in places does not conform
to M255 coding guidelines. You do not need to understand the code.

The M255Date class does not form part of the domain model, it is simply a utility
class that enables the School Management application to handle representations of
dates easily.

SAQ 1

Why is it appropriate to refer to the School Management application as an application
rather than a program or a software system?

ANSWER ...

As you learnt in Unit 1, it is not a program since it does not follow the pattern of:
input data — process data — output data.

It is not, strictly speaking, appropriate to refer to it as a software system either, because
the software really is not large enough to be described as such — the software is
designed to run on a single computer and is not comprised of a number of subsystems
or applications.

The School Management application turns your computer into a specialised computer,
one to manage schools — therefore it is best described as an application.

The previous activity introduced you to a much larger example of software than you have
previously seen in M255. Now imagine you were dealing with a complex system such as
the following.

Iridium satellite system

In 2001 the Iridium satellite system, initiated by Motorola and managed by Boeing,
became operational; the culmination of several years of software development.
Iridium is a satellite-based communication system enabling wireless communication
(for example, using mobile phones and pagers) around the world, even in remote
areas. Software was developed to enable communication between mobile phones
and land-based communication lines via sixty-six low-orbit satellites. This project,
involving object-oriented software development processes and programming
languages, produced more than 15 million lines of code.

Not only was the amount of planning for Iridium huge, but it is impossible to imagine a
single programmer being able to create the system — in fact hundreds of software
developers were involved. This raises another set of issues. How can a team of people
succeed in working collaboratively on complex projects? How can their activities be
coordinated? How do they communicate with one another?

In the next section we will start to answer these questions.

Unit 14 Software development

This use of ‘client’ should
not be confused with
‘client’ as an object in a
client-server
collaboration. However,
the relationships are
analogous: the client here
is requesting a service of
the developer.

Development phases

In this section you will learn about the main software development phases that help
software developers progress from a description of the requirements by the client (the
person or people commissioning the software) to a deliverable working system.

Humans achieve many complicated tasks through following, consciously or
unconsciously, a process of smaller, more manageable ‘planning’ stages. Consider the
construction of a building. A process involving several levels of planning and modelling
(creating different architectural plans, for example) is carried out to organise the
construction engineers’ thoughts (and those of their client), before any part of the
building is actually constructed.

SAQ 2

Consider the task of going on holiday. How might this be successfully organised through
a succession of stages, each planning some aspect of the trip?

ANSWER ...
You might begin by thinking, ‘Let’'s take a winter break in the sun’.

Then you might visit travel agents, collect brochures, go online and consider possible
dates and costs.

Next you might take decisions about where and when to go, make reservations and
book leave.

Finer details are then sorted out, such as how to get to the airport, what time to get up on
the day you leave, and who will feed the cat.

Finally the plan is put to the test and you set off on holiday.

The task of creating software similarly benefits from being accomplished through a
systematic succession of smaller, interlinked stages, or phases, each consisting of
different activities, and each building on the previous phase. The task of going from a
description of software requirements to a collection of software objects sending
messages to one another is a large and complex one, which can very easily go wrong
(or may not even be possible at all) if attempted in one step. The task needs to be
broken down into smaller phases that are easier both to manage and to carry out.

In software development the initial focus is usually to get an overview of the required
software. That is the developer concentrates on planning the overall structure of the
software and not on smaller details. As the project progresses, more detailed aspects of
the software are considered. Thus, the production of what will eventually be a complex
application or system is made manageable by following a development process that
considers appropriate levels of detail at appropriate times. This can be thought of as
moving through different levels of abstraction as more and more detail is added to the
plans.

2 Development phases

Painting and programming

There is no essential difference between the way in which a painter plans
and ‘implements’ a picture and the way in which a programmer plans and
implements a program.....

(In a recent exhibition).....there was one vast, unfinished canvas that
revealed exactly how (the artist) had worked on it. He had sketched in the
major structure, some parts completely finished, others only partly painted —
exactly how a good programmer writes a program.....The processes of
abstraction, visualisation and realisation are the same, just the application
area is different.

Excerpt from Marshall, L.F. (1992) ‘They all laughed at Christopher Columbus’, in
Proceedings of the Women into Computing 1992 National Conference — Teaching
Computing: Content and Methods, Keele, UK.

A systematic development process also has the advantage that more than one person
can be involved. If there is good communication between those involved, meaning not
only that they talk with one another but that the scope and results of each activity are
clearly set out, then allocating people to different phases enables the distinctive skills of
individuals to be combined.

The object-oriented software development phases can be described as follows.

> Requirements specification. This involves eliciting and analysing the client’s
wishes in order to produce a detailed and complete specification of the
requirements of the software in terms of its functionality. The requirements
specification document sets out, as precisely as possible, what is required of the
software. In a professional context it can form the basis for the contract between the
developers and the client.

> Developing a structural model. Here the requirements are analysed to determine
the classes and connections between them that are appropriate for the work context
the software is being written for. Hence this stage defines a structure for the
software. Since, in object-oriented software, objects often correspond to real-world
entities, this stage starts with the creation of a model of the key features of the real-
world situation within which the software is to operate.

> Designing dynamic models. The design of dynamic models enables the decisions
to be made about what interactions among objects will achieve the tasks required of
the software.

> Developing a user interface. This phase involves both design of the user interface
and determination of how it will communicate with the domain model.

> Detailed design and implementation. At this stage decisions are taken as to which
existing classes can be reused (from previous projects or class libraries) and what
programming constructs are appropriate, as well as writing the actual code.

» Testing. This involves not just testing the final product but testing at each stage.
Testing ensures that the software produced relates correctly to the previous stage
and to the requirements.

» Maintenance. The aim of the maintenance phase is to keep the software working to
the satisfaction of its users. It may include tasks such as:

» fixing emerging problems;
» fine-tuning the software to improve its performance;
» enhancing the software by adding extra facilities.

Unit 14 Software development

Traditionally, a non-object-oriented approach to software development was considered
to involve the following phases.

» Requirements specification. As above.

» Analysis. Involves analysing the specified requirements and expressing, in
computing terms, what the software should do.

» Design. Involves deciding how the software will meet the specified requirements.

» Implementation. Involves translating the design into program code (of some
suitable programming language).

» Testing. As above.

» Maintenance. As above.

However, when following an object-oriented approach to software development the
distinction between analysis and design becomes blurred. While it is still important to
distinguish between what the software has to do (analysis) and how it is to be achieved
(design), the activities of analysis and design can be quite closely interleaved. In
analysing the real-world tasks the software has to carry out, it is natural to think in terms
of objects (because the structure of object-oriented software often resembles the real-
world entities the software is concerned with). Thus, at an early stage the developer will
consider not only what tasks the software is required to carry out but what objects will
participate in the achievement of these tasks.

In the next section we will investigate how diagrammatic models are used during
structural and dynamic modelling, to both plan the software and as a means of
conveying design decisions to other members of a software development team.

3 Models

Models

A software model is a plan: an illustration or description of the software, or of part of it,
which emphasises certain aspects and omits others (i.e. it is an abstraction). A good
analogy is a map of the London Underground, used by travellers moving between
stations in the underground railway system. Such a map is shown below.

EpT—

St wimsiedon
[y

Comigns oo b Tampn

Figure 2 Map of the London Underground

The map is a representation of the London Underground system: it does not show the
precise geographical layout of the lines or how the tunnels are constructed, and it does
not show the location of toilets or where tickets are collected. The map is an abstraction
and what it does show is a stylised description of the topological relationships between
stations and connecting lines — the only information required by underground travellers
to plan their route. It is a model of the underground system. Any information about ticket
machines, toilets, and so on, would only clutter the map and make the task of finding a
route through the underground system more difficult.

Similarly, the models used at different points in the software development process
highlight information that is relevant at that point and suppress information that is
irrelevant (i.e. the models are produced with an appropriate level of abstraction). As
development progresses the level of detail in the models increases.

m Modelling and diagrams

On an individual level modelling helps organise thinking about what might be a very

complex task. In the context of a team working on a project, using models promotes the
sharing of ideas and the successful division of tasks. For example, the design and the
implementation (the actual programming) might involve different people. The designer

Unit 14 Software development

Note the American
spelling of Modeling in
UML.

can hand over to the programmer a set of models representing the part of the software
to be implemented. The designer need have no knowledge of the precise
implementation details that the programmer may introduce; similarly the programmer
need not be aware of how the designer came up with the designs. The models represent
the information they need to share, and therefore constitute an important part of the
communication between them.

Expressing a model using a diagram has several advantages over textual descriptions.

1 A diagram is a concise, abstract form of communication amenable to emphasising
certain features and suppressing others.

2 A simple diagram can often be understood by someone inexperienced in
computing (such as the client commissioning the software, or a future user of the
software), whereas a textual description might not.

3 Inan object-oriented approach objects begin to be identified right from the start of a
project. This means diagrams involving these objects can evolve seamlessly as they
incorporate increasing levels of detail through the development process. In other
words, the same kinds of diagrams can be used throughout, lessening the cognitive
load on the developer.

The diagrammatic modelling techniques we will look at in this unit are based on a
popular modelling language called UML (Unified Modeling Language).

3.2 [N

UML (Unified Modeling Language) is an example of a modelling language based on
diagrams. A modelling language specifies how models should be constructed so that
the meaning of the model is unambiguous. It is not a method for developing software,
but a way to produce models that could be used in different methods of software
development.

Think of a language for human communication. It has:

» a vocabulary (the elements of the language);

» a grammar (the valid ways in which its vocabulary can be combined);
» semantics (what each valid combination of vocabulary means).

Similarly a modelling language has modelling elements (particular styles of boxes and
lines, for example) and conventions (that prescribe what combination of elements in a
diagram is valid, and that allow the meaning of a valid combination of modelling
elements to be interpreted). Thus, a modelling language such as UML enables the
construction of meaningful diagrammatic models of proposed software.

The rise of UML

As object-oriented programming grew throughout the 1980s and 1990s, so too did the
number of modelling languages used for discussing and recording software
development. From the proliferation of modelling languages one could be selected, or
adapted, to suit a particular project and the people working on it. Those intimately
involved in a project understood the kinds of models used, but there was no guarantee
that anyone else would. Someone wanting to reuse part of the design at a later stage (for
example, to implement the software in a new programming language) may have had the
overhead of first getting to grips with an unfamiliar modelling notation. Reusing and even
simply discussing designs was made difficult by not having a consistent and shared
means of describing them.

In the late 1990s there was an attempt to establish a standard modelling language and

rules for using it. Eminent software developers worked together to unify the confusing

variety of existing modelling languages, resulting in proposals to a standard-setting

body called the OMG (Object Management Group) for a single modelling language The OMG is a consortium

called UML. A UML standard was then set by the OMG that specified diagram elements of computing companies
that exists to facilitate

and notation, how they could be combined, and what they meant. communication within the
. , . . computing industry and

The UML standard is evolutionary, in the sense that there has actually been a series of pron?ote groduct i

standards, each building on the previous as software developers place new demands interoperability

(particularly in the area of
object-oriented related
software).

on models. At the time of writing the current UML specification is UML 2.0.

UML is a vast and, in places, highly complex language — in this unit you will meet a very
small subset of the diagrams available. This is actually typical of a software project;
although most professional developers have a general understanding of the
expressiveness of UML, most projects will require them to work with only a limited range
of diagrams.

Though UML is generally acknowledged to have made significant contributions to
software development, it is also accepted that its necessary rigour makes strict
adherence rather cumbersome. In particular, when using diagrams to explore different
design possibilities, UML is often not strictly adhered to. Developers using UML for
informal peer discussions will not see the benefits of, for example, remembering to use
the right kind of arrows all the time, and they may annotate, or otherwise alter, a UML
diagram to suit their own needs.

So long as the main features of diagrams follow UML, small variations tend to be
unproblematic. This use of UML-type diagrams (i.e. ones that vary slightly from the
standard) rather than strict UML diagrams is generally considered acceptable.

Exercise 1

A group of friends who have some experience of object-oriented software development
are working together to create an application for managing their local football league. The
application will undertake various tasks, including providing information about each team
(for example, who the manager is) and about matches that the teams play amongst
themselves in a season (who plays who, who has won the most matches etc.).

(a) State the main advantages of the friends following a planned development process.
(b) Give two reasons why it will be a good idea for them to use UML.

STo] [() o TR

(a) The advantages of following a planned development process are, first, that the
complexity of the application would be easier to handle, and the development made
simpler.

Secondly, the planned process would allow workload to be shared, and skills put to
best use, by allocation of different people to different tasks.

(b) Any two of the following are valid reasons for using UML.

» The use of models based on UML means that the group would have a consistent
and unambiguous means of communication.

» Using UML would enable analysis of different possible plans for the application.

» As the group would be following an object-oriented development process then
essentially the same kind of diagrams could be used throughout, reducing the
number of different types of diagram involved and simplifying the process.

_ Unit 14 Software development

» UML diagrams are useful for producing diagrams at an appropriate level of
abstraction (allowing detail that is irrelevant at a particular point to be
suppressed).

» UML diagrams have a better chance of being understood by people other than
the diagrams’ creator. Some diagrams can be understood by non-computing
specialists (team managers, for example, might need to know about some of the
plans for the system).

» The application will be more readily understandable and reusable if UML
diagrams describing the application are available.

4 Using UML

Using UML

In this section we shall describe how UML is employed when developing models. We
will not cover every modelling technique, nor will we go into any great detail, but this
section should give you a taste of how UML is used in practice.

m Modelling with class diagrams

A class diagram shows the structure of the proposed software, illustrating the classes
that will be needed and the relationships between those classes.

You have already seen UML-type class diagrams; in fact you have seen them throughout
the course. Every time you open a Blued project the main window displays a UML-type
class diagram which shows the relationships between the classes. Up until now these
diagrams have shown only one form of relationship — that of inheritance. For example

opening Unit7_Project_10_sol gives the following.

==abstract==

Amphibian

AN

Frog Toad

HoverFrog | BarnDanceCaller

Figure 3 A UML-type class diagram displayed by Blued

Blued can display another kind of relationship in a class diagram: a uses relationship.
This relationship is shown if you choose Show Uses from Blued’s View menu. Selecting
this option for Unit7_Project_10_sol gives the following.

You may need to move the
classes around the BlueJ
display to ensure the uses
relationship is clearly
displayed (and not
obscured by other
classes).

Unit 14 Software development

==abstract==

Amphibian

Frog Toad
T -

HoverFrog | BarnDanceCaller

Figure 4 A UML-type class diagram displayed by Blued that shows a uses relationship

The uses relationship is shown in Blued by the dashed arrow, and (in the diagram above)
indicates that instances of the BarnbanceCaller class have one or more instance
variables that have been declared as type Frog. Note that while an inheritance
relationship is between classes, a uses relationship represents connections between
instances of classes. Each BarnDanceCaller object uses two Frog objects. In UML
these connections are called links.

There is however an important and significant difference between a UML-type class
diagram automatically created by Blued and a UML class diagram created during the
design of software. Blued’s UML-type class diagrams illustrate the relationships between
existing classes whereas in software development they are used as modelling tools to
explore and plan design possibilities. In other words, class diagrams suggest ideas for
how classes might be related. Indeed a class diagram should not imply anything about
how links between instances of classes are implemented, just that some connection
exists between them.

At an early stage of development the class rectangles in UML class diagrams tend to be
quite sparse (like those in Blued). They simply display a class name, and then as the
design progresses they become more informative as the names of attributes and
methods become apparent. Consider the following progression for the Account class.

first version second version third version
Account Account Account
holder holder
balance number
balance
credit
debit
fourth version
Account attributes
holder: String
number: String
balance: double
credit (anAmount: double)
debit (anAmount: double): boolean
transfer (toAccount: Account, anAmount: double): boolean
methods

Figure 5 An evolving Account class

Note that in the above figure the details of attributes and methods are shown using UML
syntax, not Java syntax, as UML models are not specific to a particular programming
language.

XY Modelling with object diagrams

Object diagrams provide another way of modelling the software under development. A
UML object diagram shows the state of part of the software under development at an
imagined particular point in time when it is running — a ‘snapshot’ if you like. In an object
diagram, objects are represented by rectangles (similar to the object-state diagrams we
have used throughout the course). Consider an example from the School Management
application shown in the following figure.

Note that although in this
discussion of modelling we
will put all code-related
labels and names into
code style for clarity, a
label in a UML diagram — a
model -may never make it
into the actual code (the
implementation).

Unit 14 Software development

pupil3

name = |"Rosie Webster"

birthDate =| 24/12/00 |

Figure 6 The depiction of an object in an object diagram

The text in the upper section of an object rectangle shows the chosen means of identifying
that particular object. Thus the Pupil object shown in Figure 6 is called pupil3. This is
just a label — an identifier — it is used to refer to the object involved in discussions and
diagrams. It allows developers to distinguish this particular Pupil object from other Pupil
objects in the software. It is not intended to be a variable name and in this example in
particular it should not be confused with the value of the object’s name instance variable
which is a String object representing the name of the pupil ("Rosie Webster"). You are
free to choose any text you like as the identifier for an object, so long as it clearly indicates
the class of the object, and is different from other identifiers already in use.

The lower section of an object rectangle shows the attribute values of the object. This
section is often omitted if the attribute values are not of interest during a particular phase
of development.

As in class diagrams, object diagrams can illustrate connections, or links between
objects, mirroring the connections between their real-world equivalents. We can
illustrate the fact that Rosie Webster is enrolled into the form named Form 1b, which is
taught by Mr Barlow, in the following way:

teachero6

form2 pupil3

name =

"Mr Barlow" name = "Form 1b" name =

"Rosie Webster"

birthDate =| 24/12/00 |

Figure 7 Object diagram illustrating links

The lines running between the object rectangles in Figure 7 illustrate links between the
objects. Thus the line between the form2 rectangle and the pupi13 rectangle illustrates
a link between form2 and pupil3, and represents the fact that the form (Form 1b)
corresponding to the object form2 has in it the pupil (Rosie Webster) corresponding to
the object pupil3.

SAQ 3

In Figure 7, what does the line between the teacher6 and form2 illustrate?

ANSWER .

It illustrates a link between teacher6 and form2, representing the fact that the teacher
corresponding to teacher6 (that is, Mr Barlow) teaches the form corresponding to
form2 (that is, Form 1b).

The object diagram in Figure 7 shows only part of the School Management application at
run-time — it is a partial snapshot at a particular point in time. The full running application
would contain many more objects and links between them with the precise situation
depending on the pupils, teachers and forms in the school at that time. In an object

diagram you need include only those objects that you are interested in. For example,
although the diagram shows only one Pupil object, there may well be other pupils in the
form we have called form2. We refer to the full complement of objects, their attribute
values (that is, the objects’ states) and the links between them, which constitute the
running software at any one time, as the state of the software at that time.

Exercise 2

Extend the object diagram in Figure 7 to show that the pupils Chesney Brown and David
Platt (whom you enrolled into the school in Activity 1) are also in the form represented by
form2, whose teacher is represented by teacher6.

SYo) (V1110) o WU TR

Figure 8 shows the extended object diagram. You may have used different identifiers for
the Pupil objects.

teacher6 form2 pupil3
name = "Mr Barlow" name = "Form 1b" name = |"Rosie Webster"
birthDate =| 24/12/00 |
pupiléd pupilb
name = |"Chesney Brown" name :’ "David Platt"
birthDate =| 05/05/01 | birthDate =| 25/12/00 |

Figure 8 Object diagram illustrating teacher6, form2 and its related Pupil objects

An object diagram created during the development of an application or system does not
imply anything about how such links between objects are implemented, just that some
connection exists. At the detailed design and implementation stage of development,
different possibilities for implementation will be analysed. In the following activity you will
see how this was done in the School Management application.

ACTIVITY 2

Launch BluedJ, and open Unit14_Project, which contains the classes for the School
Management application. Open the OUWorkspace and run the School Management
application by executing

new SchoolGUI();

in the Code Pane.

1 The running application contains, amongst other objects, the Teacher and Form
objects described in the discussion of Activity 1, part 2, and SAQ 3. That is, there is a
Teacher object with its name attribute set to "Mr Barlow", and a Form object with its
name attribute set to "Form 1b". Of course, there is nothing in the application that
mentions the identifiers we used (teacher6 and form2) in Figures 7 and 8;
remember that these are just labels used in an object diagram (which is external to
the software).

Unit 14 Software development

Look at the source code for the classes Teacher and Form, in particular the instance
variable declarations. How is the link shown in Figure 8 between teacher6 and
form2 implemented?

2 If you followed the instructions in Activity 1 and enrolled three pupils into Form 1b,
then in the running application the Form object we are referring to as form2 is linked
to three different Pupil objects. How are these links implemented?

DISCUSSION OF
ACTIVITY 2

1 Although we cannot ‘see’ the objects in the running application, they are generated
from the source code from which we can glean information about them. The
following variable declaration in the Form class is the key here.

private Teacher teacher; // teacher of the form
This shows that the link is implemented by form2 having an instance variable,
teacher, which references teacher6.

This situation is not unique to form2, of course; every Form object has a reference to
the relevant Teacher object. Please note that a Teacher object does not hold a
reference to the relevant Form object — there is no corresponding Form variable
declaration in the Teacher class.

2 Here is the relevant declaration, again in the Form class.

private Collection<Pupil> pupils; // pupils in the form

This shows that the links are implemented by a Form object having an instance
variable, pupils, which references a Collection of the Pupil objects that
represent pupils in the form.

In fact you can see from the following code within the Form constructor that, when

the code is run, pupils actually references a HashSet of Pupil objects:
this.pupils = new HashSet<Pupil>();

Note that a Pupil object has no reference to the linked Form object.

Links between objects may be implemented by instance variables in both classes, or in
just one class as is the case in our examples above. The choice of which implementation
is appropriate depends on the use that the code makes of the links.

Note that, although both attributes and links can be implemented using instance
variables, they are represented very differently in an object diagram. This representation
highlights the fact that an object’s attribute values are simple pieces of information
(represented by strings, for example) that are not specific to the software under
consideration, whilst in contrast its links are with other domain-model objects.

One important aspect of class and object diagrams is that, although they are expressed
in software terms involving classes, methods, attributes, objects, links, etc., the client
and potential users of the software usually find them easy to interpret. Therefore such
diagrams can serve as a check that the developer and client have the same
understanding of what classes are needed for the software, and the relationship
between those classes, and instances of those classes. This is one of the main
advantages of an object-oriented approach — the domain model that we are developing
has a much more straightforward relationship with the real-world problem domain than
would be the case in a more traditional approach.

4 Using UML

g Modelling with sequence diagrams

In UML, sequence diagrams are employed to model the software in action (i.e. at run-
time), showing the message-sends involved in specific collaborations. Figure 9 shows a
simple model created during development of the School Management application. It
relates to the requirement for the application to provide the name of the teacher with the
most pupils in their form.

userInterface school

T
getTeacherWithMostPupils () ‘L

teacher?2

Figure 9 Getting the teacher with most pupils

You will notice that Figure 9 is a sequence diagram, of a similar style to those introduced
earlier in this course (although the notation used here follows UML conventions more
closely). However, there is a significant difference between how sequence diagrams
have previously been used in M255, and how a diagram such as that in Figure 9 is used
during the development of software. Whereas you have previously used sequence
diagrams to illustrate the interaction between existing objects at run-time, in software
development they are used as modelling tools to explore and plan design possibilities
for how objects might interact. In other words, sequence diagrams in UML suggest
ideas for how the future software might work.

The important features to note about sequence diagrams are as follows (some of which
you will already be aware of).

> Each object in an interaction is represented by a rectangle, just as in an object
diagram. This rectangle contains an identifier for the object, but no attribute values.

> Time is viewed as running vertically downwards.

> A dashed vertical line running down from an object rectangle represents the lifeline
of that object, that is, the time during which the object exists.

» When an object receives a message, an activation rectangle running vertically
downwards is started on that object’s lifeline. This represents the period during
which the object is engaged in responding to the message it has received; that is,
the time during which the method invoked by the message is being executed.

» The activation rectangle for the userInterface object comes straight out of the
object rectangle and appears ‘endless’ (i.e. the bottom of the rectangle is dashed).
This indicates that the user interface is continuously active, always listening for
events (mouse clicks, for example) caused by the user.

> A message is represented as a solid arrow.

> A message answer is shown as a labelled dashed arrow emanating from the bottom
of an activation rectangle.

Unit 14 Software development

SAQ 4

Consider the sequence diagram in Figure 9.

(a) Which object is shown as being sent a message?
(b) What is the message?
(c) What is the message answer?

AN S VR
(a) The school object is being sent a message.

(b) The message is getTeacherWithMostPupils().

(c) The message answer is teacher?2.

Notice that a sequence diagram is quite different from an object diagram, although they
both illustrate objects. An object diagram shows the state of part of the running software
at a particular point in time and as such can be described as a static model. A
sequence diagram shows objects collaborating by sending messages one after the
other. Because it illustrates events occurring in the software over time, a sequence
diagram is classed as a dynamic model.

Sequence diagrams in software development

In the design stages of a software development project, scenarios which represent
typical user interactions with the software, are devised. For each scenario, sequence
diagrams are created to show which message-sends will need to be exchanged
between objects in the running software for the scenario to be completed. Sequence
diagrams therefore form the basis for deciding which methods are appropriate for the
classes of the emerging software, and what each method should involve.

Consider the following example. For the School Management application there is a
requirement to provide the name of the oldest pupil in a given form. We will consider a
particular scenario involving finding the oldest pupil in a particular form.

In Activity 1 you enrolled the following pupils into the form called Form 1b:
Rosie Webster, date of birth: 24/12/00;
Chesney Brown, date of birth: 05/05/01;
David Platt, date of birth: 25/12/00.

Suppose that, in the development of this application, a scenario involving pupils as
described above was devised. The developers might illustrate the objects involved in
this particular scenario in the object diagram in Figure 10. This shows the Form object
form2 (named ‘Form 1b’) together with the Pupi 1 objects corresponding to all the above
pupils in the form, which are labelled as pupil3, pupil4 and pupil5 in the figure. The
application of course includes other Form and Pupil objects, as well as objects of other
classes, but they are not relevant to our current investigations.

4 Using UML

form2 pupil3
name = "Form 1b" name = |"Rosie Webster"
pirthDate =| 24/12/00 |
pupild pupilb
name = |"Chesney Brown" name =’ "David Platt"
birthDate = 05/05/01 | birthDate = 25/12/00 |

Figure 10 form2 and its Pupil objects

Figure 11 shows a simple sequence diagram for this scenario, that the developers of this
application might have considered, which expresses a particular design idea.

userInterface school form2

T T

1 1

getOldestPupil (form2) - :
> getOldestPupil ()

e

Figure 11 school returns a message answer

In creating the sequence diagram above the developers were expressing the idea that,
as part of what the application does to get the oldest pupil in a form:

> the object school (an instance of the class SchoolCoord, which you met in
Activity 1) could receive a message getOldestPupil () (with a particular Form
object, here form2, as the argument) from the user interface, represented by the
object userInterface (an instance of SchoolGUI);

» the object school would then send a getOldestPupil() message to the Form
object, which would respond by returning the oldest Pupil object (pupil3, in this
particular scenario) to school;

P> finally the school object would return that Pupil object to the user interface.
The sequence diagram in Figure 11 is a model which emphasises a collaboration

between the userInterface object and the objects school and form2, but neglects
details such as the precise method code.

SAQ 5

Imagine that you, as a programmer, are handed the sequence diagram shown in
Figure 11 by a designer. What information does the sequence diagram give you about
how to code the SchoolCoord method with the signature getOldestPupil (Form)?

Unit 14 Software development

Do not confuse the two
methods involved. The
first is getOldestPupil
(aForm) in class
SchoolCoord and the
second is
getOldestPupil() in
class Form. Although they
happen to have the same
name they are entirely
distinct.

ANSWER ..

It tells you that the return type of the method is Pupil. It also tells you that the method
code should involve sending a getOldestPupil() message to a Form object.

In the next activity you will first try out the application’s ability to find the oldest pupil in a
form, and then you will confirm that the code which achieves this does indeed conform
to the design expressed in the sequence diagram in Figure 11.

ACTIVITY 3

Launch Blued and open Unit14_Project and the OUWorkspace. Run the School
Management application by executing

new SchoolGUI();

in the OUWorkspace’s Code Pane.

1 In the user interface, select Form 1b. What is displayed in the field labelled Oldest
pupil?

2 Select Form 2a. What is displayed in the field labelled Oldest pupil?

3 Now turn to the source code, and explain briefly what the code for the method
getOldestPupil (Form aForm) in class SchoolCoord does.

DISCUSSION OF
ACTIVITY 3

1 When Form 1b is selected the name ‘Rosie Webster’ is displayed in the field labelled
Oldest pupil.

2 When Form 2a is selected the text ‘No pupils in this form’ is displayed in the field
labelled Oldest pupil.

3 The method is as follows

public Pupil getOldestPupil (Form aForm)
{

return aForm.getOldestPupil();
}

The method sends the message getOldestPupil () to the object referenced by
aForm (the method argument). This corresponds to the sequence diagram in
Figure 11 in which the message getOldestPupil () was sent to the object form2 of
the particular scenario.

The sequence diagram in Figure 11 shows the collaborations between userInterface,
school and form2. Suppose the developers then turned to considering how a Form
object would respond to a getOldestPupil () method. In this particular scenario what
might form2 do to return its oldest pupil? An obvious approach would involve form?2
asking each of its Pupil objects in turn for their birth dates: that is, collaborating with
each pupil object. The following exercise asks you to consider how the developers
might illustrate this idea in a sequence diagram.

Exercise 3

Figure 12 shows the first of the collaborations between form2 and its Pupil objects.
Complete the diagram to show the collaborations between form2 and pupil4 and
between form2 and pupil5. (You will need to refer to Figure 10 for the birth dates.)

4 Using UML

school

getOldestPupil ()

T
1
1

Figure 12 form2 collaborates with pupil3

T
1
1
1

SYo) (V1170) o W TR TR

Figure 13 shows the expanded sequence diagram with the collaborations between
form2 and the three Pupil objects depicted.

school

getOldestPupil ()

form2

S

\4

getBirthDate ()

05/05/01

getBirthDate ()

pupilb

25/12/00

Figure 13 form2 collaborates with each of its Pupil objects

In Activity 4 you will confirm that the School Management application code conforms to
the design expressed in the sequence diagram in Figure 13.

ACTIVITY 4

Launch BluedJ and open Unit14_Project.

Explain briefly how the code for the method getOldestPupil() in class Form

corresponds to the design illustrated in Figure 13.

_ Unit 14 Software development

DISCUSSION OF
ACTIVITY 4

From the code you can see that when a Form object’s getOldestPupil () method
executes the receiver (in the scenario above this is form2) iterates over all the Pupil
objects in its pupils collection, sending each in turn the message getBirthDate().
This corresponds to the design illustrated in the sequence diagram in Figure 13.

Figure 14 shows a sequence diagram illustrating the complete message sequence
involved in finding the oldest pupil, starting with the user interface sending the message
getOldestPupil (form2) to school and finishing with the user interface receiving the
object pupil3.

userInterface school form2 pupil3 pupild pupilb

getOldestPupil (form2)

> getOldestPupil ()

getBirthDate ()

24/12/00 \J
< ____________________

getBirthDate ()

|
1 ~
. >
05/05/01 ;
< ________________________________

getBirthDate ()

1 1

| |

1 1 >

1 1 .
25/12/00 ; ; H

- -

Figure 14 The complete message sequence responding to the request for the oldest pupil in
Form 1b

In the next exercise you will practice what you have learnt about object and sequence
diagrams, by again imagining that you are in the process of developing the School
Management application. This time you will be looking at exactly the same task (locating
the oldest pupil in a form) but with a different scenario.

Exercise 4

(a) Suppose that the form named Form 1c has one pupil in it — her name is Sophie
Webster and her date of birth is 04/11/00. Ms Yingjie is the teacher of this form. Draw
an object diagram, using the identifiers form4, pupil6 and teacherl, to illustrate
the objects that correspond to these real-world entities.

(b) Suppose that a pupil named Craig Harris enrols into Form 1c. His date of birth is

02/07/00. Extend your object diagram to illustrate the Teacher, Form and Pupil
objects involved, choosing a suitable identifier for the additional object.

4 Using UML

(c) Suppose that a user of the School Management application selects Form 1c in the
user interface. Draw a sequence diagram to illustrate the sequence of messages and
message answers that should pass through the application for this scenario, resulting
in the Pupil object corresponding to the oldest pupil in Form 1¢ being returned to the

user interface.

Solution

(a) The object diagram for Form 1c is as follows.

teacherl

formé

pupilé

name = "Ms Yingjie"

name = "Form 1c"

Figure 15 Object diagram illustrating Form 1c, its teacher and its pupil

name =

"Sophie Webster"

pirthDate = | 04/11/00

|

(b) In our updated object diagram we have used the identifier pupil7 for the
additional object. You could have used any identifier that was different to the ones
that have already been used in this unit.

Figure 16 A new pupil in Form 1c

teacherl form4 pupilé6
name = "Ms Yingjie" name = "Form 1lc" name = ["Sophie Webster"
birthDate = 04/11/00 |
pupil?
name = | "Craig Harris"
pirthDate =| 02/07/00

_ Unit 14 Software development

(c) A sequence diagram, showing the scenario in which the oldest pupil from Form 1c
is obtained, is shown in Figure 17. Note that the order in which the Pupil objects
are sent the message getBirthDate() does not matter.

userInterface school form4 pupilé pupil?

getOldestPupil (form4)

> getOldestPupil ()

getBirthDate ()

02/07/00

o)

[«

o)

=

°

~J

; A\
== o= s o - —

Figure 17 Getting the oldest pupil in the new scenario

In this section you have explored how sequence diagrams can be used in software
development for illustrating the interactions between objects involved in particular
scenarios, and how they can be used as a basis for writing method code. In Section 5
software development methods are introduced, and you will look at examples of such
methods, including the waterfall method and iterative methods.

5 Software development methods

Software development methods

Earlier you were introduced to the concept of developing software in phases, each
building upon the previous phase. This section gives an overview of how the phases of
software development may be combined to form a software development method.

- What is a software development method?

Before discussing what is meant by a software development method, it might be helpful
to review briefly what has been learnt about the phases of software development.

In Section 2 we introduced the following main phases of object-oriented software
development:

requirements specification;
developing a structural model;
designing dynamic models;
developing a user interface;
detailed design and implementation;
testing;

VVvyVvyVYyYVYYVYY

maintenance.

SAQ 6

What is each of the following phases concerned with?

(a) developing a structural model.
(b) designing dynamic models

ANSWER ...

(a) Developing a structural model is concerned with determining what classes and
objects (and the relationships between them) are appropriate for the requirements.

(b) Designing dynamic models is concerned with determining what interactions among
objects will achieve the requirements.

It is most important to appreciate that there is no implication that the phases must be
undertaken in a linear fashion, with each one completing before the next starts. On the
contrary many different permutations are possible. A software development method is
a particular set of phases and their activities, applied in a particular order.

At this point you may be wondering why there is a need for different software
development methods. First, there is much debate, and no obvious consensus amongst
practitioners and researchers, on the relative merits of different approaches to creating
software. Secondly, there can be major differences between software projects, which
determine which methods are appropriate. For example, a significant influence on
choice of development method is the stability of the software requirements, that is,
whether they can be fully determined at the outset of the project, and how liable they are
to change. The requirements for an embedded system, such as a washing machine
controller, or a safety-critical system controlling a power station, may be well defined

l

Requirements
specification

Unit 14 Software development

y

from the start, and unlikely to change. In contrast the requirements for a stock control
system for a newly established business will change with the changing nature of the
business. Changing requirements can require very flexible development methods.

IEEY The waterfall method

The waterfall method is a traditional and idealised view of software development and
involves strictly following a sequence of phases. It describes development in which
each phase is visited only once, and where each phase is completed before the next
begins. Figure 18 illustrates this.

Developing
a structural
model

y
Designing
dynamic models

A,
Developing a
user interface

Detailed design
and
implementation

Maintenance

Figure 18 The waterfall model of software development

SAQ 7

Can you think why the waterfall method has been nicknamed the ‘throw it over the wall’
method?

ANSWER ..

The method is nicknamed the ‘throw it over the wall’ method since once a phase is
completed it is essentially beyond the control of the developers — they may not revisit it.

The waterfall method has some advantages for the management of a project. If there are
a set number of phases then we can at least try to plan in advance for the time and
resources required for each phase and then for the entire project. But the method suffers
from a number of problems.

1 Itdoes not produce any executable software until the end of the project, so the client
may not have a good idea of what they are getting until it is too late to make
changes.

5 Software development methods

2 Testing, being at a late stage in the project may be neglected if the project overruns.

Errors are likely to be undiscovered until late in the project, meaning that resolving
them is rushed or not done at all, or the project is delayed (with the associated
problem of considerable costs being incurred).

4 The method does not countenance changes or additions to the requirements as the
project progresses, but relies on all the requirements of the software being
established at the beginning. This is often unachievable.

5 There is no allowance for the developers to return to a phase to revise earlier
decisions.

As previously indicated many projects do not start with a fixed and unchanging set of
requirements, and most developers do not make consistently perfect decisions. Thus
rigid adherence to a waterfall method is generally unrealistic. Nevertheless, many
projects do follow an approximation to it (deviating, for example, by allowing a return
from implementation to dynamic model design when a coding problem arises), largely
because its predictability aids project management. The term predictive method is
sometimes used to describe a method largely based on the waterfall approach.

Q lterative methods

Whereas a predictive method is inflexible in the face of change, an adaptive method of
software development is able to respond to change. Adaptive describes ways of
developing software, which not only tolerate change (to the software requirements, to
ideas in the developers’ minds, etc.), but which actually embrace change by building
space for it into the schedule.

An iterative method, common in object-oriented software development, is one such
adaptive method. Phases are repeated in a systematic manner, with each iteration (one
cycle through the phases) enabling the developers to build on the work completed so
far, as well as offering an opportunity for reflection and revision.

A common iterative practice is to restrict the initial development to only a small subset of
the requirements. By designing and implementing just a part of what is required the
developer is able to get early feedback from the client and thus reveal more quickly any
problems arising from misunderstandings of, or changes to, the requirements. Once this
initial version of the software has been implemented satisfactorily, additional behaviour
can be incorporated by repeated iterations of the development process until eventually
a version of the software that satisfies all the specified requirements is produced.

Figure 19 shows an outline of an iterative method.

_ Unit 14 Software development

A
Requirements
specification
4 1
Developing
a structural
model
A
Designing
dynamic models
1
Developing a
user interface
Detailed design
and
implementation
Review |< Testing

Maintenance

D

Figure 19 An iterative approach to software development

There are many variations of the iterative approach. A common one is for early iterations
to concentrate on getting a satisfactory design of the structure of the software before
going into the detailed design and implementation and testing phases.

The review, which is explicitly included within each iteration (see Figure 19), is a point
where developers and clients can take changes into account by scheduling them into a
future iteration.

SAQ 8

List some kinds of changes likely to be identified within a review.

ANSWER ...
Here are some of the changes you might have thought of.

» Changes in the client’s requirements.

» Changes to decisions made in previous iterations — about the structure of the
software, its design or its implementation.

» Changes to correct any errors from previous iterations.

In each iteration the designs and/or code are tested. Since one iteration builds on
another, tests are repeated to ensure that the changes and additions made during an
iteration do not damage the previous development.

Within iterative development, prototypes are often useful. A prototype is an early
working version of the required software, or part of what is required, used to test and
confirm ideas about what the software is required to do and how best to achieve this. For
example, a part of the user interface (with perhaps limited or no actual functionality) may
be designed and implemented so that its usability can be analysed and the results fed
into the development process.

5 Software development methods

eXtreme Programming (XP)

Emerging in around 2000, the ideas of eXtreme Programming (XP) challenge the
wisdom of developing software through carefully planned phases. Instead, XP
advocates (at least on certain kinds of projects) concentrating on rapid, prototype-
producing, documentation-light iterations of coding and testing. XP is an example of
an agile development process, which prioritises the people and styles of
teamworking on a project ahead of any process and documentation used.

Unit 14 Software development

Software engineering

Systematically developing software by using a defined methodology is a vital ingredient
in a successful project. We noted earlier, similarities with the way in which a building is
developed; in fact there are similarities with the development of engineering artefacts
more generally. A succession of activities is involved, moving from a general description
of the software (product) through increasingly detailed designs (engineering blueprints)
to the implementation (construction). Because of these similarities to engineering
physical artefacts the term software engineering is often used to refer to the wide
range of issues connected with carrying out successful software development projects
(particularly large-scale ones) using a systematic approach. Software engineering
covers not only the technical aspects of building software systems, but also
management issues, such as directing programming teams, scheduling and budgeting.

The theory of software engineering is a vast one, with substantial industrial practice and
academic research behind it. For an idea of its extent, consider the following small
sample of research areas.

> Software development methods. For example, which kind of method suits which
kind of project?

» Project management. How best to manage the people, tasks, resources and
finances involved in a project, so that software of an acceptable quality is delivered
on budget and on time?

» Risk analysis. Identifying and managing the possibility of problems occurring in a
project. How would a project cope if one of its developers left, for example?

» Testing techniques. For example, what testing strategies are best suited to what
kind of project?

» Software quality. What are desirable qualities of software, and how can they be
measured and maximised?

The rest of this section introduces you to aspects of software engineering relating to
large-scale projects. By /arge scale we mean that the size of the project, and the
complexity of detail involved, precludes the work being carried out by one or two
people, and hence that the project can only be carried out by a team of people, with
different individuals working on different aspects of the project.

m Project failure

Developing software involves a complex process of analysing different possibilities and
making choices. It is an inventive and therefore challenging activity which offers
opportunities for satisfying creativity, but also for disappointment. Disappointing
software is often the result of poor software development. The term project failure
covers situations where a project is unsatisfactory in some way: it might be over budget,
it might run over time, or it might result in unsatisfactory software.

Software development can, though rarely, result in software that completely or almost
completely fails. You might like to pause at this point and try to recall an example of a
real-life software project that has largely failed.

6 Software engineering

There are many notorious examples. You may have remembered the following.

» The Child Support Agency system put into operation in 2003. Problems with this new
system resulted in a backlog of millions of pounds of unpaid support payments to
single parents.

» The UK Passport Agency problems of 1999, when the introduction of a new
computer system resulted in long delays in the processing of passport applications
and queues of passport applicants outside the agency’s offices.

Common causes of project failure

The UK National Audit Office and the Office of Government Commerce published a
list of common causes of public sector project failure in 2004 (for more details see
http://www.nao.org.uk/publications/nao_reports/03-04/0304877es.pdf; accessed

2 June 2006). The points (simplified in places) were as follows.

1. Lack of clear link between the project and the organisation’s key strategic
priorities, including agreed measures of success.

2. Lack of clear senior management and ministerial ownership and leadership.
3. Lack of effective engagement with clients.

4. Lack of skills and proven approach to project management and risk
management.

5. Lack of understanding of, and contact with, the supply industry at senior levels in
the organisation.

6. Evaluation of proposals driven by initial price rather than long-term value for
money (especially securing delivery of business benefits).

7. Too little attention to breaking development and implementation into
manageable steps.

8. Inadequate resources and skills to deliver the project.

m Teamwork

When a team works on a software development project, it is usual for different people to
work on different parts of the development. A professional may specialise in a particular
aspect of development, concentrating on that aspect in the projects they work on. You
may have heard of some of the following job titles, all of which come under the umbrella
title of software developer.

> A systems analyst works closely with a client who has requested a software

solution to determine if a software solution is practicable. If it is the systems analyst
will then determine how such a solution would fit into the rest of the client’s current
business practices and how those practices may need to adapt with the introduction
of the proposed software. The systems analyst will then ensure that the clients
requirements are expressed in a consistent and non-contradictory form that can be
understood and acted upon by the requirements analyst. To do this a systems
analyst ideally needs knowledge of both the problem domain (the client’s business
needs) and software design.

> A requirements analyst analyses the requirements produced by the systems
analyst to produce a rigorous requirements specification that can be acted upon by
a software designer. They may also become involved in preliminary aspects of
design.

Unit 14 Software development

» A designer takes the requirements specification and works on the design stages of
a project. A designer may specialise in certain kinds of design, for example games
design or user interface design.

» A programmer implements the code, based on the design models, testing small
units of code along the way. Again, there are various specialists, such as games
programmers.

» A technical writer is involved in developing user documentation, such as help files
and user manuals.

> A software tester tests the software as it is being developed; for example, testing
that separate units of code, perhaps written by different programmers, interact
appropriately together (integration testing).

» A project manager plans and oversees the running of a software development
project, from making an initial assessment of the risks involved in the project and
allocating people to teams, to having ultimate responsibility for the decisions taken
during the project and handing over the software to the client.

It is not uncommon for different software development firms to be commissioned to work
on different aspects of a software project. One firm might carry out the systems analysis,
another the requirements analysis, yet another the software design, and so on. With so
many people involved you can see why the project manager figures large in the
process!

SAQ 9

Figure 19 (in Subsection 5.3) shows the iterative software development method. Which
developers might you expect to be involved at the review stage?

ANSWER ..

A review allows changes to be taken into account by scheduling them into a future
iteration. Since these changes can affect the work of any one of the developers it is quite
common that all developers are involved in a review. Certainly all those who have been
involved in the previous iteration — analysts, designers, programmers and testers —
would participate.

m Documentation

You should now be very familiar with the idea of documenting your Java code using
comments. However documentation pervades the whole software development
process. Imagine that a team is working on a software development project. The team
members have different responsibilities: there are analysts, designers, user interface
designers, programmers and others. Even with an effective project manager, good
communication between the different people involved is a key success factor. Much of
this communication is in the form of written documentation.

A programmer will not get far if they cannot understand what the designers have
decided. Neither will the designers make progress if they cannot understand the work of
the analysts. Project documentation describes the activities, decisions and outcomes
of the different phases of the project.

Project documentation is used during a project for communication between developers.
It is also a vital ingredient in enabling the operational software to be maintained
successfully, and allowing aspects of to be reused in creating new software. Adapting

6 Software engineering

software simply by trying to understand and change the code alone is usually doomed
to failure or, at best, leads to the production of code that is subsequently unintelligible.

The conclusions reached by each phase of development (including models such as
sequence diagrams) obviously should be part of the project documentation. Other kinds
of project information may also be relevant: a record of areas of debate and how
differences of opinion were resolved, for example. In fact, any information that could
potentially be of use to those maintaining the software, or to other developers working on
similar projects, is relevant project documentation.

SAQ 10

Why might it be useful for the project documentation to include designs that were
considered but discarded?

ANSWER ...

Discarded designs (as well as records of why they were discarded) can be useful to
someone charged with modifying the software once it is in operation, or to someone
working on a similar project, so that the reasons for design decisions can be understood
and so that known pitfalls and blind alleys can be avoided.

m Software tools

Software development teams often rely heavily on software tools, sometimes called
CASE (computer-aided software engineering) tools. Javadoc, which you have used
throughout the course, is an example of a CASE tool to aid documentation. Here are
some examples of other kinds of tools, demonstrating the variety available.

Design tools

Design tools provide support for certain aspects of design. A design tool may
incorporate a special drawing package which enables the formulation of designs using
diagrams. There are many UML-based design tools.

Coding tools

Coding tools provide support for writing and running code. An example of a coding tool
is an IDE (integrated development environment) such as BlueJ.

SAQ 11
What facilities might an IDE offer?

ANSWER ...
An IDE may offer the following:

> a specialised editor for writing and editing source code;
> facilities for checking the syntax and semantics of the source code;

> facilities for structuring programs into separate projects, and for creating
repositories of associated documents;

» an integrated compiler.

Unit 14 Software development

Some tools offer integration and automation of elements of design, coding and testing.
A tool might enable the user to specify aspects of the design, via UML diagrams for
example, and then automatically produce corresponding outline program code. For
example, you might produce a sequence diagram which the tool would take as the basis
for generating skeletal outlines of methods. The more detailed the design, the more
code is automatically generated.

CASE tools would appear to significantly reduce the work involved in the production of
software. Consequently you might be surprised to learn that some developers prefer not
to use them. There are several reasons for this:

1 Developers are forced to describe their designs in a format tightly prescribed by the
tool — this may be inappropriate for some projects.

2 The overheads of getting to grips with a necessarily complex tool and working with
its idiosyncrasies can be high.

3 Automatically produced code can be less readable and more complex than
necessary. Furthermore such code may not adhere to a company’s in-house
conventions.

Exercise 5

Earlier in this unit we described a UML-type diagram as one that varies in some minor
way from the specification set out in the UML standard.

Suppose a particular CASE tool produces outline code when it is given a design
expressed in strict UML. Why would such a tool not generally accept a UML-type diagram
instead?

Y] [0 (o) o FEUTT TR

A CASE tool is programmed to carry out certain processes (to produce the code) given
specific input (a UML diagram). It will not be programmed to deal with other inputs such
as even minor variations on strict UML.

Testing tools

There are many different kinds of testing tool. A code-based testing tool automatically
analyses code and produces test cases ensuring that certain aspects of the code (for
example, each path through it) are tested. A test driver tool executes the software
being tested with specified inputs.

JUnit, which you used in Unit 13, is a tool incorporated into Blued that assists in the
testing of Java classes. It enables the establishment of a testing framework specific to a
program, then automatically performs tasks such as initialising objects for testing, and
executing specified sets of tests.

Summary

Summary

This unit began by introducing you to the idea of developing software.

Through exploring the objects and collaborations at work in the School Management
application, and using class diagrams, object diagrams and sequence diagrams for
illustration, you learnt about the complexity that can be involved even in a relatively
simple application.

Such complexity is managed by developing software in a systematic, progressive way,
with interlinked phases of development and by using models. You were introduced to
the phases and to the modelling language, UML, which enables you to produce
consistent diagrammatic models that are an aid to communication between project
members and to documenting the project.

Software development methods — ways of putting the phases of development together —
are important when developing software. You were introduced to two of them: the
waterfall and iterative methods.

The term software engineering is often used to describe the process of developing
large-scale software projects in a way that is similar to engineering any large physical
artefact. You were given the flavour of some of the elements of software engineering:
e.g. how teams of developers work on a project, including the different team roles and
the variety of tools used to assist in development.

This unit has provided only a brief introduction to the important ideas in software
development. If you are interested in learning more about this subject, we suggest you
investigate some of the other Open University computing courses that discuss the
concepts, and technigues, of software engineering in more detail.

Unit 14 Software development

LEARNING OUTCOMES

After studying this unit you should be able to:

>
| 2

VVvVvYyVvVYvYyyYy

describe the meaning of each of this unit’s key terms (summarised in the Glossary);

represent classes, and their inheritance relationships, and the links between their
instances, using class diagrams;

represent objects, and the links between them, using object diagrams;
identify, by inspecting code, objects corresponding to real-world entities;
identify, by inspecting code, how a link between objects is implemented;
identify code corresponding to a design illustrated by a sequence diagram;
explain why it is important to develop software systematically;

outline what is involved in each of the following development phases:
requirements specification,

developing structural models,

designing dynamic models,

detailed design and implementation,

testing,

maintenance;

vV v v vV VY

describe the roles of diagrams, models and modelling languages in developing
software;

describe the reasons why UML has grown in importance as a modelling language
for software development;

outline what a software development method is and describe the essential features
of the waterfall and iterative methods;

describe some aspects of software engineering, i.e. different team roles and tools.

Glossary

Glossary

abstraction A description that focuses on the essential features of a problem and
ignores other details.

activation rectangle An element in a sequence diagram that represents a period
during which a particular object is active.

adaptive method A method of software development which embraces change by
building space for it into the schedule.

analysis In this context, analysis involves analysing the specified requirements to
develop a detailed understanding, in computing terms, of what the software has to do.
The outcome is a requirements specification document.

CASE (computer-aided software engineering) tool A software tool used to help in
some aspect of software development.

client This term has two main meanings in the context of software development:
(i) the object in a collaboration which requests a service; (ii) the person(s)
commissioning software.

code-based testing tool A testing tool that automatically analyses code and
produces test cases.

coding tool A CASE tool that aids writing or running code.

collaboration One object requesting a service from another object.

collaborator A participant in a collaboration.

design Design involves deciding how the software will meet the specified
requirements.

design tool A CASE tool that aids some aspect of design.

designer A developer whose role is to work on the design stages of a project.

designing dynamic models Determining what interactions among objects will
achieve the tasks required of the software.

detailed design and implementation Deciding what existing classes can be reused
and what programming constructs are appropriate as well as writing the actual code.

developing a structural model Analysing the requirements to determine the classes
and connections between them that are appropriate for the area the software is being
written for, thus defining a structure for the software.

developing a user interface Designing the user interface and determining how it will
communicate with the domain model.

domain model That part of the software that models the problem domain and is not
directly concerned with how communication with the user is achieved.

dynamic model An illustration of events occurring in executing software over time.

identifier A label chosen to identify an object in the software.

Unit 14 Software development

implementation Translating the design into program code in some suitable
programming language.

iteration One cycle through the phases involved in an iterative method.

iterative method An adaptive method of software development in which phases are
repeated iteratively in a systematic manner.

lifeline An element in a sequence diagram that represents the time during which an
object exists.

link A connection between two objects.

maintenance The phase of a software development process associated with keeping
the software working to the satisfaction of its users.

modelling language A specification of how models should be constructed so that
their meaning is unambiguous.

object diagram A diagram of objects and the links between them.

OMG (Object Management Group) A consortium of computing companies which
sets standards across the software industry, including the UML standard.

phase A stage of software development.

predictive method A software development method that is largely based on the
waterfall method and therefore benefits from simplicity of planning, and predictability.

problem domain The collection of real-world entities within the application area that
exhibit the behaviours that the required software has to model.

programmer A developer whose role is to implement the code.

project documentation A written description of the activities, decisions and
outcomes of a project’s phases.

project failure A situation where a project fails to deliver the client’s requirements.

project manager A person who plans and oversees the running of a software
development project.

prototype An early working version of the software or part of it.

requirements What is required of the software.

requirements specification Eliciting and analysing what the client wants in order to
produce a detailed and complete specification of the requirements of the software in
terms of what it should do.

review A point within an iterative software development method where developers
and clients can take changes into account.

sequence diagram An illustration of objects collaborating to carry out a particular
task.

software developer An umbrella title, referring to someone who takes on one or more
of a range of jobs within software development.

Glossary

software development A planned, phased process, involving modelling different
aspects of the software as well as implementing, testing and maintaining it.

software development method A particular set of development phases and
activities, applied in a particular order.

software engineering A term used to refer to a wide range of concerns connected
with carrying out systematic software development.

software model An illustration or description of the software, or of part of it, which
emphasises certain aspects and omits others.

software tester A developer whose role is to test the software as it is being
developed.

static model An illustration of the state of the software, or part of it, at a particular
imagined time during execution.

strict UML diagram A diagram that adheres strictly to the UML standard.

systems analyst A developer who ideally has knowledge of both the problem
domain (the client’s business needs) and software design and whose role is to analyse
the feasibility of proposed software and how it will impact on the client’s business
practices.

technical writer A developer whose role is to develop user documentation.

test driver tool A testing tool that executes the software being tested with specified
inputs.

testing The activities that take place at each phase of development to ensure that
what is produced relates correctly to the previous phase and to the requirements.

testing tool A CASE tool that aids some aspect of testing.

UML (Unified Modeling Language) A modelling language based on diagrams.

UML standard The currently accepted specification of what is valid UML and how it
should be used.

UML-type diagram A diagram that varies in some small way from the strict UML
standard.

waterfall method A traditional and idealised view of developing software by strictly
following a sequence of phases.

_ Unit 14 Software development

Acknowledgement

Figure 2: Map of the London Underground. Reproduced by permission of the London
Transport Museum.

Index

Index

A
abstraction 10

activation rectangle 23
adaptive method 33
agile development process 35

analysis 12

C
CASE (computer-aided software
engineering) tools 39

class diagram 17
client 10
code-based testing tool 40

coding tool 39

D

design 12
designing dynamic models 11
detailed design and
implementation 11
tool 39

designer 38
development 11
domain model 8

dynamic model 24

E
eXtreme Programming (XP) 35

|
identifier 20

implementation 12
iteration 33

iterative method 33

J
JUnit 40

L

large-scale project 36
lifeline 23

link 18, 20

M
maintenance 11

modelling language 14
@)
object diagram 19

Object Management Group
(OMG) 15

=
phase 10

predictive method 33
problem domain 22, 37
programmer 38

project
documentation 38
failure 36
management 36
manager 38

prototype 34
R
requirements 5

analyst 37
specification 11

review 34

risk analysis 36

S
sequence diagram 23

software
developer 37
development 6
development method 31, 36
engineering 36
model 13
quality 36
tester 38

state (of software) 21

static model 24

strict UML diagrams 15
structural model development 11

systems analyst 37

T
technical writer 38

test driver tool 40

testing 11
techniques 36
tool 40

U

UML (Unified Modeling
Language) 14

UML standard 15
UML-type diagrams 15

user interface development 11

W
waterfall method 32

_ Unit 14 Software development

