
14U
ni

t 

M255 Unit 14 
UNDERGRADUATE COMPUTING 

Object-oriented 
programming with Java 

Software development 



Copyright ª 

–

1.1 

This publication forms part of an Open University course M255 
Object-oriented programming with Java. Details of this and other 
Open University courses can be obtained from the Student 
Registration and Enquiry Service, The Open University, 
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom: 
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk 

Alternatively, you may visit the Open University website at 
http://www.open.ac.uk where you can learn more about the wide 
range of courses and packs offered at all levels by The Open 
University. 

To purchase a selection of Open University course materials visit 
http://www.ouw.co.uk, or contact Open University Worldwide, 
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA, 
United Kingdom for a brochure: tel. +44 (0)1908 858785; 
fax +44 (0)1908 858787; email ouwenq@open.ac.uk 

The Open University 
Walton Hall 
Milton Keynes 
MK7 6AA 

First published 2006. 

2006 The Open University. 

All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, transmitted or utilised in any form or by 
any means, electronic, mechanical, photocopying, recording or 
otherwise, without written permission from the publisher or a licence 
from the Copyright Licensing Agency Ltd. Details of such licences 
(for reprographic reproduction) may be obtained from the Copyright 
Licensing Agency Ltd, Saffron House, 6 10 Kirby Street, London 
EC1N 8TS; website http://www.cla.co.uk. 

Open University course materials may also be made available in 
electronic formats for use by students of the University. All rights, 
including copyright and related rights and database rights, in 
electronic course materials and their contents are owned by or 
licensed to The Open University, or otherwise used by The Open 
University as permitted by applicable law. 

In using electronic course materials and their contents you agree 
that your use will be solely for the purposes of following an Open 
University course of study or otherwise as licensed by The Open 
University or its assigns. 

Except as permitted above you undertake not to copy, store in any 
medium (including electronic storage or use in a website), 
distribute, transmit or retransmit, broadcast, modify or show in 
public such electronic materials in whole or in part without the prior 
written consent of The Open University or in accordance with the 
Copyright, Designs and Patents Act 1988. 

Edited and designed by The Open University. 

Typeset by The Open University. 

Printed and bound in the United Kingdom by The Charlesworth 
Group, Wakefield. 

ISBN 0 7492 1358 2 



Introduction 5 

1 What is software development? 6 

2 Development phases 10 

3 Models 13 

3.1 Modelling and diagrams 13 

3.2 UML 14 

4. Using UML 17 

4.1 Modelling with class diagrams 17 

4.2 Modelling with object diagrams 19 

4.3 Modelling with sequence diagrams 23 

5 Software development methods 31 

5.1 What is a software development method? 31 

5.2 The waterfall method 32 

5.3 Iterative methods 33 

6 Software engineering 36 

6.1 Project failure 36 

6.2 Teamwork 37 

6.2 Documentation 38 

6.3 Software tools 39 

7 Summary 41 

Glossary 43 

Acknowledgement 46 

Index 47 

CONTENTS 



M255 COURSE TEAM 
Affiliated to The Open University unless otherwise stated. 

Rob Griffiths, Course Chair, Author and Academic Editor 

Lindsey Court, Author 

Marion Edwards, Author and Software Developer 

Philip Gray, External Assessor, University of Glasgow 

Simon Holland, Author  

Mike Innes, Course Manager 

Robin Laney, Author 

Sarah Mattingly, Critical Reader 

Percy Mett, Academic Editor 

Barbara Segal, Author  

Rita Tingle, Author 

Richard Walker, Author and Critical Reader 

Robin Walker, Critical Reader 

Julia White, Course Manager 

Ian Blackham, Editor 

Phillip Howe, Compositor 

John O’Dwyer, Media Project Manager 

Andy Seddon, Media Project Manager 

Andrew Whitehead, Graphic Artist 

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing. 



Introduction 5 

Introduction 
In this, the final unit of M255, you will be introduced to the idea of software development 
– a set of activities, phases (stages) and modelling techniques which help individuals 
and teams create software that meets its users’ requirements. 

By now you will have written a fair number of programs in Java and, from what you have 
learnt so far, you might reasonably question whether anything other than writing code is 
required in order to create a finished software product. However, the development of 
software can be far from straightforward and, generally speaking, the larger the 
application, the more complex the development process will be. In order to manage 
such complexity, it is useful to breakdown the development of software into phases. 
Each phase may involve different activities and/or modelling techniques which software 
developers can employ as they work towards the final product. 

It is important to realise just how big and complex major software projects can be. 
Requirements for a software system might include: 

c interacting with other complex systems – for example, a banking system will need to 
interact with the BACS (Bankers Automated Clearing Services) system; 

c supporting thousands of users simultaneously – for example, a mobile phone 
network; 

c monitoring and controlling mechanical and electrical devices – for example, a car’s 
engine management computer; 

c responding to critical conditions that affect safety – for example, a railway 
monitoring system; 

c running continuously for months or years at a time – for example, a system for 
maintaining a power station; 

Even fairly small software projects may have some of these characteristics. 

A large project can easily involve hundreds of people working over a period of years to 
produce programs millions of lines long. In these circumstances software development 
must be a highly systematic and professional activity, or there is little chance of writing 
programs that work correctly and meet the customers’ requirements. 

In this unit we describe some of the techniques used in software development. You will 
not be learning about these techniques in detail, rather the intention is to give you the 
flavour of some of them, to allow the work you have done in earlier units to be set in a 
wider context. 

Section 1 describes what is meant by the term ‘software development’, then, in 
Section 2, you will look at what phases may be involved in software development. 
In Sections 3 and 4 you will look at the modelling techniques that are employed when 
designing software, while Section 5 contains a discussion of how the various phases of 
software development can be combined to form a software development method. The 
unit ends by examining ‘software engineering’, a term used to refer to a wide range of 
topics related to software development. 



6 Unit 14 Software development 

1 What is software development? 

When you are writing code you naturally concentrate on how to make the code do what 
is required. But how do you know what is required? Where does this information come 
from? Consider the types of question you might ask before starting to write code, for 
example: 

c What should the software do? 

c What classes will the software use? 

c What information must objects record and to what messages should they respond? 

c How will the user interact with the software? 

c How can we test that the software works as it is supposed to? 

c How easy will it be to adapt the software if things change later? 

Software development is the process of getting from a customer’s needs to operational

software which meets those needs. It involves finding answers to the questions posed

above and a range of related ones. Notice the term development – this implies

something that emerges gradually, as part of a process, and does not happen all at

once. Much of software development is about planning the software, and this involves

building models described by text or diagrams, or both. You have already met some

kinds of diagrams; for example, sequence diagrams and object-state diagrams.


If you were writing a very small program, perhaps as part of an exercise, you might not

need to do much, if any, planning. For example, a program to accept two integers and

output the larger might be something that you could write by typing the code straight

into the computer and fixing any problems as you went along. You would obviously have

to think ahead a bit, but you would not need to start by developing any models. If you

did it would probably just slow you down without contributing anything.


But this only applies to very simple cases. After all, finding the bigger of two numbers is

not that useful, since this is something we could easily do without a computer. Software

which does really useful things is going to be more complicated. So consider a more

complex example.


You have a friend who works in the administration of a local school and wants an

application to help her do her job. In particular she would like some software that will

support her in fulfilling the following tasks.


c For a given form (group of pupils), list information about its pupils and its teacher.


c Record the enrolment of a new pupil into a form.


c Provide the name of the teacher with the most pupils in their form.


c Provide the name of the oldest pupil in a form.


She gives you the following information.


c A record is kept of each pupil’s name and date of birth.


c All pupils are aged between 4 and 18 inclusive.


c Each teacher’s name is recorded.


c Each form has a name (e.g. ‘Form 1b’), contains up to 10 pupils and is taught by a

single teacher. 

Naturally you want to help your friend, but how will you start? Of course you might try to 
write the code as you went along, as for the simple program we described earlier to 



1 What is software development? 7 

compare two integers. Unfortunately this approach will not work any longer. True, you 
have a description of what the software has to do, however there are many questions 
that must be answered before any code can be written. For example. 

c What classes will you use? 

c What Java class libraries are needed? 

c What instance variables and methods will you define for any new classes? 

c How are the classes related to one another? 

c When the program runs, what objects will exist, and how will they be created? 

c What messages will be sent, and to what objects? 

You might be able to make a stab at the answers to some of these, but we hope you can 
see that, even with this relatively simple example, there is almost no chance of writing 
some working software without doing some careful planning. 

To demonstrate various aspects of software development in this unit we have developed 
such a school management application, and you will start to explore it in the following 
activity. 

ACTIVITY 1 

Launch BlueJ, open the project called Unit14_Project, and then open the OUWorkspace. 
In the Code Pane execute the following code: 

new SchoolGUI( ); 

You should be presented with the user interface shown in Figure 1. 

Figure 1	 A simple graphical user interface for the School Management application 

Using the user interface carry out the following tasks. 

(i) View the details of each form. 

(ii)	 Enrol, into the form named Form 1b, pupils with the following details: 

Rosie Webster, who has the date of birth: 24/12/00; 

Chesney Brown, who has the date of birth: 05/05/01; 

David Platt, who has the date of birth: 25/12/00. 

1 



8 Unit 14 Software development 

Enrol, into Form 1c, the following pupil: 

Sophie Webster, who has the date of birth: 04/11/00. 

What do you see in the user interface as a result of your actions? View the details 
of Forms 1b and 1c. 

Note that the software (iii) Try to enrol pupils with the following details into Form 1a: 
interprets the year 45 as 
1945 and 19 as 2019. Vera Duckworth, who has the date of birth: 12/03/45; 

Joshua Peacock, who has the date of birth: 08/04/19; 

What occurs in the user interface as a result of your actions? 

Do not enrol any more pupils into the school yet. If you do so accidentally, or if you 
make a mistake and enter any incorrect details, click on the Reset school button to 
restore the application to its initial state. For simplicity, our basic application allows no 
other way of correcting errors. 

2 Look briefly at the classes in the project. There is no expectation that you will 
understand all the details. Which classes in the project would you expect to have 
instances corresponding to real-world entities (i.e. ‘things’ in the real world)? Of the 
classes which do not correspond to real-world entities, what are their purposes? 

DISCUSSION OF 
ACTIVITY 1 
1 The widgets in the user interface should be familiar and hopefully the tasks were 

straightforward. 

(i) To view the details of each form, select the form’s name in the list of forms. As 
well as the form’s name you should have found that the following are initially 
displayed: 

c the name of the form’s teacher; 

c a message informing you that there are no pupils in the form; 

c the number of spaces left in the form. 

Initially each form is empty, so they have 10 spaces. 

Recall that a form contains (ii) To enrol a pupil, select the form’s name, enter the pupil’s name and date of birth 
up to 10 pupils. into the relevant fields and click on the Enrol button. Do this for each of the four 

pupils in turn. 

Each time a pupil is enrolled the message ‘Pupil enrolled (age x)’ – where x is 
the age of the pupil in the current year – is displayed in both an Information 
dialogue box, and in the Outcome field. When the pupil has been successfully 
enrolled, the name and date of birth fields are cleared. 

Selecting each form’s name in turn should reveal that Form 1b and Form 1c 
have pupils in them, whose names and dates of birth are displayed. The name 
of the oldest pupil in each form is displayed, as is the number of spaces 
remaining in the form. The other forms remain empty. The name of the teacher 
with the most pupils is displayed. 

Recall the restriction that (iii) An attempt to enrol the pupil named Vera Duckworth with the date of birth 12/03/45 
the school only accepts 
pupils aged between 4 and 
18. 

results in a Warning dialogue box carrying the message ‘Pupil too old! (age y)’, where 
y is Vera’s age in the current year. The error message is also displayed in the 
Outcome field. The name and date of birth fields are not cleared. 

Remember from Unit 1, 
that the domain model 

An attempt to enrol the pupil named Joshua Peacock with date of birth 08/04/19 

is that part of the software results in the error message ‘Pupil too young! (age -1)’. 
that simulates the part of 
the real world with which 

2 Form, Teacher and Pupil objects correspond to real-world forms, teachers and 

we are concerned (and is pupils, respectively. You can deduce this from the names of these classes, and from 
not directly concerned with the class comments. These classes constitute the domain model. 
how communication with 
the user is achieved). 



1 What is software development? 9 

An object of the class SchoolCoord does not correspond directly with a real-world 
entity but is used to handle communication with the user interface and to coordinate 
the interaction between forms, teachers and pupils – much like the 
BarnDanceCaller class you encountered in Unit 7. 

SchoolGUI contains the code for implementing the graphical user interface. Much 
of the code for this class was automatically generated using a more powerful IDE 
than BlueJ called NetBeans (a widely used IDE from Sun Microsystems). Since the 
code is automatically generated it is rather verbose, and in places does not conform 
to M255 coding guidelines. You do not need to understand the code. 

The M255Date class does not form part of the domain model, it is simply a utility 
class that enables the School Management application to handle representations of 
dates easily. 

program ? 

– – 

– 

– 

SAQ 1 

Why is it appropriate to refer to the School Management application as an application 
rather than a or a software system

ANSWER............................................................................................................... 

As you learnt in Unit 1, it is not a program since it does not follow the pattern of: 
input data process data output data. 

It is not, strictly speaking, appropriate to refer to it as a software system either, because 
the software really is not large enough to be described as such the software is 
designed to run on a single computer and is not comprised of a number of subsystems 
or applications. 

The School Management application turns your computer into a specialised computer, 
one to manage schools therefore it is best described as an application. 

The previous activity introduced you to a much larger example of software than you have 
previously seen in M255. Now imagine you were dealing with a complex system such as 
the following. 

Iridium satellite system 

In 2001 the Iridium satellite system, initiated by Motorola and managed by Boeing, 
became operational; the culmination of several years of software development. 
Iridium is a satellite-based communication system enabling wireless communication 
(for example, using mobile phones and pagers) around the world, even in remote 
areas. Software was developed to enable communication between mobile phones 
and land-based communication lines via sixty-six low-orbit satellites. This project, 
involving object-oriented software development processes and programming 
languages, produced more than 15 million lines of code. 

Not only was the amount of planning for Iridium huge, but it is impossible to imagine a 
single programmer being able to create the system – in fact hundreds of software 
developers were involved. This raises another set of issues. How can a team of people 
succeed in working collaboratively on complex projects? How can their activities be 
coordinated? How do they communicate with one another? 

In the next section we will start to answer these questions. 



10 Unit 14 Software development 

2 Development phases 

This use of ‘client’ should 
not be confused with 
‘client’ as an object in a 
client–server 
collaboration. However, 
the relationships are 
analogous: the client here 
is requesting a service of 
the developer. 

(the 
In this section you will learn about the main software development phases that help 
software developers progress from a description of the requirements by the client 
person or people commissioning the software) to a deliverable working system. 

Humans achieve many complicated tasks through following, consciously or 
unconsciously, a process of smaller, more manageable ‘planning’ stages. Consider the 
construction of a building. A process involving several levels of planning and modelling 
(creating different architectural plans, for example) is carried out to organise the 
construction engineers’ thoughts (and those of their client), before any part of the 
building is actually constructed. 

SAQ 2 

Consider the task of going on holiday. How might this be successfully organised through 
a succession of stages, each planning some aspect of the trip? 

ANSWER............................................................................................................... 

You might begin by thinking, ‘Let’s take a winter break in the sun’. 

Then you might visit travel agents, collect brochures, go online and consider possible 
dates and costs. 

Next you might take decisions about where and when to go, make reservations and 
book leave. 

Finer details are then sorted out, such as how to get to the airport, what time to get up on 
the day you leave, and who will feed the cat. 

Finally the plan is put to the test and you set off on holiday. 

The task of creating software similarly benefits from being accomplished through a 
systematic succession of smaller, interlinked stages, or phases, each consisting of 
different activities, and each building on the previous phase. The task of going from a 
description of software requirements to a collection of software objects sending 
messages to one another is a large and complex one, which can very easily go wrong 
(or may not even be possible at all) if attempted in one step. The task needs to be 
broken down into smaller phases that are easier both to manage and to carry out. 

In software development the initial focus is usually to get an overview of the required 
software. That is the developer concentrates on planning the overall structure of the 
software and not on smaller details. As the project progresses, more detailed aspects of 
the software are considered. Thus, the production of what will eventually be a complex 
application or system is made manageable by following a development process that 
considers appropriate levels of detail at appropriate times. This can be thought of as 
moving through different levels of abstraction as more and more detail is added to the 
plans. 



2 Development phases 11 

– 

– 

Painting and programming 

There is no essential difference between the way in which a painter plans 
and ‘implements’ a picture and the way in which a programmer plans and 
implements a program..... 

(In a recent exhibition).....there was one vast, unfinished canvas that 
revealed exactly how (the artist) had worked on it. He had sketched in the 
major structure, some parts completely finished, others only partly painted 
exactly how a good programmer writes a program.....The processes of 
abstraction, visualisation and realisation are the same, just the application 
area is different. 

Excerpt from Marshall, L.F. (1992) ‘They all laughed at Christopher Columbus’, in 
Proceedings of the Women into Computing 1992 National Conference Teaching 
Computing: Content and Methods, Keele, UK. 

A systematic development process also has the advantage that more than one person 
can be involved. If there is good communication between those involved, meaning not 
only that they talk with one another but that the scope and results of each activity are 
clearly set out, then allocating people to different phases enables the distinctive skills of 
individuals to be combined. 

The object-oriented software development phases can be described as follows. 

c Requirements specification. This involves eliciting and analysing the client’s 
wishes in order to produce a detailed and complete specification of the 
requirements of the software in terms of its functionality. The requirements 
specification document sets out, as precisely as possible, what is required of the 
software. In a professional context it can form the basis for the contract between the 
developers and the client. 

c Developing a structural model. Here the requirements are analysed to determine 
the classes and connections between them that are appropriate for the work context 
the software is being written for. Hence this stage defines a structure for the 
software. Since, in object-oriented software, objects often correspond to real-world 
entities, this stage starts with the creation of a model of the key features of the real-
world situation within which the software is to operate. 

c Designing dynamic models. The design of dynamic models enables the decisions 
to be made about what interactions among objects will achieve the tasks required of 
the software. 

c Developing a user interface. This phase involves both design of the user interface 
and determination of how it will communicate with the domain model. 

c Detailed design and implementation. At this stage decisions are taken as to which 
existing classes can be reused (from previous projects or class libraries) and what 
programming constructs are appropriate, as well as writing the actual code. 

c Testing. This involves not just testing the final product but testing at each stage. 
Testing ensures that the software produced relates correctly to the previous stage 
and to the requirements. 

c Maintenance. The aim of the maintenance phase is to keep the software working to 
the satisfaction of its users. It may include tasks such as: 

c fixing emerging problems; 

c fine-tuning the software to improve its performance; 

c enhancing the software by adding extra facilities. 



Traditionally, a non-object-oriented approach to software development was considered 
to involve the following phases. 

c Requirements specification. As above. 

c Analysis. Involves analysing the specified requirements and expressing, in 
computing terms, what the software should do. 

c Design. Involves deciding how the software will meet the specified requirements. 

c Implementation. Involves translating the design into program code (of some 
suitable programming language). 

c Testing. As above. 

c Maintenance. As above. 

However, when following an object-oriented approach to software development the 
distinction between analysis and design becomes blurred. While it is still important to 
distinguish between what the software has to do (analysis) and how it is to be achieved 
(design), the activities of analysis and design can be quite closely interleaved. In 
analysing the real-world tasks the software has to carry out, it is natural to think in terms 
of objects (because the structure of object-oriented software often resembles the real-
world entities the software is concerned with). Thus, at an early stage the developer will 
consider not only what tasks the software is required to carry out but what objects will 
participate in the achievement of these tasks. 

In the next section we will investigate how diagrammatic models are used during 
structural and dynamic modelling, to both plan the software and as a means of 
conveying design decisions to other members of a software development team. 

Unit 14 Software development 12 



3 Models 13 

3 Models 

A software model is a plan: an illustration or description of the software, or of part of it, 
which emphasises certain aspects and omits others (i.e. it is an abstraction). A good 
analogy is a map of the London Underground, used by travellers moving between 
stations in the underground railway system. Such a map is shown below. 

Figure 2 Map of the London Underground 

The map is a representation of the London Underground system: it does not show the 
precise geographical layout of the lines or how the tunnels are constructed, and it does 
not show the location of toilets or where tickets are collected. The map is an abstraction 
and what it does show is a stylised description of the topological relationships between 
stations and connecting lines – the only information required by underground travellers 
to plan their route. It is a model of the underground system. Any information about ticket 
machines, toilets, and so on, would only clutter the map and make the task of finding a 
route through the underground system more difficult. 

Similarly, the models used at different points in the software development process 
highlight information that is relevant at that point and suppress information that is 
irrelevant (i.e. the models are produced with an appropriate level of abstraction). As 
development progresses the level of detail in the models increases. 

3.1 Modelling and diagrams 
On an individual level modelling helps organise thinking about what might be a very 
complex task. In the context of a team working on a project, using models promotes the 
sharing of ideas and the successful division of tasks. For example, the design and the 
implementation (the actual programming) might involve different people. The designer 



14 Unit 14 Software development 

Note the American 
spelling of Modeling in 
UML. 

can hand over to the programmer a set of models representing the part of the software 
to be implemented. The designer need have no knowledge of the precise 
implementation details that the programmer may introduce; similarly the programmer 
need not be aware of how the designer came up with the designs. The models represent 
the information they need to share, and therefore constitute an important part of the 
communication between them. 

Expressing a model using a diagram has several advantages over textual descriptions. 

1 A diagram is a concise, abstract form of communication amenable to emphasising 
certain features and suppressing others. 

2 A simple diagram can often be understood by someone inexperienced in 
computing (such as the client commissioning the software, or a future user of the 
software), whereas a textual description might not. 

3 In an object-oriented approach objects begin to be identified right from the start of a 
project. This means diagrams involving these objects can evolve seamlessly as they 
incorporate increasing levels of detail through the development process. In other 
words, the same kinds of diagrams can be used throughout, lessening the cognitive 
load on the developer. 

The diagrammatic modelling techniques we will look at in this unit are based on a 
popular modelling language called UML (Unified Modeling Language). 

3.2 UML 
UML (Unified Modeling Language) is an example of a modelling language based on 
diagrams. A modelling language specifies how models should be constructed so that 
the meaning of the model is unambiguous. It is not a method for developing software, 
but a way to produce models that could be used in different methods of software 
development. 

Think of a language for human communication. It has: 

c a vocabulary (the elements of the language); 

c a grammar (the valid ways in which its vocabulary can be combined); 

c semantics (what each valid combination of vocabulary means). 

Similarly a modelling language has modelling elements (particular styles of boxes and 
lines, for example) and conventions (that prescribe what combination of elements in a 
diagram is valid, and that allow the meaning of a valid combination of modelling 
elements to be interpreted). Thus, a modelling language such as UML enables the 
construction of meaningful diagrammatic models of proposed software. 

The rise of UML 
As object-oriented programming grew throughout the 1980s and 1990s, so too did the 
number of modelling languages used for discussing and recording software 
development. From the proliferation of modelling languages one could be selected, or 
adapted, to suit a particular project and the people working on it. Those intimately 
involved in a project understood the kinds of models used, but there was no guarantee 
that anyone else would. Someone wanting to reuse part of the design at a later stage (for 
example, to implement the software in a new programming language) may have had the 
overhead of first getting to grips with an unfamiliar modelling notation. Reusing and even 
simply discussing designs was made difficult by not having a consistent and shared 
means of describing them. 



OMG (

– 

(a) 

(b) 

(a) 

c 

c 

c 

In the late 1990s there was an attempt to establish a standard modelling language and 
rules for using it. Eminent software developers worked together to unify the confusing 
variety of existing modelling languages, resulting in proposals to a standard-setting 
body called the Object Management Group) for a single modelling language 
called UML. A UML standard was then set by the OMG that specified diagram elements 
and notation, how they could be combined, and what they meant. 

The UML standard is evolutionary, in the sense that there has actually been a series of 
standards, each building on the previous as software developers place new demands 
on models. At the time of writing the current UML specification is UML 2.0. 

UML is a vast and, in places, highly complex language in this unit you will meet a very 
small subset of the diagrams available. This is actually typical of a software project; 
although most professional developers have a general understanding of the 
expressiveness of UML, most projects will require them to work with only a limited range 
of diagrams. 

Though UML is generally acknowledged to have made significant contributions to 
software development, it is also accepted that its necessary rigour makes strict 
adherence rather cumbersome. In particular, when using diagrams to explore different 
design possibilities, UML is often not strictly adhered to. Developers using UML for 
informal peer discussions will not see the benefits of, for example, remembering to use 
the right kind of arrows all the time, and they may annotate, or otherwise alter, a UML 
diagram to suit their own needs. 

So long as the main features of diagrams follow UML, small variations tend to be 
unproblematic. This use of UML-type diagrams (i.e. ones that vary slightly from the 
standard) rather than strict UML diagrams is generally considered acceptable. 

Exercise 1 

A group of friends who have some experience of object-oriented software development 
are working together to create an application for managing their local football league. The 
application will undertake various tasks, including providing information about each team 
(for example, who the manager is) and about matches that the teams play amongst 
themselves in a season (who plays who, who has won the most matches etc.). 

State the main advantages of the friends following a planned development process. 

Give two reasons why it will be a good idea for them to use UML. 

Solution................................................................................................................. 

The advantages of following a planned development process are, first, that the 
complexity of the application would be easier to handle, and the development made 
simpler. 

Secondly, the planned process would allow workload to be shared, and skills put to 
best use, by allocation of different people to different tasks. 

(b) Any two of the following are valid reasons for using UML. 

The use of models based on UML means that the group would have a consistent 
and unambiguous means of communication. 

Using UML would enable analysis of different possible plans for the application. 

As the group would be following an object-oriented development process then 
essentially the same kind of diagrams could be used throughout, reducing the 
number of different types of diagram involved and simplifying the process. 

3 Models 15 

The OMG is a consortium 
of computing companies 
that exists to facilitate 
communication within the 
computing industry and 
promote product 
interoperability 
(particularly in the area of 
object-oriented related 
software). 



16 Unit 14 Software development 

c	 UML diagrams are useful for producing diagrams at an appropriate level of 
abstraction (allowing detail that is irrelevant at a particular point to be 
suppressed). 

c	 UML diagrams have a better chance of being understood by people other than 
the diagrams’ creator. Some diagrams can be understood by non-computing 
specialists (team managers, for example, might need to know about some of the 
plans for the system). 

c	 The application will be more readily understandable and reusable if UML 
diagrams describing the application are available. 



4 Using UML 17 

4 Using UML 

4.1 

In this section we shall describe how UML is employed when developing models. We 
will not cover every modelling technique, nor will we go into any great detail, but this 
section should give you a taste of how UML is used in practice. 

Modelling with class diagrams 
A class diagram shows the structure of the proposed software, illustrating the classes 
that will be needed and the relationships between those classes. 

You have already seen UML-type class diagrams; in fact you have seen them throughout 
the course. Every time you open a BlueJ project the main window displays a UML-type 
class diagram which shows the relationships between the classes. Up until now these 
diagrams have shown only one form of relationship – that of inheritance. For example 
opening Unit7_Project_10_sol gives the following. 

Figure 3 A UML-type class diagram displayed by BlueJ 

BlueJ can display another kind of relationship in a class diagram: a uses relationship. You may need to move the 

This relationship is shown if you choose Show Uses from BlueJ’s View menu. Selecting classes around the BlueJ 
display to ensure the uses 

this option for Unit7_Project_10_sol gives the following. relationship is clearly 
displayed (and not 
obscured by other 
classes). 



18 Unit 14 Software development 

Figure 4 A UML-type class diagram displayed by BlueJ that shows a uses relationship 

The uses relationship is shown in BlueJ by the dashed arrow, and (in the diagram above) 
indicates that instances of the BarnDanceCaller class have one or more instance 
variables that have been declared as type Frog. Note that while an inheritance 
relationship is between classes, a uses relationship represents connections between 
instances of classes. Each BarnDanceCaller object uses two Frog objects. In UML 
these connections are called links. 

There is however an important and significant difference between a UML-type class 
diagram automatically created by BlueJ and a UML class diagram created during the 
design of software. BlueJ’s UML-type class diagrams illustrate the relationships between 
existing classes whereas in software development they are used as modelling tools to 
explore and plan design possibilities. In other words, class diagrams suggest ideas for 
how classes might be related. Indeed a class diagram should not imply anything about 
how links between instances of classes are implemented, just that some connection 
exists between them. 

At an early stage of development the class rectangles in UML class diagrams tend to be 
quite sparse (like those in BlueJ). They simply display a class name, and then as the 
design progresses they become more informative as the names of attributes and 
methods become apparent. Consider the following progression for the Account class. 



4 Using UML 19 

first version 

Account 

attributes 

methods 

Account 

holder 

balance 

number 

credit 

debit 

Account 

second version 

Account 

holder 

balance 

third version 

fourth version 

holder: String 

number: String 

balance: double 

credit(anAmount: double) 

debit(anAmount: double): boolean 

transfer(toAccount: Account, anAmount: double): boolean 

Figure 5 An evolving Account class 

Note that in the above figure the details of attributes and methods are shown using UML 
syntax, not Java syntax, as UML models are not specific to a particular programming 
language. 

4.2 Modelling with object diagrams 
Object diagrams provide another way of modelling the software under development. A 
UML object diagram shows the state of part of the software under development at an 
imagined particular point in time when it is running – a ‘snapshot’ if you like. In an object 
diagram, objects are represented by rectangles (similar to the object-state diagrams we 
have used throughout the course). Consider an example from the School Management 
application shown in the following figure. 

Note that although in this 
discussion of modelling we 
will put all code-related 
labels and names into 
code style for clarity, a 
label in a UML diagram – a 
model –may never make it 
into the actual code (the 
implementation). 



20 Unit 14 Software development 

name = 

birthDate = 24/12/00 

pupil3 

"Rosie Webster" 

Figure 6 The depiction of an object in an object diagram 

The text in the upper section of an object rectangle shows the chosen means of identifying 
that particular object. Thus the Pupil object shown in Figure 6 is called pupil3. This  is  
just a label – an identifier – it is used to refer to the object involved in discussions and 
diagrams. It allows developers to distinguish this particular Pupil object from other Pupil 
objects in the software. It is not intended to be a variable name and in this example in 
particular it should not be confused with the value of the object’s name instance variable 
which is a String object representing the name of the pupil ("Rosie Webster"). You are 
free to choose any text you like as the identifier for an object, so long as it clearly indicates 
the class of the object, and is different from other identifiers already in use. 

The lower section of an object rectangle shows the attribute values of the object. This 
section is often omitted if the attribute values are not of interest during a particular phase 
of development. 

As in class diagrams, object diagrams can illustrate connections, or links between 
objects, mirroring the connections between their real-world equivalents. We can 
illustrate the fact that Rosie Webster is enrolled into the form named Form 1b, which is 
taught by Mr Barlow, in the following way: 

name = 

birthDate = 24/12/00 

pupil3 

name = 

form2 

name = 

teacher6 

"Rosie Webster" "Form 1b" "Mr Barlow" 

and 

. 

and illustrate? 

and 

Figure 7 Object diagram illustrating links 

The lines running between the object rectangles in Figure 7 illustrate links between the 
objects. Thus the line between the form2 rectangle and the pupil3 rectangle illustrates 
a link between form2 pupil3, and represents the fact that the form (Form 1b) 
corresponding to the object form2 has in it the pupil (Rosie Webster) corresponding to 
the object pupil3

SAQ 3 

In Figure 7, what does the line between the teacher6 form2 

ANSWER............................................................................................................... 

It illustrates a link between teacher6 form2, representing the fact that the teacher 
corresponding to teacher6 (that is, Mr Barlow) teaches the form corresponding to 
form2 (that is, Form 1b). 

The object diagram in Figure 7 shows only part of the School Management application at 
run-time – it is a partial snapshot at a particular point in time. The full running application 
would contain many more objects and links between them with the precise situation 
depending on the pupils, teachers and forms in the school at that time. In an object 



4 Using UML 21 

state 

. 

the 

diagram you need include only those objects that you are interested in. For example, 
although the diagram shows only one Pupil object, there may well be other pupils in the 
form we have called form2. We refer to the full complement of objects, their attribute 
values (that is, the objects’ states) and the links between them, which constitute the 
running software at any one time, as the of the software at that time. 

Exercise 2 

Extend the object diagram in Figure 7 to show that the pupils Chesney Brown and David 
Platt (whom you enrolled into the school in Activity 1) are also in the form represented by 
form2, whose teacher is represented by teacher6

Solution................................................................................................................. 

Figure 8 shows the extended object diagram. You may have used different identifiers for 
Pupil objects. 

name = 

birthDate = 24/12/00 

pupil3 

name = 

birthDate = 05/05/01 

pupil4 

name = 

birthDate = 25/12/00 

pupil5 

name = 

form2 

name = 

teacher6 

"Rosie Webster" 

"Chesney Brown" "David Platt" 

"Form 1b" "Mr Barlow" 

Figure 8 Object diagram illustrating teacher6, form2 and its related Pupil objects 

An object diagram created during the development of an application or system does not 
imply anything about how such links between objects are implemented, just that some 
connection exists. At the detailed design and implementation stage of development, 
different possibilities for implementation will be analysed. In the following activity you will 
see how this was done in the School Management application. 

ACTIVITY 2 

Launch BlueJ, and open Unit14_Project, which contains the classes for the School 
Management application. Open the OUWorkspace and run the School Management 
application by executing 

new SchoolGUI( ); 

in the Code Pane. 

The running application contains, amongst other objects, the Teacher and Form 
objects described in the discussion of Activity 1, part 2, and SAQ 3. That is, there is a 
Teacher object with its name attribute set to "Mr Barlow", and  a  Form object with its 
name attribute set to "Form 1b". Of course, there is nothing in the application that 
mentions the identifiers we used (teacher6 and form2) in Figures 7 and 8; 
remember that these are just labels used in an object diagram (which is external to 
the software). 

1 



22 Unit 14 Software development 

Look at the source code for the classes Teacher and Form, in particular the instance 
variable declarations. How is the link shown in Figure 8 between teacher6 and 
form2 implemented? 

2	 If you followed the instructions in Activity 1 and enrolled three pupils into Form 1b, 
then in the running application the Form object we are referring to as form2 is linked 
to three different Pupil objects. How are these links implemented? 

DISCUSSION OF 
ACTIVITY 2 
1	 Although we cannot ‘see’ the objects in the running application, they are generated 

from the source code from which we can glean information about them. The 
following variable declaration in the Form class is the key here. 

private Teacher teacher; // teacher of the form 

This shows that the link is implemented by form2 having an instance variable, 
teacher, which references teacher6. 

This situation is not unique to form2, of course; every Form object has a reference to 
the relevant Teacher object. Please note that a Teacher object does not hold a 
reference to the relevant Form object – there is no corresponding Form variable 
declaration in the Teacher class. 

2	 Here is the relevant declaration, again in the Form class. 

private Collection<Pupil> pupils; // pupils in the form 

This shows that the links are implemented by a Form object having an instance 
variable, pupils, which references a Collection of the Pupil objects that 
represent pupils in the form. 

In fact you can see from the following code within the Form constructor that, when 
the code is run, pupils actually references a HashSet of Pupil objects: 

this.pupils = new HashSet<Pupil>( ); 

Note that a Pupil object has no reference to the linked Form object. 

Links between objects may be implemented by instance variables in both classes, or in 
just one class as is the case in our examples above. The choice of which implementation 
is appropriate depends on the use that the code makes of the links. 

Note that, although both attributes and links can be implemented using instance 
variables, they are represented very differently in an object diagram. This representation 
highlights the fact that an object’s attribute values are simple pieces of information 
(represented by strings, for example) that are not specific to the software under 
consideration, whilst in contrast its links are with other domain-model objects. 

One important aspect of class and object diagrams is that, although they are expressed 
in software terms involving classes, methods, attributes, objects, links, etc., the client 
and potential users of the software usually find them easy to interpret. Therefore such 
diagrams can serve as a check that the developer and client have the same 
understanding of what classes are needed for the software, and the relationship 
between those classes, and instances of those classes. This is one of the main 
advantages of an object-oriented approach – the domain model that we are developing 
has a much more straightforward relationship with the real-world problem domain than 
would be the case in a more traditional approach. 



4 Using UML 23 

4.3 Modelling with sequence diagrams 
In UML, sequence diagrams are employed to model the software in action (i.e. at run-
time), showing the message-sends involved in specific collaborations. Figure 9 shows a 
simple model created during development of the School Management application. It 
relates to the requirement for the application to provide the name of the teacher with the 
most pupils in their form. 

schooluserInterface 

getTeacherWithMostPupils() 

teacher2 

Figure 9 Getting the teacher with most pupils 

You will notice that Figure 9 is a sequence diagram, of a similar style to those introduced 
earlier in this course (although the notation used here follows UML conventions more 
closely). However, there is a significant difference between how sequence diagrams 
have previously been used in M255, and how a diagram such as that in Figure 9 is used 
during the development of software. Whereas you have previously used sequence 
diagrams to illustrate the interaction between existing objects at run-time, in software 
development they are used as modelling tools to explore and plan design possibilities 
for how objects might interact. In other words, sequence diagrams in UML suggest 
ideas for how the future software might work. 

The important features to note about sequence diagrams are as follows (some of which 
you will already be aware of). 

c Each object in an interaction is represented by a rectangle, just as in an object 
diagram. This rectangle contains an identifier for the object, but no attribute values. 

c Time is viewed as running vertically downwards. 

c A dashed vertical line running down from an object rectangle represents the lifeline 
of that object, that is, the time during which the object exists. 

c When an object receives a message, an activation rectangle running vertically 
downwards is started on that object’s lifeline. This represents the period during 
which the object is engaged in responding to the message it has received; that is, 
the time during which the method invoked by the message is being executed. 

c The activation rectangle for the userInterface object comes straight out of the 
object rectangle and appears ‘endless’ (i.e. the bottom of the rectangle is dashed). 
This indicates that the user interface is continuously active, always listening for 
events (mouse clicks, for example) caused by the user. 

c A message is represented as a solid arrow. 

c A message answer is shown as a labelled dashed arrow emanating from the bottom 
of an activation rectangle. 



24 

(a) 

(c) 

(a) The 

. 

(c) . 

SAQ 4 

Consider the sequence diagram in Figure 9. 

Which object is shown as being sent a message? 

(b) What is the message? 

What is the message answer? 

ANSWER............................................................................................................... 

school object is being sent a message. 

(b) The message is getTeacherWithMostPupils( )

The message answer is teacher2

Unit 14 Software development 

Notice that a sequence diagram is quite different from an object diagram, although they 
both illustrate objects. An object diagram shows the state of part of the running software 
at a particular point in time and as such can be described as a static model. A  
sequence diagram shows objects collaborating by sending messages one after the 
other. Because it illustrates events occurring in the software over time, a sequence 
diagram is classed as a dynamic model. 

Sequence diagrams in software development 
In the design stages of a software development project, scenarios which represent 
typical user interactions with the software, are devised. For each scenario, sequence 
diagrams are created to show which message-sends will need to be exchanged 
between objects in the running software for the scenario to be completed. Sequence 
diagrams therefore form the basis for deciding which methods are appropriate for the 
classes of the emerging software, and what each method should involve. 

Consider the following example. For the School Management application there is a 
requirement to provide the name of the oldest pupil in a given form. We will consider a 
particular scenario involving finding the oldest pupil in a particular form. 

In Activity 1 you enrolled the following pupils into the form called Form 1b: 

Rosie Webster, date of birth: 24/12/00; 

Chesney Brown, date of birth: 05/05/01; 

David Platt, date of birth: 25/12/00. 

Suppose that, in the development of this application, a scenario involving pupils as 
described above was devised. The developers might illustrate the objects involved in 
this particular scenario in the object diagram in Figure 10. This shows the Form object 
form2 (named ‘Form 1b’) together with the Pupil objects corresponding to all the above 
pupils in the form, which are labelled as pupil3, pupil4 and pupil5 in the figure. The 
application of course includes other Form and Pupil objects, as well as objects of other 
classes, but they are not relevant to our current investigations. 



4 Using UML 25 

name = 

birthDate = 24/12/00 

pupil3 

name = 

birthDate = 05/05/01 

pupil4 

name = 

birthDate = 25/12/00 

pupil5 

name = 

form2 

"Rosie Webster" 

"Chesney Brown" "David Platt" 

"Form 1b" 

Figure 10 form2 and its Pupil objects 

Figure 11 shows a simple sequence diagram for this scenario, that the developers of this 
application might have considered, which expresses a particular design idea. 

form2schooluserInterface 

getOldestPupil(form2) 
getOldestPupil() 

pupil3 
pupil3 

school 

c 

); 

c 

; 

c 

and 

? 

Figure 11 returns a message answer 

In creating the sequence diagram above the developers were expressing the idea that, 
as part of what the application does to get the oldest pupil in a form: 

the object school (an instance of the class SchoolCoord, which you met in 
Activity 1) could receive a message getOldestPupil( ) (with a particular Form 
object, here form2, as the argument) from the user interface, represented by the 
object userInterface (an instance of SchoolGUI

the object school would then send a getOldestPupil( ) message to the Form 
object, which would respond by returning the oldest Pupil object (pupil3, in  this  
particular scenario) to school

finally the school object would return that Pupil object to the user interface. 

The sequence diagram in Figure 11 is a model which emphasises a collaboration 
between the userInterface object and the objects school form2, but neglects 
details such as the precise method code. 

SAQ 5 

Imagine that you, as a programmer, are handed the sequence diagram shown in 
Figure 11 by a designer. What information does the sequence diagram give you about 
how to code the SchoolCoord method with the signature getOldestPupil(Form)



26 Unit 14 Software development 

Do not confuse the two 
methods involved. The 
first is getOldestPupil 
(aForm) in class 
SchoolCoord and the 
second is 
getOldestPupil( ) in 
class Form. Although they 
happen to have the same 
name they are entirely 
distinct. 

ANSWER............................................................................................................... 

It tells you that the return type of the method is Pupil. It also tells you that the method 
code should involve sending a getOldestPupil( ) message to a Form object. 

In the next activity you will first try out the application’s ability to find the oldest pupil in a 
form, and then you will confirm that the code which achieves this does indeed conform 
to the design expressed in the sequence diagram in Figure 11. 

ACTIVITY 3 

Launch BlueJ and open Unit14_Project and the OUWorkspace. Run the School 
Management application by executing 

new SchoolGUI( ); 

in the OUWorkspace’s Code Pane. 

1 In the user interface, select Form 1b. What is displayed in the field labelled Oldest 
pupil? 

2 Select Form 2a. What is displayed in the field labelled Oldest pupil? 

3 Now turn to the source code, and explain briefly what the code for the method 
getOldestPupil(Form aForm) in class SchoolCoord does. 

DISCUSSION OF 
ACTIVITY 3 
1	 When Form 1b is selected the name ‘Rosie Webster’ is displayed in the field labelled 

Oldest pupil. 

2	 When Form 2a is selected the text ‘No pupils in this form’ is displayed in the field 
labelled Oldest pupil. 

3	 The method is as follows 

public Pupil getOldestPupil(Form aForm)

{


return aForm.getOldestPupil( );

}


The method sends the message getOldestPupil( ) to the object referenced by 
aForm (the method argument). This corresponds to the sequence diagram in 
Figure 11 in which the message getOldestPupil( ) was sent to the object form2 of 
the particular scenario. 

, 
and 

each 

and and 
and 

The sequence diagram in Figure 11 shows the collaborations between userInterface
school form2. Suppose the developers then turned to considering how a Form 
object would respond to a getOldestPupil( ) method. In this particular scenario what 
might form2 do to return its oldest pupil? An obvious approach would involve form2 
asking each of its Pupil objects in turn for their birth dates: that is, collaborating with 

Pupil object. The following exercise asks you to consider how the developers 
might illustrate this idea in a sequence diagram. 

Exercise 3 

Figure 12 shows the first of the collaborations between form2 and its Pupil objects. 
Complete the diagram to show the collaborations between form2 pupil4 
between form2 pupil5. (You will need to refer to Figure 10 for the birth dates.) 



4 Using UML 27 

pupil3school form2 

getOldestPupil() 

24/12/00 

getBirthDate() 

Figure 12 form2 collaborates with pupil3 

Solution.................................................................................................................


Figure 13 shows the expanded sequence diagram with the collaborations between 
form2 and the three Pupil objects depicted. 

pupil3school form2 pupil4 pupil5 

getOldestPupil() 

24/12/00 

05/05/01 

25/12/00 

getBirthDate() 

getBirthDate() 

getBirthDate() 

Figure 13 form2 collaborates with each of its Pupil objects 

In Activity 4 you will confirm that the School Management application code conforms to 
the design expressed in the sequence diagram in Figure 13. 

ACTIVITY 4 

Launch BlueJ and open Unit14_Project. 

Explain briefly how the code for the method getOldestPupil( ) in class Form 
corresponds to the design illustrated in Figure 13. 



DISCUSSION OF 

. 

to 
object . 

28 

ACTIVITY 4 

From the code you can see that when a Form object’s getOldestPupil( ) method 
executes the receiver (in the scenario above this is form2) iterates over all the Pupil 
objects in its pupils collection, sending each in turn the message getBirthDate( )
This corresponds to the design illustrated in the sequence diagram in Figure 13. 

Figure 14 shows a sequence diagram illustrating the complete message sequence 
involved in finding the oldest pupil, starting with the user interface sending the message 
getOldestPupil(form2) school and finishing with the user interface receiving the 

pupil3

Unit 14 Software development 

pupil3school form2 pupil4 pupil5userInterface 

getOldestPupil() 

24/12/00 

05/05/01 

25/12/00 

getBirthDate() 

getBirthDate() 

getBirthDate() 

getOldestPupil(form2) 

pupil3
pupil3 

Figure 14 The complete message sequence responding to the request for the oldest pupil in 
Form 1b 

– 

, and 

, and 

In the next exercise you will practice what you have learnt about object and sequence 
diagrams, by again imagining that you are in the process of developing the School 
Management application. This time you will be looking at exactly the same task (locating 
the oldest pupil in a form) but with a different scenario. 

Exercise 4 

(a) Suppose that the form named Form 1c has one pupil in it her name is Sophie 
Webster and her date of birth is 04/11/00. Ms Yingjie is the teacher of this form. Draw 
an object diagram, using the identifiers form4 pupil6 teacher1, to illustrate 
the objects that correspond to these real-world entities. 

(b) Suppose that a pupil named Craig Harris enrols into Form 1c. His date of birth is 
02/07/00. Extend your object diagram to illustrate the Teacher Form Pupil 
objects involved, choosing a suitable identifier for the additional object. 



4 Using UML 29 

(c) Suppose that a user of the School Management application selects Form 1c in the 
user interface. Draw a sequence diagram to illustrate the sequence of messages and 
message answers that should pass through the application for this scenario, resulting 
in the Pupil object corresponding to the oldest pupil in Form 1c being returned to the 
user interface. 

Solution.................................................................................................................


(a)	 The object diagram for Form 1c is as follows. 

name = 

birthDate = 04/11/00 

pupil6 

name = 

form4 

name = 

teacher1 

"Sophie Webster" "Form 1c" "Ms Yingjie" 

Figure 15 Object diagram illustrating Form 1c, its teacher and its pupil 

(b)	 In our updated object diagram we have used the identifier pupil7 for the 
additional object. You could have used any identifier that was different to the ones 
that have already been used in this unit. 

name = 

birthDate = 04/11/00 

pupil6 

name = 

birthDate = 02/07/00 

pupil7 

name = 

form4 

name = 

teacher1 

"Sophie Webster" 

"Craig Harris" 

"Form 1c" "Ms Yingjie" 

Figure 16 A new pupil in Form 1c 



(c) 

30 

A sequence diagram, showing the scenario in which the oldest pupil from Form 1c 
is obtained, is shown in Figure 17. Note that the order in which the Pupil objects 
are sent the message getBirthDate( ) does not matter. 

Unit 14 Software development 

pupil6school form4 pupil7userInterface 

getOldestPupil() 

04/11/00 

02/07/00 

getBirthDate() 

getBirthDate() 

getOldestPupil(form4) 

pupil7
pupil7 

Figure 17 Getting the oldest pupil in the new scenario 

In this section you have explored how sequence diagrams can be used in software 
development for illustrating the interactions between objects involved in particular 
scenarios, and how they can be used as a basis for writing method code. In Section 5 
software development methods are introduced, and you will look at examples of such 
methods, including the waterfall method and iterative methods. 



5 Software development methods 31 

. 

5.1 

Earlier you were introduced to the concept of developing software in phases, each 
building upon the previous phase. This section gives an overview of how the phases of 
software development may be combined to form a software development method

What is a software development method? 

5 Software development methods 

c 

c 

c 

c 

c 

c 

c 

(a) 

(a) 

Before discussing what is meant by a software development method, it might be helpful 
to review briefly what has been learnt about the phases of software development. 

In Section 2 we introduced the following main phases of object-oriented software 
development: 

requirements specification; 

developing a structural model; 

designing dynamic models; 

developing a user interface; 

detailed design and implementation; 

testing; 

maintenance. 

SAQ 6 

What is each of the following phases concerned with? 

developing a structural model. 

(b) designing dynamic models 

ANSWER............................................................................................................... 

Developing a structural model is concerned with determining what classes and 
objects (and the relationships between them) are appropriate for the requirements. 

(b) Designing dynamic models is concerned with determining what interactions among 
objects will achieve the requirements. 

It is most important to appreciate that there is no implication that the phases must be 
undertaken in a linear fashion, with each one completing before the next starts. On the 
contrary many different permutations are possible. A software development method is 
a particular set of phases and their activities, applied in a particular order. 

At this point you may be wondering why there is a need for different software 
development methods. First, there is much debate, and no obvious consensus amongst 
practitioners and researchers, on the relative merits of different approaches to creating 
software. Secondly, there can be major differences between software projects, which 
determine which methods are appropriate. For example, a significant influence on 
choice of development method is the stability of the software requirements, that is, 
whether they can be fully determined at the outset of the project, and how liable they are 
to change. The requirements for an embedded system, such as a washing machine 
controller, or a safety-critical system controlling a power station, may be well defined 



32 

from the start, and unlikely to change. In contrast the requirements for a stock control 
system for a newly established business will change with the changing nature of the 
business. Changing requirements can require very flexible development methods. 

Unit 14 Software development 

5.2 The waterfall method 

specification 

Maintenance 

and 
implementation 

Designing 

Developing 
a structural 

model 

Requirements 

Testing 

Detailed design 

Developing a 
user interface 

dynamic models 

The 

– 

waterfall method is a traditional and idealised view of software development and 
involves strictly following a sequence of phases. It describes development in which 
each phase is visited only once, and where each phase is completed before the next 
begins. Figure 18 illustrates this. 

Figure 18 The waterfall model of software development 

SAQ 7 

Can you think why the waterfall method has been nicknamed the ‘throw it over the wall’ 
method? 

ANSWER............................................................................................................... 

The method is nicknamed the ‘throw it over the wall’ method since once a phase is 
completed it is essentially beyond the control of the developers they may not revisit it. 

The waterfall method has some advantages for the management of a project. If there are 
a set number of phases then we can at least try to plan in advance for the time and 
resources required for each phase and then for the entire project. But the method suffers 
from a number of problems. 

It does not produce any executable software until the end of the project, so the client 
may not have a good idea of what they are getting until it is too late to make 
changes. 

1 



5 Software development methods 33 

2 Testing, being at a late stage in the project may be neglected if the project overruns. 

3 Errors are likely to be undiscovered until late in the project, meaning that resolving 
them is rushed or not done at all, or the project is delayed (with the associated 
problem of considerable costs being incurred). 

4 The method does not countenance changes or additions to the requirements as the 
project progresses, but relies on all the requirements of the software being 
established at the beginning. This is often unachievable. 

5 There is no allowance for the developers to return to a phase to revise earlier 
decisions. 

As previously indicated many projects do not start with a fixed and unchanging set of 
requirements, and most developers do not make consistently perfect decisions. Thus 
rigid adherence to a waterfall method is generally unrealistic. Nevertheless, many 
projects do follow an approximation to it (deviating, for example, by allowing a return 
from implementation to dynamic model design when a coding problem arises), largely 
because its predictability aids project management. The term predictive method is 
sometimes used to describe a method largely based on the waterfall approach. 

5.3 Iterative methods 
Whereas a predictive method is inflexible in the face of change, an adaptive method of 
software development is able to respond to change. Adaptive describes ways of 
developing software, which not only tolerate change (to the software requirements, to 
ideas in the developers’ minds, etc.), but which actually embrace change by building 
space for it into the schedule. 

An iterative method, common in object-oriented software development, is one such 
adaptive method. Phases are repeated in a systematic manner, with each iteration (one 
cycle through the phases) enabling the developers to build on the work completed so 
far, as well as offering an opportunity for reflection and revision. 

A common iterative practice is to restrict the initial development to only a small subset of 
the requirements. By designing and implementing just a part of what is required the 
developer is able to get early feedback from the client and thus reveal more quickly any 
problems arising from misunderstandings of, or changes to, the requirements. Once this 
initial version of the software has been implemented satisfactorily, additional behaviour 
can be incorporated by repeated iterations of the development process until eventually 
a version of the software that satisfies all the specified requirements is produced. 

Figure 19 shows an outline of an iterative method. 



34 Unit 14 Software development 

specification 

i

and 
implementation 

Designing 

Developing 
a structural 

model 

Maintenance 

Review 

Requirements 

Test ng 

Detailed design 

Developing a 
user interface 

dynamic models 

structure 

The review

c 

c – 

c 

Figure 19 An iterative approach to software development 

There are many variations of the iterative approach. A common one is for early iterations 
to concentrate on getting a satisfactory design of the of the software before 
going into the detailed design and implementation and testing phases. 

, which is explicitly included within each iteration (see Figure 19), is a point 
where developers and clients can take changes into account by scheduling them into a 
future iteration. 

SAQ 8 

List some kinds of changes likely to be identified within a review. 

ANSWER............................................................................................................... 

Here are some of the changes you might have thought of. 

Changes in the client’s requirements. 

Changes to decisions made in previous iterations about the structure of the 
software, its design or its implementation. 

Changes to correct any errors from previous iterations. 

In each iteration the designs and/or code are tested. Since one iteration builds on 
another, tests are repeated to ensure that the changes and additions made during an 
iteration do not damage the previous development. 

Within iterative development, prototypes are often useful. A prototype is an early 
working version of the required software, or part of what is required, used to test and 
confirm ideas about what the software is required to do and how best to achieve this. For 
example, a part of the user interface (with perhaps limited or no actual functionality) may 
be designed and implemented so that its usability can be analysed and the results fed 
into the development process. 



5 Software development methods 35 

an 

eXtreme Programming (XP) 

Emerging in around 2000, the ideas of eXtreme Programming (XP) challenge the 
wisdom of developing software through carefully planned phases. Instead, XP 
advocates (at least on certain kinds of projects) concentrating on rapid, prototype-
producing, documentation-light iterations of coding and testing. XP is an example of 

agile development process, which prioritises the people and styles of 
teamworking on a project ahead of any process and documentation used. 



36 Unit 14 Software development 

6 Software engineering 

Systematically developing software by using a defined methodology is a vital ingredient 
in a successful project. We noted earlier, similarities with the way in which a building is 
developed; in fact there are similarities with the development of engineering artefacts 
more generally. A succession of activities is involved, moving from a general description 
of the software (product) through increasingly detailed designs (engineering blueprints) 
to the implementation (construction). Because of these similarities to engineering 
physical artefacts the term software engineering is often used to refer to the wide 
range of issues connected with carrying out successful software development projects 
(particularly large-scale ones) using a systematic approach. Software engineering 
covers not only the technical aspects of building software systems, but also 
management issues, such as directing programming teams, scheduling and budgeting. 

The theory of software engineering is a vast one, with substantial industrial practice and 
academic research behind it. For an idea of its extent, consider the following small 
sample of research areas. 

c Software development methods. For example, which kind of method suits which 
kind of project? 

c Project management. How best to manage the people, tasks, resources and 
finances involved in a project, so that software of an acceptable quality is delivered 
on budget and on time? 

c Risk analysis. Identifying and managing the possibility of problems occurring in a 
project. How would a project cope if one of its developers left, for example? 

c Testing techniques. For example, what testing strategies are best suited to what 
kind of project? 

c Software quality. What are desirable qualities of software, and how can they be 
measured and maximised? 

The rest of this section introduces you to aspects of software engineering relating to 
large-scale projects. By  large scale we mean that the size of the project, and the 
complexity of detail involved, precludes the work being carried out by one or two 
people, and hence that the project can only be carried out by a team of people, with 
different individuals working on different aspects of the project. 

6.1 Project failure 
Developing software involves a complex process of analysing different possibilities and 
making choices. It is an inventive and therefore challenging activity which offers 
opportunities for satisfying creativity, but also for disappointment. Disappointing 
software is often the result of poor software development. The term project failure 
covers situations where a project is unsatisfactory in some way: it might be over budget, 
it might run over time, or it might result in unsatisfactory software. 

Software development can, though rarely, result in software that completely or almost 
completely fails. You might like to pause at this point and try to recall an example of a 
real-life software project that has largely failed. 



6 Software engineering 37 

There are many notorious examples. You may have remembered the following. 

c The Child Support Agency system put into operation in 2003. Problems with this new 
system resulted in a backlog of millions of pounds of unpaid support payments to 
single parents. 

c The UK Passport Agency problems of 1999, when the introduction of a new 
computer system resulted in long delays in the processing of passport applications 
and queues of passport applicants outside the agency’s offices. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

6.2 

Common causes of project failure 

The UK National Audit Office and the Office of Government Commerce published a 
list of common causes of public sector project failure in 2004 (for more details see 
http://www.nao.org.uk/publications/nao_reports/03-04/0304877es.pdf; accessed 
2 June 2006). The points (simplified in places) were as follows. 

Lack of clear link between the project and the organisation’s key strategic 
priorities, including agreed measures of success. 

Lack of clear senior management and ministerial ownership and leadership. 

Lack of effective engagement with clients. 

Lack of skills and proven approach to project management and risk 
management. 

Lack of understanding of, and contact with, the supply industry at senior levels in 
the organisation. 

Evaluation of proposals driven by initial price rather than long-term value for 
money (especially securing delivery of business benefits). 

Too little attention to breaking development and implementation into 
manageable steps. 

Inadequate resources and skills to deliver the project. 

Teamwork 
When a team works on a software development project, it is usual for different people to 
work on different parts of the development. A professional may specialise in a particular 
aspect of development, concentrating on that aspect in the projects they work on. You 
may have heard of some of the following job titles, all of which come under the umbrella 
title of software developer. 

c	 A systems analyst works closely with a client who has requested a software 
solution to determine if a software solution is practicable. If it is the systems analyst 
will then determine how such a solution would fit into the rest of the client’s current 
business practices and how those practices may need to adapt with the introduction 
of the proposed software. The systems analyst will then ensure that the clients 
requirements are expressed in a consistent and non-contradictory form that can be 
understood and acted upon by the requirements analyst. To do this a systems 
analyst ideally needs knowledge of both the problem domain (the client’s business 
needs) and software design. 

c	 A requirements analyst analyses the requirements produced by the systems 
analyst to produce a rigorous requirements specification that can be acted upon by 
a software designer. They may also become involved in preliminary aspects of 
design. 



c A 

c A 

programmers. 

c A 

c A 

c A 

process! 

38 

designer takes the requirements specification and works on the design stages of 
a project. A designer may specialise in certain kinds of design, for example games 
design or user interface design. 

programmer implements the code, based on the design models, testing small 
units of code along the way. Again, there are various specialists, such as games 

technical writer is involved in developing user documentation, such as help files 
and user manuals. 

software tester tests the software as it is being developed; for example, testing 
that separate units of code, perhaps written by different programmers, interact 
appropriately together (integration testing). 

project manager plans and oversees the running of a software development 
project, from making an initial assessment of the risks involved in the project and 
allocating people to teams, to having ultimate responsibility for the decisions taken 
during the project and handing over the software to the client. 

It is not uncommon for different software development firms to be commissioned to work 
on different aspects of a software project. One firm might carry out the systems analysis, 
another the requirements analysis, yet another the software design, and so on. With so 
many people involved you can see why the project manager figures large in the 

Unit 14 Software development 

SAQ 9


Figure 19 (in Subsection 5.3) shows the iterative software development method. Which 
developers might you expect to be involved at the review stage? 

ANSWER............................................................................................................... 

A review allows changes to be taken into account by scheduling them into a future 
iteration. Since these changes can affect the work of any one of the developers it is quite 
common that all developers are involved in a review. Certainly all those who have been 
involved in the previous iteration – analysts, designers, programmers and testers – 
would participate. 

6.2 Documentation 
You should now be very familiar with the idea of documenting your Java code using 
comments. However documentation pervades the whole software development 
process. Imagine that a team is working on a software development project. The team 
members have different responsibilities: there are analysts, designers, user interface 
designers, programmers and others. Even with an effective project manager, good 
communication between the different people involved is a key success factor. Much of 
this communication is in the form of written documentation. 

A programmer will not get far if they cannot understand what the designers have 
decided. Neither will the designers make progress if they cannot understand the work of 
the analysts. Project documentation describes the activities, decisions and outcomes 
of the different phases of the project. 

Project documentation is used during a project for communication between developers. 
It is also a vital ingredient in enabling the operational software to be maintained 
successfully, and allowing aspects of to be reused in creating new software. Adapting 



6 Software engineering 39 

software simply by trying to understand and change the code alone is usually doomed 
to failure or, at best, leads to the production of code that is subsequently unintelligible. 

The conclusions reached by each phase of development (including models such as 
sequence diagrams) obviously should be part of the project documentation. Other kinds 
of project information may also be relevant: a record of areas of debate and how 
differences of opinion were resolved, for example. In fact, any information that could 
potentially be of use to those maintaining the software, or to other developers working on 
similar projects, is relevant project documentation. 

SAQ 10


Why might it be useful for the project documentation to include designs that were 
considered but discarded? 

ANSWER............................................................................................................... 

Discarded designs (as well as records of why they were discarded) can be useful to 
someone charged with modifying the software once it is in operation, or to someone 
working on a similar project, so that the reasons for design decisions can be understood 
and so that known pitfalls and blind alleys can be avoided. 

6.3 Software tools 

c 

c 

c 

c 

Software development teams often rely heavily on software tools, sometimes called 
CASE (computer-aided software engineering) tools. Javadoc, which you have used 
throughout the course, is an example of a CASE tool to aid documentation. Here are 
some examples of other kinds of tools, demonstrating the variety available. 

Design tools 
Design tools provide support for certain aspects of design. A design tool may 
incorporate a special drawing package which enables the formulation of designs using 
diagrams. There are many UML-based design tools. 

Coding tools 
Coding tools provide support for writing and running code. An example of a coding tool 
is an IDE (integrated development environment) such as BlueJ. 

SAQ 11 

What facilities might an IDE offer? 

ANSWER............................................................................................................... 

An IDE may offer the following: 

a specialised editor for writing and editing source code; 

facilities for checking the syntax and semantics of the source code; 

facilities for structuring programs into separate projects, and for creating 
repositories of associated documents; 

an integrated compiler. 



40 

1 
tool – 

2 

3 

Some tools offer integration and automation of elements of design, coding and testing. 
A tool might enable the user to specify aspects of the design, via UML diagrams for 
example, and then automatically produce corresponding outline program code. For 
example, you might produce a sequence diagram which the tool would take as the basis 
for generating skeletal outlines of methods. The more detailed the design, the more 
code is automatically generated. 

CASE tools would appear to significantly reduce the work involved in the production of 
software. Consequently you might be surprised to learn that some developers prefer not 
to use them. There are several reasons for this: 

Developers are forced to describe their designs in a format tightly prescribed by the 
this may be inappropriate for some projects. 

The overheads of getting to grips with a necessarily complex tool and working with 
its idiosyncrasies can be high. 

Automatically produced code can be less readable and more complex than 
necessary. Furthermore such code may not adhere to a company’s in-house 
conventions. 

Exercise 5 

Earlier in this unit we described a UML-type diagram as one that varies in some minor 
way from the specification set out in the UML standard. 

Suppose a particular CASE tool produces outline code when it is given a design 
expressed in strict UML. Why would such a tool not generally accept a UML-type diagram 
instead? 

Solution................................................................................................................. 

A CASE tool is programmed to carry out certain processes (to produce the code) given 
specific input (a UML diagram). It will not be programmed to deal with other inputs such 
as even minor variations on strict UML. 

Unit 14 Software development 

Testing tools 
There are many different kinds of testing tool. A  code-based testing tool automatically 
analyses code and produces test cases ensuring that certain aspects of the code (for 
example, each path through it) are tested. A test driver tool executes the software 
being tested with specified inputs. 

JUnit, which you used in Unit 13, is a tool incorporated into BlueJ that assists in the 
testing of Java classes. It enables the establishment of a testing framework specific to a 
program, then automatically performs tasks such as initialising objects for testing, and 
executing specified sets of tests. 



Summary 41 

7 Summary 

This unit began by introducing you to the idea of developing software. 

Through exploring the objects and collaborations at work in the School Management 
application, and using class diagrams, object diagrams and sequence diagrams for 
illustration, you learnt about the complexity that can be involved even in a relatively 
simple application. 

Such complexity is managed by developing software in a systematic, progressive way, 
with interlinked phases of development and by using models. You were introduced to 
the phases and to the modelling language, UML, which enables you to produce 
consistent diagrammatic models that are an aid to communication between project 
members and to documenting the project. 

Software development methods – ways of putting the phases of development together – 
are important when developing software. You were introduced to two of them: the 
waterfall and iterative methods. 

The term software engineering is often used to describe the process of developing 
large-scale software projects in a way that is similar to engineering any large physical 
artefact. You were given the flavour of some of the elements of software engineering: 
e.g. how teams of developers work on a project, including the different team roles and 
the variety of tools used to assist in development. 

This unit has provided only a brief introduction to the important ideas in software 
development. If you are interested in learning more about this subject, we suggest you 
investigate some of the other Open University computing courses that discuss the 
concepts, and techniques, of software engineering in more detail. 



42 Unit 14 Software development 

LEARNING OUTCOMES 
After studying this unit you should be able to: 

c describe the meaning of each of this unit’s key terms (summarised in the Glossary); 

c represent classes, and their inheritance relationships, and the links between their 
instances, using class diagrams; 

c represent objects, and the links between them, using object diagrams; 

c identify, by inspecting code, objects corresponding to real-world entities; 

c identify, by inspecting code, how a link between objects is implemented; 

c identify code corresponding to a design illustrated by a sequence diagram; 

c explain why it is important to develop software systematically; 

c outline what is involved in each of the following development phases: 

c requirements specification, 

c developing structural models, 

c designing dynamic models, 

c detailed design and implementation, 

c testing, 

c maintenance; 

c describe the roles of diagrams, models and modelling languages in developing 
software; 

c describe the reasons why UML has grown in importance as a modelling language 
for software development; 

c outline what a software development method is and describe the essential features 
of the waterfall and iterative methods; 

c describe some aspects of software engineering, i.e. different team roles and tools. 



Glossary 43 

Glossary


to 

. 

: 

A 

A 

design 
. 

A design. 

design 

abstraction A description that focuses on the essential features of a problem and 
ignores other details. 

activation rectangle An element in a sequence diagram that represents a period 
during which a particular object is active. 

adaptive method A method of software development which embraces change by 
building space for it into the schedule. 

analysis In this context, analysis involves analysing the specified requirements 
develop a detailed understanding, in computing terms, of what the software has to do. 
The outcome is a requirements specification document. 

CASE (computer-aided software engineering) tool A software tool used to help in 
some aspect of software development

client This term has two main meanings in the context of software development

(i) the object in a collaboration which requests a service; (ii) the person(s) 
commissioning software. 

code-based testing tool testing tool that automatically analyses code and 
produces test cases. 

coding tool CASE tool that aids writing or running code. 

collaboration One object requesting a service from another object. 

collaborator A participant in a collaboration. 

Design involves deciding how the software will meet the specified 
requirements

design tool CASE tool that aids some aspect of 

designer A developer whose role is to work on the stages of a project. 

designing dynamic models Determining what interactions among objects will 
achieve the tasks required of the software. 

detailed design and implementation Deciding what existing classes can be reused 
and what programming constructs are appropriate as well as writing the actual code. 

developing a structural model Analysing the requirements to determine the classes 
and connections between them that are appropriate for the area the software is being 
written for, thus defining a structure for the software. 

developing a user interface Designing the user interface and determining how it will 
communicate with the domain model. 

domain model That part of the software that models the problem domain and is not 
directly concerned with how communication with the user is achieved. 

dynamic model An illustration of events occurring in executing software over time. 

identifier A label chosen to identify an object in the software. 



44 Unit 14 Software development 

. 

lifeline 

link 

links 

OMG ( ) 
. 

phase . 

A 

phases. 

review 

task. 

implementation Translating the design into program code in some suitable 
programming language. 

iteration One cycle through the phases involved in an iterative method

iterative method An adaptive method of software development in which phases are 
repeated iteratively in a systematic manner. 

An element in a sequence diagram that represents the time during which an 
object exists. 

A connection between two objects. 

maintenance The phase of a software development process associated with keeping 
the software working to the satisfaction of its users. 

modelling language A specification of how models should be constructed so that 
their meaning is unambiguous. 

object diagram A diagram of objects and the between them. 

Object Management Group A consortium of computing companies which 
sets standards across the software industry, including the UML standard

A stage of software development

predictive method software development method that is largely based on the 
waterfall method and therefore benefits from simplicity of planning, and predictability. 

problem domain The collection of real-world entities within the application area that 
exhibit the behaviours that the required software has to model. 

programmer A developer whose role is to implement the code. 

project documentation A written description of the activities, decisions and 
outcomes of a project’s 

project failure A situation where a project fails to deliver the client’s requirements. 

project manager A person who plans and oversees the running of a software 
development project. 

prototype An early working version of the software or part of it. 

requirements What is required of the software. 

requirements specification Eliciting and analysing what the client wants in order to 
produce a detailed and complete specification of the requirements of the software in 
terms of what it should do. 

A point within an iterative software development method where developers 
and clients can take changes into account. 

sequence diagram An illustration of objects collaborating to carry out a particular 

software developer An umbrella title, referring to someone who takes on one or more 
of a range of jobs within software development. 



Glossary 45 

phases and 

. 

. 

A 

phase 
. 

A . 

A 

UML 

UML 
. 

software development A planned, phased process, involving modelling different 
aspects of the software as well as implementing, testing and maintaining it. 

software development method A particular set of development 
activities, applied in a particular order. 

software engineering A term used to refer to a wide range of concerns connected 
with carrying out systematic software development

software model An illustration or description of the software, or of part of it, which 
emphasises certain aspects and omits others. 

software tester A developer whose role is to test the software as it is being 
developed. 

static model An illustration of the state of the software, or part of it, at a particular 
imagined time during execution. 

strict UML diagram A diagram that adheres strictly to the UML standard

systems analyst A developer who ideally has knowledge of both the problem 
domain (the client’s business needs) and software design and whose role is to analyse 
the feasibility of proposed software and how it will impact on the client’s business 
practices. 

technical writer A developer whose role is to develop user documentation. 

test driver tool testing tool that executes the software being tested with specified 
inputs. 

testing The activities that take place at each of development to ensure that 
what is produced relates correctly to the previous phase and to the requirements

testing tool CASE tool that aids some aspect of testing

UML (Unified Modeling Language) modelling language based on diagrams. 

UML standard The currently accepted specification of what is valid and how it 
should be used. 

UML-type diagram A diagram that varies in some small way from the strict 
standard

waterfall method A traditional and idealised view of developing software by strictly 
following a sequence of phases. 



Acknowledgement 
Figure 2 : Map of the London Underground. Reproduced by permission of the London 
Transport Museum. 

Unit 14 Software development 46 



Index 47 

Index

A

abstraction 10


activation rectangle 23


adaptive method 33


agile development process 35


analysis 12


C

CASE (computer-aided software


engineering) tools 39


class diagram 17


client 10


code-based testing tool 40


coding tool 39


D

design 12


designing dynamic models 11


detailed design and


implementation 11


tool 39


designer 38


development 11


domain model 8


dynamic model 24


E

eXtreme Programming (XP) 35


I

identifier 20


implementation 12


iteration 33


iterative method 33


J 
JUnit 40


L

large-scale project 36


lifeline 23


link 18, 20


M

maintenance 11


modelling language 14


O

object diagram 19


Object Management Group

(OMG) 15


P

phase 10


predictive method 33


problem domain 22, 37


programmer 38


project

documentation 38


failure 36


management 36


manager 38


prototype 34


R

requirements 5


analyst 37


specification 11


review 34


risk analysis 36


S

sequence diagram 23


software

developer 37


development 6


development method 31, 36


engineering 36


model 13


quality 36


tester 38


state (of software) 21


static model 24


strict UML diagrams 15


structural model development 11


systems analyst 37


T

technical writer 38


test driver tool 40


testing 11

techniques 36


tool 40


U

UML (Unified Modeling


Language) 14


UML standard 15


UML-type diagrams 15


user interface development 11


W

waterfall method 32




48 Unit 14 Software development 


