
13U
ni

t

Software testing

Object-oriented

M255 Unit 13

programming with Java

UNDERGRADUATE COMPUTING

course M255

more

course

Copyright ª

or

–

electronic course

licensed

University

course

University course

University

written

2.1

This publication forms part of an Open University

Object-oriented programming with Java. Details of this and other

Open University courses can be obtained from the Student

Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn about the wide

range of courses and packs offered at all levels by The Open

University.

To purchase a selection of Open University materials visit

http://www.ouw.co.uk, or contact Open University Worldwide,

Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University

Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.

2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted or utilised in any form or by

any means, electronic, mechanical, photocopying, recording

otherwise, without written permission from the publisher or a licence

from the Copyright Licensing Agency Ltd. Details of such licences

(for reprographic reproduction) may be obtained from the

Copyright Licensing Agency Ltd, Saffron House, 6 10 Kirby Street,

London EC1N 8TS; website http://www.cla.co.uk.

Open University course materials may also be made available in

electronic formats for use by students of the University. All rights,

including copyright and related rights and database rights, in

materials and their contents are owned by or

to The Open University, or otherwise used by The Open

as permitted by applicable law.

In using electronic materials and their contents you agree

that your use will be solely for the purposes of following an Open

of study or otherwise as licensed by The Open

or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website),

distribute, transmit or retransmit, broadcast, modify or show in

public such electronic materials in whole or in part without the prior

consent of The Open University or in accordance with the

Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth

Group, Wakefield.

ISBN 978 0 7492 6794 0

5

6

CONTENTS

Introduction

1 Testing: its purpose and background

1.1	 Why do we test software? 6

1.2	 Black box testing and white box testing 6

1.3	 The input–output model of testing 12

1.4	 Kinds of testing 13

1.5	 Test-driven development 14

1.6 Running tests 14

2 Introducing JUnit 16

2.1 Assertions	 16

2.2 Enabling JUnit	 17

2.3 Hands-on with JUnit	 18

2.4 A method that fails its test	 28

2.5	 Test fixtures 30

2.6 Hand coding JUnit tests 34

3 Unit testing the class CompuFrog 38

3.1 Refactoring the class CompuFrog 44

4 More about designing test data 47

4.1	 Boundary and computation errors 47

4.2	 Using boundary values and equivalence classes 50

4.3 When inputs are not ordered 51

5 Case study: congestion charging 53

5.1	 Congestion charging for frogs 53

5.2	 Frogs are already Observable 56

5.3	 Testing the classes ChargeableFrog,

CZWarden and Account 57

6 Summary	 60

Glossary	 63

Reference	 65

Index	 66

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

Software should be fit for its purpose and should produce the results it is meant to. If it

does not do what it promises, it will not be much use to its users.

Unfortunately, when people write software, it contains errors. Realistically this is

unavoidable; software development is an exceedingly complex activity and as human

beings we are fallible. Testing is a way of finding as many errors as possible, so that we

can put them right. To test a program, it is run with suitable input data to see whether the

results are what they should be according to the program specification.

If we could test software with every possible combination of inputs, we could be sure

that we had caught all the errors and, when they had been fixed, that the software would

be completely correct, but this is seldom if ever achievable. Even in simple cases the

number of possible inputs can be enormous. Imagine a program that did no more than

multiply two integers. As the values of type int range from –2 147 483 648 to

2 147 483 647 in Java, there would be 18 446 744 073 709 551 616 (or approximately

1.8 6 1019) possible combinations of two integers to test!

So in practice testing involves choosing a small sample from among the immense range

of possible inputs, and it is necessary to try very hard to find the right ones – those that

have a very high probability of exposing a flaw in the code. A good test is one that

throws up a fault that other tests have not found! We can never eliminate all the faults

from software, but we can design and execute tests that detect most of them. If there are

relatively few remaining faults, and they are of low severity, the software will be

acceptable to users.

After a short initial discussion, the unit introduces an example of testing to give a feel for

the sorts of question we as testers need to ask. It then goes on to survey some different

kinds of testing, in terms of where they fit into the process of software development and

what the focus of the testing is. An important idea is unit testing – verifying that an

individual method functions according to specification. By building up unit tests

progressively we arrive at a set of tests for an entire program.

One particular philosophy we discuss is test-first; this is the idea that we should develop

software in small stages, testing as we go, and that we should write unit tests for each

step first, and only then write the code that will pass the tests.

When we do unit testing, as we develop the classes and methods in a typical

application, the number of individual tests we need to run will soon become very large,

and setting them up and managing them will be a big and complex task. To support this

work, there is a software framework, called JUnit that automates much of the process.

JUnit grew from an earlier testing framework for Smalltalk and has become the effective

standard for unit testing. Section 2 shows in detail how to set up and run tests in JUnit,

and then in Section 3 this knowledge is put into practice.

Section 4 discusses the key question of how to pick a good set of test data, and explains

a systematic way of choosing tests.

Finally, in Section 5 all the ideas presented in the unit are brought together and applied

to testing a small application which uses an important idea from software design – the

Observer pattern. Observer is just one of many software patterns, and this is a first

introduction to an interesting topic, which you will meet again if you continue to study

computing – as we very much hope you will!

6 Unit 13 Software testing

‘Program testing can be
used to show the
presence of bugs, but
never to show their
absence!’ (Dijkstra, 1972)

Debugging is a whole topic
in itself, although you saw
some useful debugging
techniques in Unit 8.

1 Testing: its purpose and background

1.1 Why do we test software?

The commonsense answer is that we test software because we want to check that it

does what it is supposed to. We would like know the code is correct. Unfortunately this is

not possible!

We can never prove that software is correct by testing, because we would have to try

out the software with every possible combination of inputs and in every conceivable set

of circumstances, and to do this with even a small program would require a prohibitively

large number of tests. All we can do is try to uncover defects – bugs in other words. If a

test produces unexpected results, a fault has been identified. We fix the fault and run the

test again; repeating the cycle of test and fix until the software passes all the tests and

no more defects are revealed.

If the program is a small one, this strategy may eventually eliminate all the faults, but for

medium or large programs that is most unlikely. There is a limit to the time and resources

available for testing and moreover some bugs will probably remain undiscovered

however much effort we expend. But if our testing is properly designed we will be able

locate most of them and reduce the level of defects to an acceptable level.

Since we are trying to detect errors, the best kind of test is one that is likely to reveal

flaws; we want tests that have a high probability of making something go wrong. Tests

that we thought all along would yield the right results will not be very useful, because

they add no new information and merely confirm that the software is working as

expected.

If we have written the program ourselves we may be tempted to test it in a fairly casual

manner, with a limited range of inputs – a bit like designing and building a new aircraft

and then testing it with one quick spin round an aerodrome. To avoid this, we need to

draw up and carry out a test plan which has been carefully designed to provide

adequate coverage and to look actively for as many defects as possible.

It is important to distinguish testing from debugging. Testing is the process of

uncovering faults in the software. Debugging is the process of identifying the cause of

the faults and correcting them. In this unit we are concerned mainly with testing; any

faults we discover will be fairly easy to locate just by inspecting the code.

1.2 Black box testing and white box testing

There are two fundamental ways of testing. The first is black box testing. This

expression probably comes originally from testing of electronic equipment where

internal circuitry is completely hidden inside a box. The tester knows what the box is

meant to do – there is a written specification – and there are a number of buttons and

knobs that can be pressed and turned and the effect observed, e.g. bulbs lighting up.

By carrying out a series of experiments the tester hopes to discover if the box is

performing to specification.

1 Testing: its purpose and background 7

The second approach is white box testing (sometimes called glass box or clear box

testing). In white box testing the tester knows about the internal circuitry and uses this

knowledge to design tests. Now the focus is not on testing against specification, but on

making sure that every part of the circuitry has been tested.

In software terms black box testing means we test against a specification – looking at

function – without looking at the code at all. White box testing means we examine the

code in detail – looking at program structure – and try to make sure that every statement

has been tested in action. Of course in both forms of testing we decide if the results the

program gives are correct by reference to the specification; we cannot reliably deduce

what is ‘right’ just from looking at the code.

An example of white box testing

We want every statement in the following method to be executed at least once.

public String sampleMethod(int n)
{

if (n == 0)
{

return "Sunday"; // a
}
else
{

// b
if (n == 6)
{

return "Saturday"; // c
}
else
{

return "Weekday"; // d
}

}
}

To design the white box tests we look at the control structure of the program. There

are two branch points, one at each if statement.

If the first condition evaluates to true, path a is taken.

Otherwise path b is taken and the second condition reached. If this evaluates to

true path c is taken, otherwise path d is taken.

The three routes a, bc and bd each contain a program statement not found in the

others. So to execute every program statement three white box tests will be needed,

as follows.

1 With n equal to 0, so a is taken.

2 With n equal to 6, so bc is taken.

3 With n not equal to either 0 or 6, so bd is taken.

start

finish

a

b

cd

truefalse (n == 0)

(n == 6) truefalse

White and black box testing are often used in conjunction, because they complement

one another. White box testing may fail to cover the full specification but will ensure that

all lines of code are executed at least once, while black box guarantees that the

specification has been tested fully but may leave parts of the code untested.

8 Unit 13 Software testing

However, for most purposes, it is usually adequate for black box testing to be used on its

own. It is also less complicated to apply, and more in keeping with the object-oriented

idea that the implementation of a method should be hidden from clients that make use of

it. In M255 we will use only black box tests.

The following exercise asks you to think about how you would black box test a method

from a new amphibian class.

Exercise 1

Recently it has been discovered that some amphibians are gifted at arithmetic. A

compufrog is a kind of frog that can add together two numbers and tell us the answer by

moving to the corresponding stone. (In case the graphical display is not open, it also

returns the result of the addition as a message answer.)

So far compufrogs have learnt to add only single-digit numbers. To be nice to them we

have agreed that we will not ask them to do any sums with numbers outside the range 0

to 9, inclusive. This will make testing slightly simpler.

The class CompuFrog, which simulates compufrogs, has a method add(int x, int y)
which adds two numbers and returns the result. Here is the comment for the method.

/**
* The method takes two integer arguments x and y. If these
* arguments are one-digit positive integers (ie integers
* between 0 and 9 inclusive) the method sums the two arguments
* and sets the position of the receiver to that sum and then
* returns the sum. Otherwise the method simply returns -1.

*/

In this exercise we want you, on paper, to draw up a black box test plan for the method

add(). This will involve deciding on what particular combinations of integer values you

need to give as arguments to the message add(), and for each message what the

expected result should be. We suggest you spend about 15 minutes on this task.

Although add() performs only a fairly simple action, devising a test plan for the method

will take quite a bit of thought. To help you formulate a plan it is useful to begin with a

number of questions.

1 What are you trying to achieve?

The aim is to design tests which detect as many errors as possible, as you saw in

Subsection 1.1.

2 How do you know what the result of a particular test should be?

You decide what the results should be by referring to the specification given in the

method comment.

3 How do you know the testing is adequate and how do you choose the tests?

1 Testing: its purpose and background 9

In practice one can hardly ever get complete coverage, because typically the number

of possible combinations of inputs is too large (and may even be infinite); for

instance, a program that interacts with a user – a word processor, say – has an open­

ended set of inputs. In principle the user can go on entering keyboard characters

indefinitely, so we can never cover all the possible cases. In the case of the add()
method, if we wanted to test it with all possible combinations of integer values as

arguments, as noted in the Introduction, there would be 18 446 744 073 709 551 616

possible combinations of two integers to test!

The art of black box testing is to choose a good sample, and what makes a sample good

comes back to what testing is trying to achieve. Remember we are looking for defects. So

any test likely to uncover a fault that other tests cannot detect is a good one to include in

the sample.

Conversely if a test is only likely to detect a fault that would be found by some other test,

there is no point it including it, since it will not tell us anything new.

Solution ...

The tests we came up with for the method add() are shown in Table 1. The test plan is

based on the comment of the method add().

The method should only sum the arguments if they are both between 0 and 9 inclusive,

otherwise it should return –1. When a method has to deal in some special way with a

range of numbers – in this example 0 to 9 – it is easy for a programmer to make a

mistake at the ends of the range. For example, they might use a condition such as

(x > 0) when it should be (x >= 0) and this will give wrong results at 0. (It might make

compufrogs think they cannot add 0 to anything!) So you will notice that we have

specified several tests with one or both of the arguments equal to or near to 0 and also

equal to or near to 9.

We also need to test using values around the middle of the range. There is no point in

trying lots of these. If the results are correct when we test using 5 plus 7, then we might

reasonably expect that, say, 3 plus 6 will also produce a correct addition. In principle it

might not – for all we know there may be some very strange effect that means add()
functions perfectly for all pairs of inputs except 3 plus 6 – but this is unlikely.

The probability is that the code will treat 3 plus 6 in the same way as 5 plus 7, and so

either both tests will give correct results or both will give incorrect results. We would

expect that if the first test detects a flaw, the second test will only detect the same flaw

and reveal nothing new. So the second test is redundant.

You may have thought of other tests; for example, trying arguments which are not

integers, e.g. 2.54 and 3.98, but Java will not let us send such messages. The signature

of the method add(int, int)dictates that the arguments can only be a pair of integers.

However, if we were using another programming language, these tests might well be

required.

Boundary testing is
explored in more detail in
Section 4.

We say the two tests are
equivalent. This is a notion
we will explore further in
Section 4.

10 Unit 13 Software testing

Table 1 Test cases for the method add()

case

1st

argument

2nd

argument

Expected

result

RationaleTest

1 0 0 0 Both numbers on lower boundary

2 –1 –1 –1 Both numbers outside lower boundary

3 0 1 1 First number on lower boundary, second close but inside lower

boundary

4 0 –1 –1 First number on lower boundary, second close but outside

lower boundary

5 1 0 1 First number close but inside lower boundary, second number

on lower boundary

6 –1 0 –1 First number close but outside lower boundary, second number

on lower boundary

7 1 –1 –1 First number close but inside lower boundary, second number

close but outside lower boundary

8 –1 1 –1 First number close but outside lower boundary, second number

close but inside lower boundary

9 1 1 2 Both numbers near but inside lower boundary

10 5 7 12 Typical values near middle of range

11 8 8 16 Both numbers near but inside upper boundary

12 8 9 17 First number close but inside upper boundary, second number

on upper boundary

13 10 9 –1 First number close but outside upper boundary, second

number on upper boundary

14 9 8 17 First number on upper boundary, second close but inside

upper boundary

15 9 10 –1 First number on upper boundary, second close but outside

upper boundary

16 9 9 18 Both numbers on upper boundary

17 10 10 –1 Both numbers outside upper boundary

18 8 10 –1 First number close but inside upper boundary, second number

close but outside upper boundary

19 10 8 –1 First number close but outside upper boundary, second

number close but inside upper boundary

1 Testing: its purpose and background 11

ACTIVITY 1

In this activity you will test the method add(). Launch the project Unit13_Project_1.

In the OUWorkspace create an instance of CompuFrog and send it the message add()
with the pairs of arguments shown in Table 1 above. Note the results for each test case

and state whether the method has passed or failed each test. This is a black box test, so

make sure you do not look at how the class CompuFrog is coded!

DISCUSSION OF
ACTIVITY 1

You should have obtained the results shown in Table 2.

Table 2 Test results for the method add()

case

1st

argument

2nd

argument

Expected

result

Actual

result

Pass/FailTest

1 0 0 0 0 Pass

2 –1 –1 –1 –1 Pass

3 0 1 1 1 Pass

4 0 –1 –1 –1 Pass

5 1 0 1 1 Pass

6 –1 0 –1 –1 Pass

7 1 –1 –1 –1 Pass

8 –1 1 –1 –1 Pass

9 1 1 2 2 Pass

10 5 7 12 12 Pass

11 8 8 16 16 Pass

12 8 9 17 –1 Fail

13 10 9 –1 –1 Pass

14 9 8 17 17 Pass

15 9 10 –1 –1 Pass

16 9 9 18 –1 Fail

17 10 10 –1 –1 Pass

18 8 10 –1 –1 Pass

19 10 8 –1 –1 Pass

The method has failed tests 12 and 16 (but notice it passed 14, so tests 12 and 14 are

not equivalent). As you will have guessed, we have deliberately introduced a fault; in

fact we have used the wrong comparison operator and so introduced precisely the kind

of error that the boundary tests were designed to detect.

For the moment we will leave the bug uncorrected, because we want to use the faulty

version in further activities.

12 Unit 13 Software testing

1.3 The input–output model of testing

Note that since the
behaviour of objects will
often be state dependent it
is essential to take state
into account when
devising tests.

Black box testing, not just of software but of other products, follows an input–output

model. We provide the product with some input and check if what comes out the other

end, the output, is what it should be according to a specification.

For example, to test an electric kettle, we would fill it with cold water and switch on. The

inputs are cold water and electricity and the output should be hot water. If it is not, the

kettle has failed the test!

To carry out a software test, we create all the objects involved in the code we want to test

and set up their initial states. We provide the required message arguments and any form

of run-time input that may be required: for example, from a dialogue box or the

keyboard. These inputs constitute the test data.

Then we execute the code we are testing, and inspect the results, which will be the new

state of the objects plus any message answers and output the code has generated.

For any set of test data it is possible to predict what the results should be, given the

specification to which the code was written.

We compare these expected results with the actual results – those produced when we

executed the code. If the actual results match the expected results, the code has

passed the test. Otherwise it has failed the test (Figure 1).

specification

software

initial state of objects;
message arguments;
run-time input.

Expected results:
final state of objects;
message answers;
output.

Actual results:
final state of objects;
message answers;
output.

passes the test.
fails the test.

Test data:

If the actual results match the expected results, the code
If the actual results do not match the expected results, the code

Figure 1 The input–output model of software testing

Exercise 2

Following the input–output model above, outline on paper how you would set about

testing the following instance methods of the Frog class. Assume you are using the

OUWorkspace.

(a) setColour()

(b) getColour()

(c) sameColourAs()

1 Testing: its purpose and background 13

Solution ...

There are many correct answers. This is what we did.

(a) Begin by creating an instance of Frog referenced by testFrog1. Inspect its state;
position should be set to 1 and colour should be set to OUColour.GREEN.

Send testFrog1 the message setColour(OUColour.RED). Inspect its state;
colour should now be OUColour.RED and position should still be 1 confirming

that setColour() has only changed the value of the instance variable colour.

(b) Send testFrog1 the message getColour(). The message answer should be

OUColour.RED. Inspect the state of testFrog1 once more to confirm that

getColour() has not changed the values of the instance variables.

Send testFrog1 the message setColour(OUColour.YELLOW)and then
immediately send it the message getColour(). This time getColour() should

return OUColour.YELLOW.

(c) Create a second instance of Frog and assign it to a variable called testFrog2.

Inspect the state of testFrog2, to confirm that position is set to 1 and colour is

set to OUColour.GREEN.

Inspect the state of testFrog1, to confirm that its position is set to 1 and its

colour is set to OUColour.YELLOW.

Send testFrog2 the message sameColourAs(testFrog1). Then send it the
message getColour(). The message answer should be OUColour.YELLOW. Finally
inspect the state of testFrog2 to check that only its colour has been changed, and
then inspect the state of testFrog1 to confirm that its state is unaltered.

1.4 Kinds of testing

All the testing we will be looking at falls under the umbrella of alpha testing – testing

which is done in-house before a product is available publicly. You may also have heard

of beta testing. This is when a trial version of a product is made available to potential

users, on the understanding that this is not the final form, so they can try it out if they are

interested and report any problems they find.

Commercial software developers often employ specialist testers who are distinct from

the programmers who write the code. The advantage of this is that the testers, not

having produced the software themselves, tend to be less protective of it and do not

make the same assumptions as the programmers. Hence they are more likely to

discover its defects. However, it is also common for code to be tested by its authors, or

for responsibility to be split, with testers testing the overall program, while programmers

test the individual classes they write.

For the purpose of this unit we assume that code is tested and retested by the

programmers who wrote it, with the first tests being done as soon as any code has been

written and that testing is a continual activity which goes on in parallel with the

development of the software. This contrasts with the alternative and more traditional

approach in which testing does not begin until all or a large part of the coding is

complete.

There are several different levels of testing.

Unit testing (sometimes called component testing) is the smallest test possible. In

object-oriented programming a unit test is defined as either a test of a single method, or

a test of a single class. We will use the first definition, so our unit tests are tests of single

methods.

You can think of a unit test
as an ‘atom’ of testing,
with larger-scale tests
being built up from atoms.

14 Unit 13 Software testing

TDD also lays stress on
refactoring the code
whenever doing so can
improve the design.
Refactoring was
discussed in Units 6 and 7.

Integration testing is testing in which software components (groups of classes) or

hardware components or both (all having been tested previously in isolation) are

combined and tested together to evaluate the interaction between them.

Regression testing checks that modifications or additions to one part of the code have

not made any other part stop working properly.

System testing checks that the overall system functions correctly according to its

specification.

Acceptance testing checks that the system meets the needs of a customer who has

commissioned the software and provided a specification of their requirements.

We shall consider unit testing in detail and we shall also look at regression testing,

although more briefly. Integration, system and acceptance testing are beyond our scope

and will not be discussed.

1.5 Test-driven development

Traditionally programmers wrote code and then they or someone else tested what they

had done. This is a test-last approach.

In test-driven development (TDD) code is produced in small steps called increments,

each of which involves just a few units. All tests are written before the corresponding

code, so this is a test-first approach. Once the code is written it is tested, any bugs are

fixed and once the code passes the tests we move on to write the tests for the next

increment.

Each time we change the code we do regression testing, which simply consists of

rerunning all the earlier unit tests, in case some other part of the code previously written

and tested has now stopped working because of the changes.

Because the software is built up in small increments, with the system (built so far)

regression tested at the end of every increment, this approach offers considerable

assurance that the software will be trustworthy – although we should not assume it will

be bug free: TDD is only as good as the design of the tests.

TDD can be traced as far back as NASA’s Project Mercury in the 1960s, but it has

recently become much more popular, as part of the eXtreme Programming (XP)

approach to software development. Some studies have indicated that software

developed under TDD may have up to 50 per cent fewer defects than the equivalent

software produced using traditional methods.

In M255 we do not use the full TDD approach, but, as you will see, the unit-testing

methods we introduce in Section 2 are very heavily influenced by the test-first

philosophy.

1.6 Running tests

Once you have designed a set of tests you need a way of running them. In Activity 1 you

did this in the workspace, creating an instance of CompuFrog, sending it a series of
messages, and observing the results.

If we had no workspace – which is the case in most Java development environments –

we would have to write a special program to create the instance of CompuFrog, send the
messages, and output the results using println statements. This program would be an

example of what is called a test harness.

1 Testing: its purpose and background 15

This is fine for a one-off test but hopeless for developing a whole system using test­

driven development. Each new unit test would have to be put together by hand, and to

do the regression testing we would need a way to manage and reload all the previous

unit tests. Since large applications might easily build up to hundreds or thousands (or

more) unit tests, this is impossible without computer assistance.

Fortunately there is software to automate the entire process. The testing framework

JUnit provides all the facilities required to create and manage unit tests. JUnit was

originally introduced by Kent Beck and Erich Gamma and derived from Kent Beck’s

earlier Smalltalk unit-testing framework, SUnit.

Since its inception JUnit has been immensely popular and it is now integrated into most

Java IDEs. The next section explains how to use JUnit in BlueJ.

16 Unit 13 Software testing

Of course, if the
developers are using TDD,
each set of tests will be
written before the
corresponding code!

Introducing JUnit 2

JUnit provides a framework which makes it easy to write tests using a standard format,

and to reuse tests already written. JUnit tests consist of a series of test methods, which

are written in special test classes. Executing the test methods is an automated process;

we do not have to write any kind of harness.

Each time the tests are run, JUnit generates a report listing which lists the tests the

software passed, and which it failed.

Working with JUnit, developers write a small chunk of code, then test it, write some more

code and test it, and so on, building up a collection of test methods. Each time a new

class is added, or an existing class is refactored in any way, the entire set of tests is

rerun, so regression testing is done every time the software is changed. If the software

fails one or more tests, the developers must fix the fault before they write any more code.

The main advantages of this approach are:

(a)	 it is easy for developers to write tests, so code is likely to be tested more thoroughly;

(b)	 errors will be detected early (when they are easier to correct), instead of near the
end of the project (when they will much harder to rectify);

(c)	 regression testing is built in and requires no additional effort;

(d) at each stage there is confidence that the software developed to date has been

properly tested.

2.1 Assertions

JUnit has purposely been designed so we can ignore most of what happens behind the

scenes. All the background information you need is given below.

Most IDEs that incorporate JUnit provide a way of creating test classes automatically,

and of adding incomplete test methods to them. The tests provided are incomplete

because JUnit cannot decide what a test should actually be checking or what steps are

needed to do it. Only we can determine that, using the specification we have been given

for the code.

A test method is built around the input–output model of Subsection 1.3. It begins with an

object or objects in given states, executes the code to be tested, and then decides if the

results are as expected. If so, the code passes the test, otherwise it fails.

To decide whether the code has passed, JUnit evaluates an assertion – a special

statement which says what should be true if the code is correct.

As we have noted above, JUnit does not know what should be true, only we do, so only

we can write the assertions.

In most cases the assertion simply compares an expect result with the actual one. For

example,

assertEqual(13, baker.getDozen());

Note that the form of this assertion is

assertEqual(<expectedValue>, <actualValue>);

There are other types of assertion but assertEqual is the only one we use in M255.

2 Introducing JUnit 17

Once we have written the test methods, we can get the IDE to execute all the test

methods for us as a group. Whenever an assertion is not met, the test concerned has

failed. At the end, JUnit displays a report of which tests have been passed and which

have not.

We can summarise all this as follows. When creating tests using JUnit we:

c use the facilities of the IDE to set up test classes containing outline test methods;

c complete the body of the methods, deciding what the assertions should be;

c use the facilities of the IDE to run the tests and generate a report.

2.2 Enabling JUnit

To use JUnit in BlueJ we must first enable it, since BlueJ’s default is that JUnit is

disabled.

To enable JUnit choose Preferences from BlueJ’s Tools menu and then select the

Miscellaneous tab, as shown in Figure 2.

Figure 2 The Preferences window

Ticking the box labelled ‘Show unit testing tools’ will enable JUnit. Once the Ok button is

clicked you will find that some extra buttons have been added to the left-hand pane of the

BlueJ window, as shown in Figure 3, which shows a window for Unit13_Project_2.

18 Unit 13 Software testing

Figure 3 BlueJ window with JUnit enabled

2.3 Hands-on with JUnit

In the activities that follow we demonstrate how JUnit is used in BlueJ, using an

application involving two classes LightBulb and Switch as an example. Activity 2 is

much longer than the others, because it establishes the groundwork. There is no

discussion of Activity 2, and you will find that not all activities in this unit have

discussions.

ACTIVITY 2

1	 Open Unit13_Project_2 which contains the single class LightBulb; instances of this
class model a light bulb and have a single instance variable status that can be set to
one of two values: "On" or "Off". Double-click on the class icon to open the editor
and look at the code and method comments. The class contains one instance

variable named status, a constructor that initialises status to "Off" and three
instance methods: the comment for on() specifies that it sets the status of the
receiver to "On"; the comment for off() specifies that it sets the status of the
receiver to "Off"; and the comment for getStatus() specifies that it returns the

current value of status.

2	 Ensure that JUnit is enabled (described in Subsection 2.2).

3

4

2 Introducing JUnit 19

You will now create a test class for the class LightBulb.

Right-click on the LightBulb icon and choose Create Test Class from the menu

(Figure 4).

Figure 4 Creating a test class for LightBulb

A new green box representing a test class appears behind and slightly to the upper

right of LightBulb icon (Figure 5). This new ‘shadow’ class will contain the tests for
the class LightBulb. If you drag the LightBulb icon around the window, you will
see that the shadow class follows class LightBulb to its new position.

Figure 5 The LightBulb class shadowed by the LightBulbTest class

Double-click on the LightBulbTest icon to open the editor. Note that the class
simply contains the default constructor and the method setUp()which has an empty

code block. Close the editor window.

Create a test method.

Currently LightBulbTest does not do anything useful, because it contains no useful

test methods. The next step is to add a test method which tests the method on() of

the LightBulb class. To help us do this, BlueJ has a useful JUnit recording facility

which lets us carry out a series of operations, recording them as we go, and then play

them back as a test method, so we will use this recording feature to create a test

method for the method on().

Right-click on the LightBulbTest icon and choose Create Test Method... from the

menu (Figure 6).

Although recording is not
generally available in
JUnit, it has been added
as an extra feature in the
BlueJ implementation.

20 Unit 13 Software testing

Figure 6 Creating a test method

A New Test Method dialogue box will appear. Give the new test method a sensible

name, such as testOn (note the lack of parentheses after the method name). Notice

that the dialogue box tells you that JUnit will begin recording.

Figure 7 The New Test Method window

Click the OK button to continue.

The New Test Method dialogue box closes, returning you to the main BlueJ window.

A red dot and the word recording should now have appeared in the left-hand pane of

the BlueJ window. Underneath this is a button labelled End for when you want to

finish recording, and a button labelled Cancel in case you want to cancel the

recording. A message ‘recording LightBulbTest.testOn()’ is displayed at the bottom

left of the BlueJ window, as shown in Figure 8.

5

2 Introducing JUnit 21

Figure 8 Ready to record a test method

Create a test object.

Before you can test the method on()of LightBulb, you need to create a LightBulb
object to which you can send the corresponding message. BlueJ allows us to create

special test objects for this purpose. Select the LightBulb icon (not the shadow
class behind it) and right-click to bring up the menu (Figure 9).

Figure 9 Creating a new test LightBulb

Choose new LightBulb() from the menu. A dialogue box will appear, asking you to

name the new object. Accept the default name of lightBul1 and click Ok to create

the LightBulb object. The new LightBulb object will appear near the bottom left of

the BlueJ window in a special pane known as the Object Bench (Figure 10).

22 Unit 13 Software testing

Figure 10 A test object has been added to the Object Bench

Right-clicking on the object lightBul1 in the Object Bench brings up a menu of actions

you can perform (Figure 11).

Figure 11 Operations that can be performed on the test object

The first entry, inherited from Object, brings a submenu of methods inherited from class

Object. Next come entries for the three instance methods defined in the class

LightBulb. The option Inspect will allow you to examine the current state of lightBul1,
while Remove will destroy the object. We will be using only the three menu items

corresponding to the instance methods in the class LightBulb.

6

2 Introducing JUnit 23

Record a message-send.

Now that you have created a test object (and recorded this action), you need to send

it some messages to test the method. As each message is sent, it will be recorded in

the LightBulbTest method testOn().

To test the method on() you need to record the actions shown in Table 3.

Table 3 Message-sends needed to test on() in LightBulb

ReasonMessage-send

In the Object Bench, right-click on LightBul1 and select String getStatus() from the

menu (as shown in Figure 11).

A Method Result dialogue box will now open (Figure 12). Do not worry if this looks a

bit complex at first. We will explain everything.

BlueJ’s recording mode for
JUnit is unlike that of a
cassette recorder; if you
do not do anything for a
while there will not be an
embarrassing gap in the
actions when you
‘playback’. BlueJ patiently
waits for you to continue.
So you can go at your own
speed, and take a break
whenever you wish.

1 lightBul1.getStatus() To check the status of lightBul1 before
sending the message on(). The status of
a newly initialised LightBulb instance
should be "Off".

2 lightBul1.on() This is the method we are testing.

3 lightBul1.getStatus() To check the status of lightBul1 after
sending the message on() when the value

of status was "Off". The value of status
should now be "On".

4 lightBul1.on() This is the method we are testing.

5 lightBul1.getStatus() To check the status of lightBul1 after
sending the message on() when the value

of status is already "On". The value of
status should be "On".

Figure 12 The Method Result window for getStatus()

The upper part of the dialogue box shows that the value actually returned from the

message-send lightBul1.getStatus() was the String object "Off".

24 Unit 13 Software testing

The bottom part of the window invites us to include an assertion statement in the test

method. This assertion will have the form

assertEqual(<expectedValue>, lightBul1.getStatus());

and it is up to us to say what the expected value should be. However, BlueJ offers a

suggestion: that the expected value is the same as the actual one it knows about.

In this case, the actual result is indeed the correct one, so we can accept the

suggestion and click the Close button. The test statement

assertEquals("Off", lightBul1.getStatus());

will now be inserted in the test method.

not

Two wrongs do not make a right!

It is vital that you never accept the assertion that JUnit suggests without making sure

that the actual value and the expected one match.

If the actual result is in fact the same as the expected one, something is wrong

with the code. You must cancel the recording and rectify the fault before continuing.

Simply clicking Close would be disastrous, because it would build in an assertion

that uses an incorrect expected value. As long as the code continued to produce the

same erroneous value the assertion would evaluate to true. We would then have a

situation in which the code was wrong but appeared correct every time we tested it,

because the test was wrong as well and the two errors cancelled each other!

The fault would then be virtually undetectable and later we would be faced with a

baffling situation in which the program passed all our tests but still functioned

incorrectly.

So far you have only recorded the first message-send from Table 3. Now record the

second, by right-clicking on the object LightBul1 and choosing void on(). This time

the Method Result window will not appear, because on() does not return a value.

If on()has worked correctly, the status of the LightBulb will have changed to "On".
Right-click on LightBul1 again and choose String getStatus() to send the third message

of Table 3. Since this returns a value, the Method Result window will open (Figure 13).

Figure 13 The Method Result window again

2 Introducing JUnit 25

The actual value returned is "On", which agrees with the expected value. You can

therefore click Close to accept the suggested assertion.

Now record the fourth message-send from Table 3, by right-clicking on the object

LightBul1 and again choosing void on().

Finally record the fifth message-send from Table 3, by right-clicking on the object

LightBul1 and again choosing String getStatus().The value returned is "On", which

is what we would expect so click Close to accept the suggested assertion.

This completes the recording of the testOn()method, so click the End button in the

left-hand pane of the BlueJ window. There may be a brief pause as the test class is

automatically compiled. Once compilation is complete, the object LightBul1 will

disappear from the Object Bench – do not worry, it has simply been incorporated into

the code of the method testOn() in LightBulbTest.

7	 Look at a test method.

JUnit tests are simply instance methods. Double-click on LightBulbTest to open
the editor, then locate the method testOn(), which should be as follows.

public void testOn()
{

LightBulb lightBul1 = new LightBulb();

assertEquals("Off", lightBul1.getStatus());

lightBul1.on();

assertEquals("On", lightBul1.getStatus());

lightBul1.on();

assertEquals("On", lightBul1.getStatus());

}

When you have finished close the editor window.

8 Run your first JUnit test.

With testOn() successfully recorded, it is time to run the test. In the BlueJ window

right-click on the LightBulbTest icon and select Test On to run the test.

Figure 14 Selecting testOn from LightBulbTest’s pop-up menu

26 Unit 13 Software testing

9 View the test results.

The result of the test will appear at the bottom left of the BlueJ window. You should

see testOn succeeded – good news, your class has passed this test!

For a more detailed test report, go to BlueJ’s View menu and choose Show Test

Results at the bottom of the menu. The Test Results window will now open.

Failures versus errors

Failures
A grey cross indicates that
an assertion failed; in
other words, the actual
value did not match the
expected one. Failures are
anticipated, in the sense
that we are testing for
them with our assertions.

Errors
A red cross indicates that
an exception (such as an
ArrayIndexOutOf
BoundsException)
occurred.

Figure 15 The testOn() method has passed

In the Test Results window the top pane contains the list of tests completed.

Successful tests are marked with a green tick, unsuccessful tests have a small cross

next to their name.

The lower pane provides a summary of the results of testing. A green bar across the

middle of the window shows that the tests have been completed successfully. A red

bar indicates that an error or failure occurred in the testing process. The number of

runs (i.e. test methods executed), errors and failures are also reported.

If any of your tests fail you can click on the name of the test in the top pane to learn

more about the failure. Information about the failure appears in the bottom pane. We

will look at this in the next activity.

Click Close to exit the Test Results window.

Well done! You have successfully written and run a JUnit test for the method on().

In case you had any difficulties with this activity, the class LightBulbTest as developed
so far has been added to Unit13_Project_3.

The process of Activity 2 may have seemed a little long winded but that was mainly

because of the explanations. Once you are familiar with creating tests it is quick and

easy to do. Your next task is to create a test for off()and you will probably be surprised

how simple this is.

2 Introducing JUnit 27

SAQ 1

What sequence of messages will you need to send to test the method off()?

ANSWER ...

To test off() you need the message-sends shown in Table 4.

Table 4 Message-sends needed to test off() in LightBulb

ReasonMessage-send

1 lightBul1.getStatus() To check the status of lightBul1 before
sending the message off(). The status of
a newly initialised LightBulb instance
should be "Off".

2 lightBul1.off() This is the method we are testing.

3 lightBul1.getStatus() To check the status of lightBul1 after
sending the message off()when the value
of status was "Off". The value of status
should still be "Off".

4 lightBul1.on() The status of a lightBul1 should still be
"Off", so we must change status to "On"
for another test of off().

5 lightBul1.getStatus() To check the status of lightBul1 is now
"On".

6 lightBul1.off() This is the method we are testing.

7 lightBul1.getStatus() To check the status of lightBul1 after
sending the message off()when the value
of status is "On". The value of status
should now be "Off".

ACTIVITY 3

Creating a test for the method off() will follow exactly the same steps as creating the

test for on(), so you should refer back to Activity 2 to remind yourself what to do.

Remember you will need to create a test method called testOff() and a test object to

send messages to. Open Unit13_Project_3. Now record the test for off(), following the
same process as for on() and using the message-sends listed in Table 4.

When you have finished recording the test, run it as before. Choose Show Test Results in

the View menu to open the Test Results window. You should find that the method passes

the test without any errors or failures.

28 Unit 13 Software testing

Note that if the Test
Results window is not
visible and the Show Test
Results option in the View
menu is already ticked,
then you will need to
restore the minimised Test
Results window from your
taskbar.

DISCUSSION OF
ACTIVITY 3

The code for the testOff() method should look like the following.

public void testOff()
{

LightBulb lightBul1 = new LightBulb();

assertEquals("Off", lightBul1.getStatus());

lightBul1.off();

assertEquals("Off", lightBul1.getStatus());

lightBul1.on();

assertEquals("On", lightBul1.getStatus());

lightBul1.off();

assertEquals("Off", lightBul1.getStatus());

}

In case you had any difficulties with this activity, the class LightBulbTest as developed
so far as been added to Unit13_Project_4.

2.4 A method that fails its test

Now that you have successfully tested testOn() and testOff(), you have written a
complete unit test for the class LightBulb. The next activity will extend your knowledge
of working with JUnit, as we continue to use the class LightBulb.

ACTIVITY 4

Open Unit13_Project_5. You will recognise LightBulb and LightBulbTest from

Activities 2 and 3, but we have made a slight change to the code for the method off() of

the class LightBulb!

Open the class LightBulb and examine the code for the method off(). We have

introduced a deliberate error. The comment for the method off() specifies that it should

set the status of the light bulb to "Off" but in our intentionally faulty version status is
set to "Not working" instead. You will see how testing with JUnit enables us to discover
the fault and helps pinpoint which part of the code is responsible.

The tests in LightBulbTest are unchanged from those you created in Activities 2 and 3.

You may recall that the method testOff() contains an assertion that, following the

message off(), the status of the LightBulb object should be "Off". So when we test
our (faulty) class LightBulb, JUnit should report that it fails testOff().

1 Run the tests.

Right-click on the LightBulbTest icon and choose Test All. The Test Results

window will open. The red bar across the middle of the window shows that at least

one of the tests has failed. In the top pane a green tick indicates that

LightBulbTest.testOn() was completed successfully, but the grey cross next to

LightBulbTest.testOff tells us that this test failed. JUnit reports 2 Runs, 0 Errors

and 1 Failure (the result of our deliberate mistake!)

For more information about the failure, click on LightBulbTest.testOff in the top pane

of the window. Detailed information will appear in the lower pane.

2 Introducing JUnit 29

Figure 16 The Test Results window showing that the method testOff() failed. Detailed
information about the cause of failure is displayed in the lower pane

2 Find the cause of the error.

The first line of the message in the Test Results window (Figure 16) is extremely

useful in determining the cause of the error. It explains that it expected to receive the

value "Off" from a method, but instead received the value "Not working". Since this
value differs from that asserted in the test, the method failed the test.

Click on the Show Source button (at the bottom left of the Test Results window). The

source code for the testOff()method will appear in a new window, with the line of code

that caused the failure highlighted in yellow. In this case the line responsible for the failure is

assertEquals("Off", lightBul1.getStatus());

This statement asserts that the result of sending the message getStatus() to

lightBul1 should equal "Off", the value expected from the specification. This was not

the case, because getStatus() returned "Not working" instead. So the assertion failed.

By examining the position of this line in the test program we can determine that the

value of status was "Not working" immediately after LightBul1 was sent the message

off(). Therefore the first place to look for a possible error should be in the method off().

3 Correct the code.

In the BlueJ window double-click on the LightBulb icon to open the editor. Find the
method off() and edit it so that it becomes:

public void off()

{

this.status = "Off";

}

Recompile the class and close the editor. Right-click on LightBulbTest and choose
Test All. This time all the tests should be passed.

30 Unit 13 Software testing

2.5 Test fixtures

When we created tests for methods of class LightBulb we created individual instances
of LightBulb for each test method in the class LightBulbTest. If we had many test

methods this would lead to lots and lots of duplicated coded. To avoid this we can use a

test fixture.

A test fixture is a set of objects that are created by a special set-up method. Using a test

fixture means that individual test methods no longer need to create test objects. Every

time a test method is executed, the set-up method is automatically called first, and the

test method simply uses the objects in the fixture.

Note that new test objects are created afresh for each test method, so different test

methods do not share the same objects.

A test fixture is used in the next activity where we introduce a new class Switch.

ACTIVITY 5

Open Unit13_Project_6 which contains the classes LightBulb, LightBulbTest and
Switch. The class Switch is new and models a switch that controls a light bulb. Each

Switch object has a LightBulb object which it is responsible for turning on or off.

If you inspect the code for the Switch class you will find that it has an instance variable
which is declared as private LightBulb bulb. This makes Switch dependent on
LightBulb. So if you change any of the code in the class LightBulb then the classes
LightBulb and Switch must both be recompiled.

In this activity you will create a test fixture for a new test class, SwitchTest. Right-click
on Switch and choose Create Test Class from the menu. The icon of a new test class

called SwitchTest will appear in the BlueJ window.

Before we can proceed further, we must create some test objects. We shall need a switch

on which to perform our tests, and since each Switch object controls a LightBulb
object, we will need a light bulb as well.

First create an instance of LightBulb. Right-click on the LightBulb icon and choose
new LightBulb(), accepting the default name lightBul1. The new LightBulb object will
be displayed on the Object Bench.

Now create an instance of Switch. Right-click on the Switch icon and choose
new Switch(LightBulb bulb). A Create Object dialogue box will appear, as in Figure 17.

Figure 17 The Create Object dialogue box that appears when a new instance of Switch is
created, requesting the name of an instance of LightBulb that will be passed to the Switch
constructor

2 Introducing JUnit 31

The new Switch object (in this case switch1) must be linked to a particular LightBulb Make sure you type

object, so we need to pass a LightBulb argument to the Switch constructor. We have lightBul1, not lightBull.

already created lightBul1 for this purpose. Type lightBul1 into the new Switch field
and click the Ok button. Now switch1 object will join lightBul1 on the Object Bench.

Once we have our two test objects we are ready to create a test fixture. Right-click on

the icon for the SwitchTest class and choose Object Bench to Test Fixture. The two

objects on the Object Bench disappear and become part of SwitchTest! If you open
the editor on SwitchTest you will see the following code.

public class SwitchTest extends junit.framework.TestCase
{

private LightBulb lightBul1;
private Switch switch1;

/**
* Default constructor for test class SwitchTest
*/

public SwitchTest()

{

super();

}

/**
* Sets up the test fixture. Automatically
* called before every test case method.
*/

protected void setUp()

{

lightBul1 = new LightBulb();

switch1 = new Switch(lightBul1);

}

}

If you wish to amend or extend the test fixture it is possible to put the objects back on the

bench. Right-click on the icon for the SwitchTest class and choose Test Fixture to
Object Bench. The objects will reappear. If you then try to reuse these test objects as a

test fixture (by right-clicking on SwitchTest and selecting Object Bench to Test Fixture) a

dialogue box, like the one in Figure 18, will appear. This warns you that the unit test class

already has a test fixture declared in it, and that proceeding will cause that text fixture to

be replaced. The dialogue box gives you the opportunity to cancel the operation or to

replace the test fixture with the objects currently on the object bench.

Now you are ready to create tests for the class Switch.

32 Unit 13 Software testing

Figure 18 The dialogue box that appears when an attempt is made to add a test fixture to a class
that already contains a test fixture

In case you had any problems with this activity, the class SwitchTest and its test fixture
has been added to Unit13_Project_7.

Unit tests for the Switch class
The class Switch has two methods: switchOn() and switchOff() which relay the

messages On() and Off(), respectively, to a LightBulb object, causing the latter’s
status to change. Therefore, once the Switch class has been tested, we will no longer
need to send On() and Off()messages to LightBulb objects directly. Instead we will
be able to send the messages switchOn() or switchOff() to an instance of Switch
instead.

The messages we need to send to test switchOn() are shown in Table 5. Notice that

more than one receiver is now involved.

Table 5 Message-sends needed to test switchOn() in Switch

ReasonMessage-send

1 lightBul1.getStatus() To check the status of lightBul1 before
sending the message switchOn(). The
status of a newly initialised LightBulb
instance should be "Off".

2 switch1.switchOn() This is the method we are testing.

3 lightBul1.getStatus() To check the status of lightBul1 after
sending the message switchOn() to

switch1. The status should now be "On".

4 switch1.switchOn() This is the method we are testing.

5 lightBul1.getStatus() To check the status of lightBul1 after
sending the message switchOn() to

switch1 when the value of the status of
lightBul1 is already "On". The value of
status should still be "On".

SAQ 2

What sequence of messages will you need to send to test the method switchOff()?

ANSWER ...

To test switchOff() you need the message-sends shown in Table 6.

2 Introducing JUnit 33

Table 6 Message-sends needed to test switchOff() in Switch

ReasonMessage-send

1 lightBul1.getStatus() To check the status of lightBul1 before
sending the message switchOff(). The
status of a newly initialised LightBulb
instance should be "Off".

2 switch1.switchOff() This is the method we are testing.

3 lightBul1.getStatus() To check the status of lightBul1 after
sending the message switchOff() to

switch1 when the value of the status of
lightBul1 is already "Off". The value of
status should still be "Off".

4 lightBul1.on() The status of a lightBul1 should still be
"Off", so we must change status to "On"
for another test of switchOff().

5 lightBul1.getStatus() To check the status of lightBul1 is now
"On".

6 switch1.switchOff() This is the method we are testing.

7 lightBul1.getStatus() To check the status of lightBul1 after
sending the message switchOff() to

switch1 when the value of the status of
lightBul1 is "On". The value of status
should now be "Off".

Notice that in step 4 we send an on()message to the LightBulb object directly rather
than sending a switchOn() message to the Switch object. We did this to make the

tests of switchOff() and switchOn() completely independent of each other. It is

debatable whether the message-send in step 5 is needed as it could be argued that the

method on() of LightBulb has already been tested.

ACTIVITY 6

Open Unit13_Project_7 to which the class SwitchTest has been added.

1 Right-click on the SwitchTest icon and choose Create Test Method. Give the

method a suitable name, testSwitchOn, say. The objects switch1 and lightBul1

will reappear on the Object Bench, allowing you to send them messages.

Record the message-sends given in Table 5. When the Method Results window

appears in steps 1, 3 and 5, check that the actual results match the expected ones

before clicking Close to accept the assertion.

When you have finished, click End to finish recording (you will notice that switch1

and lightBul1 will disappear from the Object Bench).

Run your new test by right-clicking on the SwitchTest icon and choosing Test

SwitchOn. The test should run without any errors or failures.

2	 Now record the corresponding test for the method switchOff() (using the

message-sends given in Table 6). Again, when the Method Results window appears

in steps 1, 3, 5 and 7, check that the actual results match the expected ones.

Run your new test by right-clicking on SwitchTest and choosing Test SwitchOff. The

test should run without any errors or failures.

3

34 Unit 13 Software testing

Finally check the code that has been generated in SwitchTest for the methods

switchOn() and switchOff().

DISCUSSION OF
ACTIVITY 6

The code that has been generated in SwitchTest for the methods switchOn() and

switchOff() should be as follows.

public void testSwitchOn()
{

assertEquals("Off", lightBul1.getStatus());

switch1.switchOn();

assertEquals("On", lightBul1.getStatus());

switch1.switchOn();

assertEquals("On", lightBul1.getStatus());

}

public void testSwitchOff()

{

assertEquals("Off", lightBul1.getStatus());

switch1.switchOff();

assertEquals("Off", lightBul1.getStatus());

lightBul1.on();

assertEquals("On", lightBul1.getStatus());

switch1.switchOff();

assertEquals("Off", lightBul1.getStatus());

}

In case you had any problems with this activity, the test methods have been added to

SwitchTest in Unit13_Project_7_Completed.

2.6 Hand coding JUnit tests

Relatively few IDEs currently support the recording of test methods; hand coding is still

the most common way of writing test methods. Therefore to prepare you for writing JUnit

tests in other IDEs, you will hand code an extremely trivial test class, a test method and a

test fixture for the class Account. The purpose of the test method is to test the method

setHolder() of Account.

Here is the initial comment for the method setHolder().

/**
* Set the holder of the receiver to the value of the argument accountHolder
*/

SAQ 3

What sequence of messages do you think you would need to send to an instance of

Account referenced by a variable acc to test the method setHolder()?

ANSWER ...

The message-sends shown in Table 7 are needed.

2 Introducing JUnit 35

Table 7 Message-sends needed to carry out the unit testing of setHolder()

Message-send Reason

1 acc.getHolder() To check the holder of acc before sending
a setHolder() message. The holder of a
newly initialised Account instance should
be "".

2 acc.setHolder("Fred") Attempt to set the holder to some string.

3 acc.getHolder() To check the holder of acc after sending
the message setHolder(). The value of
holder should be "Fred".

ACTIVITY 7

Open Unit13_Project_8 which contains the class Account. Click the New Class... button
on the left-hand side of the BlueJ window. The familiar Create New Class dialogue box

will appear. Give the new class a suitable name (such as AccountTest), then select the
Unit Test radio button so that the class created will be a test class (Figure 19).

Figure 19 Creating a test class

1	 Click the Ok button to close the dialogue box. The icon for the new test class will

appear in the main BlueJ window. Note that rather than being attached to the class

Account, the class AccountTest is represented by a totally separate icon that can
be dragged around the BlueJ window independently of the Account icon. This will
make no difference to the efficacy of the test class, it is simply an idiosyncracy of

BlueJ’s implementation of JUnit.

2	 Create the test fixture for AccountTest.

Before you can proceed further, you need to create the test fixture for the class

AccountTest. Double-click on the icon for the class AccountTest to open the editor.

Declare a private instance variable called acc of type Account.

36 Unit 13 Software testing

Write the code in the method setUp() to assign a new Account object to the
instance variable acc.

3 Write the test method.

Write a method with the header:

public void testSetHolder()

The code should carry out the steps outlined in Table 7. For message-sends 1 and 3,

rather than simply writing acc.getHolder(), you will need to write an assert
statement that tells JUnit what value you expect getHolder() to return. For

example, if in message-send 2 you sent the message setHolder("Fred") to acc,
message-send 3 should be:

assertEquals("Fred", acc.getHolder());

Once you have written the method, attempt to compile the class. Once the class

compiles you are ready to run your test.

4 Run the test.

Right-click AccountTest and choose Test Holder or Test All from the pop-up menu.

The unit test should succeed, with no errors or failures.

An alternative way to run the test is to click the Run Tests button in the left-hand

margin on the BlueJ window. This will run all the test methods in all the test classes in

the project (although there is only one test class in this case, of course).

Congratulations! You have successfully hand coded a test class. You are now ready to
use JUnit.

DISCUSSION OF
ACTIVITY 7

The code for the class AccountTest should be as follows.

public class AccountTest extends junit.framework.TestCase

{

private Account acc;

/**
* Default constructor for test class AccountTest
*/

public AccountTest()

{

super();

}

/**
* Sets up the test fixture. Automatically
* called before every test case method.
*/

protected void setUp()

{

acc = new Account();

}

public void testSetHolder()

{

assertEquals("", acc.getHolder());

acc.setHolder("Fred");

assertEquals("Fred", acc.getHolder());

}

}

2 Introducing JUnit 37

This activity was, of course, extremely simple, but it demonstrated how you might hand

code a test class and a test fixture. Indeed you may at times find it quicker and easier to

hand code test fixtures and test methods once you become more confident with JUnit.

In case you had any problems with this activity, the class AccountTest has been added
to Unit13_Project_8_Completed.

38 Unit 13 Software testing

Unit testing the class 3 CompuFrog
We now return to the class CompuFrog you encountered in Subsection 1.2. First you will
retest its method add() using JUnit. As before, the method fails the test. Once you have

fixed the fault and the method passes the test, we show you how to extend the

arithmetical capabilities of compufrogs. We will work incrementally, writing and running

unit tests as we go.

ACTIVITY 8

Open the project Unit13_Project_9 which contains the class CompuFrog. Your task in this
activity is to create a test class for CompuFrog called CompuFrogTest with a test method

called testAdd() to test the method add() of CompuFrog.

1 Right-click on the CompuFrog icon and choose Create Test Class. The icon for
CompuFrogTest will appear in the main BlueJ window.

2 Create a test fixture (which will be an instance of CompuFrog) for the class
CompuFrogTest. You can do this in two ways:

c by hand coding the variable declaration and the code for the setUp()method, as

you did in Activity 7, or

c	 by right-clicking on the CompuFrog icon, selecting new CompuFrog from the

menu, accepting the name compuFro1 and pressing Ok; then right-clicking on

the CompuFrogTest icon and choosing Object Bench to Test Fixture.

3	 Table 8 shows the test plan that we devised for the method add() of CompuFrog in
Section 1.

Table 8 Test cases for the method add() of CompuFrog

case

1st

argument

2nd

argument

Expected

result

RationaleTest

1 0 0 0 Both numbers on lower boundary

2 –1 –1 –1 Both numbers outside lower

boundary

3 0 1 1 First number on lower boundary,

second close but inside lower

boundary

4 0 –1 –1 First number on lower boundary,

second close but outside lower

boundary

5 1 0 1 First number close but inside lower

boundary, second number on lower

boundary

6 –1 0 –1 First number close but outside lower

boundary, second number on lower

boundary

3 Unit testing the class CompuFrog 39

7 1 –1 –1 First number close but inside lower

boundary, second number close but

outside lower boundary

8 –1 1 –1 First number close but outside lower

boundary, second number close but

inside lower boundary

9 1 1 2 Both numbers near but inside lower

boundary

10 5 7 12 Typical values near middle of range

11 8 8 16 Both numbers near but inside upper

boundary

12 8 9 17 First number close but inside upper

boundary, second number on upper

boundary

13 10 9 –1 First number close but outside upper

boundary, second number on upper

boundary

14 9 8 17 First number on upper boundary,

second close but inside upper

boundary

15 9 10 –1 First number on upper boundary,

second close but outside upper

boundary

16 9 9 18 Both numbers on upper boundary

17 10 10 –1 Both numbers outside upper

boundary

18 8 10 –1 First number close but inside upper

boundary, second number close but

outside upper boundary

19 10 8 –1 First number close but outside

upper boundary, second number

close but inside upper boundary

Using the above table, we want you to create a method called testAdd() for

CompuFrogTest that will test the method add() of CompuFrog. You can do this by
using BlueJ’s recording facility or by hand coding.

4	 Once you have written the test method and the class CompuFrogTest has
recompiled successfully, run the unit test. The test should show that the method add()
fails! Note that although both tests 12 and 16 should fail, the execution of a test method

ceases as soon as an assertion fails, hence JUnit only reports the failure of test 12.

You will now fix the bug that caused the test to fail.

5 Open the class CompuFrog and inspect the method add().

The error is in line //1, where the programmer has used the condition (y <9)when it

should be (y <= 9). Correct this. Close the editor and run the test again. This time it

should pass with flying colours! (If it does not, go back and check the code.)

40 Unit 13 Software testing

DISCUSSION OF
ACTIVITY 8

Here is our code for the class CompuFrogTest.

public class CompuFrogTest extends junit.framework.TestCase
{

private CompuFrog compuFro1;

/**
* Default constructor for test class CompuFrogTest
*/

public CompuFrogTest()

{

super();

}

/**
* Sets up the test fixture. Automatically
* called before every test case method.
*/

protected void setUp()

{

compuFro1 = new CompuFrog();

}

public void testAdd()
{

assertEquals(0, compuFro1.add(0, 0));

assertEquals(-1, compuFro1.add(-1, -1));

assertEquals(1, compuFro1.add(0, 1));

assertEquals(-1, compuFro1.add(0, -1));

assertEquals(1, compuFro1.add(1, 0));

assertEquals(-1, compuFro1.add(-1, 0));

assertEquals(-1, compuFro1.add(1, -1);

assertEquals(-1, compuFro1.add(-1, 1);

assertEquals(2, compuFro1.add(1, 1));

assertEquals(12, compuFro1.add(5, 7));

assertEquals(16, compuFro1.add(8, 8));

assertEquals(17, compuFro1.add(8, 9));

assertEquals(-1, compuFro1.add(10, 9));

assertEquals(17, compuFro1.add(9, 8));

assertEquals(-1, compuFro1.add(9, 10));

assertEquals(18, compuFro1.add(9, 9));

assertEquals(-1, compuFro1.add(10, 10));

assertEquals(-1, compuFro1.add(8, 10));

assertEquals(-1, compuFro1.add(10, 8));

}

}

In case you had any problems with this activity, the class CompuFrogTest and the
corrected method add() have been added to Unit13_Project_10.

3 Unit testing the class CompuFrog 41

In the next activity you will give compufrogs the ability to multiply.

ACTIVITY 9

Open the project Unit13_Project_10 which contains the class CompuFrog and the test
class CompuFrogTest as so far developed.

The class CompuFrog is to have a new method with the following header and initial

comment:

/**
* The method takes two integer arguments x and y. If these
* arguments are one-digit positive integers (ie integers
* between 0 and 9 inclusive) the method sets the position to
* the product (multiplication) of the two arguments and then
* returns that product. Otherwise the method simply returns -1.
*/

public int times(int x, int y)

1	 Begin by writing (on paper) a suitable set of black box tests for the method. The test

cases can be similar to those for add() shown in Table 8, except of course the

expected values will be different (remember to replace add() by times()!).

2	 Once you have sketched out the tests, write the method, taking add() as a guide,

including the code that checks that the inputs are both single digits.

3	 Add a new test method called testTimes() to CompuFrogTest.

4	 Recompile and press the Run button. If all goes well, you will see confirmation that

the method has passed both tests. If testTimes() fails, go back and check the

coding. You can find our version of the method in the discussion below.

DISCUSSION OF
ACTIVITY 9

1	 Table 9 shows our test plan.

Table 9 Test cases for the method times() of CompuFrog

case

1st

argument

2nd

argument

Expected

result

RationaleTest

1 0 0 0 Both numbers on lower boundary

2 –1 –1 –1 Both numbers outside lower

boundary

3 0 1 0 First number on lower boundary,

second close but inside lower

boundary

4 0 –1 –1 First number on lower boundary,

second close but outside lower

boundary

5 1 0 0 First number close but inside lower

boundary, second number on lower

boundary

6 –1 0 –1 First number close but outside lower

boundary, second number on lower

boundary

42 Unit 13 Software testing

7 1 –1 –1 First number close but inside lower

boundary, second number close but

outside lower boundary

8 –1 1 –1 First number close but outside lower

boundary, second number close but

inside lower boundary

9 1 1 1 Both numbers near but inside lower

boundary

10 5 7 35 Typical values near middle of range

11 8 8 64 Both numbers near but inside upper

boundary

12 8 9 72 First number close but inside upper

boundary, second number on upper

boundary

13 10 9 –1 First number close but outside

upper boundary, second number on

upper boundary

14 9 8 72 First number on upper boundary,

second close but inside upper

boundary

15 9 10 –1 First number on upper boundary,

second close but outside upper

boundary

16 9 9 81 Both numbers on upper boundary

17 10 10 –1 Both numbers outside upper

boundary

18 8 10 –1 First number close but inside upper

boundary, second number close but

outside upper boundary

19 10 8 –1 First number close but outside

upper boundary, second number

close but inside upper boundary

3 Unit testing the class CompuFrog 43

2 Our version of the times() method for the CompuFrog class is as follows.

/**
* The method takes two integer arguments x and y. If these
* arguments are one-digit positive integers (ie integers
* between 0 and 9 inclusive) the method sets the position to
* the product (multiplication) of the two arguments and then
* returns that product. Otherwise the method simply returns -1.
*/

public int times(int x, int y)

{

if (((x >= 0) && (x <= 9)) && ((y >= 0) && (y <= 9)))
{

int product = x * y;

this.setPosition(product);

return product;

}
else
{

return -1; // one or more inputs not single-digit
}

}

3 Our version of the method testTimes() for the CompuFrogTest class is as follows.

public void testTimes()
{

assertEquals(0, compuFro1.times(0, 0));

assertEquals(-1, compuFro1.times(-1, -1));

assertEquals(0, compuFro1.times(0, 1));

assertEquals(-1, compuFro1.times(0, -1));

assertEquals(0, compuFro1.times(1, 0));

assertEquals(-1, compuFro1.times(-1, 0));

assertEquals(-1, compuFro1.times(1, -1));

assertEquals(-1, compuFro1.times(-1, 1));

assertEquals(1, compuFro1.times(1, 1));

assertEquals(35, compuFro1.times(5, 7));

assertEquals(64, compuFro1.times(8, 8));

assertEquals(72, compuFro1.times(8, 9));

assertEquals(-1, compuFro1.times(10, 9));

assertEquals(72, compuFro1.times(9, 8));

assertEquals(-1, compuFro1.times(9, 10));

assertEquals(81, compuFro1.times(9, 9));

assertEquals(-1, compuFro1.times(10, 10));

assertEquals(-1, compuFro1.times(8, 10));

assertEquals(-1, compuFro1.times(10, 8));

}

In case you had any problems with this activity, the class CompuFrogTest and the
method times() have been added to Unit13_Project_11.

44 Unit 13 Software testing

3.1 Refactoring the class CompuFrog

As you have been working on the methods add() and times() of CompuFrog, it might

have struck you that these methods exhibit code duplication – both methods use the

same condition (((x >= 0) && (x <= 9)) && ((y >= 0) && (y <= 9))) to check that the

arguments are positive single-digit integers. This is not very elegant and a much better

solution would be to factor out the redundant code into a helper method which checks

that an integer is a positive single digit. This is precisely what you will do in the next

activity.

ACTIVITY 10

In this activity you will improve the design of CompuFrog by refactoring. Open the project

Unit13_Project_11 which contains the class CompuFrog as so far developed, including
the test class and the tests for add() and times().

Here is the method header and initial comment for a helper method that will enable you to

get rid of the code duplication in the methods add() and times() of CompuFrog.

/**
* The method takes a single argument aNumber. If aNumber
* is a one-digit positive integer (ie an integer
* between 0 and 9 inclusive) the method returns true.
* Otherwise the method returns false.
*/

public boolean isInRange(int aNumber)

Note that the method has been declared as public although we have previously stated
that helper methods should usually be declared as private. The reason for this is to
allow testing – if isInRange()were to be declared as private we would not be able to
test it from the class CompuFrogTest. The method can be re-declared as private once
all testing is complete.

1	 Open the editor on the CompuFrog class and write the method

isInRange(int aNumber).

2	 Once you have written the method and got the CompuFrog class to compile, right­

click on the CompuFrogTest icon, choose Create Test method... and record a new

test testIsInRange. Send the message isInRange() seven times, with the

successive arguments -1, 0, 1, 5, 8, 9, 10, accepting the Method Results false,
true, true, true, true, true, false, respectively. (If you get any different results
you will need to check the coding of your method.) Press End to finish recording.

Now open CompuFrogTest and check that the method testIsInRange() contains

all seven tests. If any are missing, add them manually.

3	 Making sure that CompuFrogTest is compiled, right-click on the CompuFrogTest icon
and choose Test IsInRange. If all is well you should find that isInRange() passes

the test. If not, go back and look for the error.

4	 Change the methods add() and times() so they now check the arguments x and y
using isInRange() instead of the complicated condition

(((x >= 0) && (x <= 9)) && ((y >= 0) && (y <= 9))).

5	 Rerun all the tests you have developed so far for CompuFrog by pressing Run Tests.
If you have made the modifications correctly all the tests should be passed. If any test

is failed, re-examine the code, correct it and retest.

3 Unit testing the class CompuFrog 45

Note you have not needed to change testAdd() or testTimes() in any way even

though you have made changes to both add() and times(). This is because the
changes you made did not change the specifications of the methods; they both still take

the same types of argument and return values of the same type as before. Once test

methods are written, they can be run again and again without alteration, unless the

specifications of the methods under test are changed.

Our version of isInRange() and the changes to add() and times() appear in the

discussion below.

DISCUSSION OF
ACTIVITY 10

Our version of isInRange() is as follows (the comment is left out for brevity).

public boolean isInRange(int aNumber)

{

return ((aNumber >= 0) && (aNumber <= 9));

}

In the methods add() and times() we replaced the condition

if (((x >= 0) && (x <= 9)) && ((y >= 0) && (y <= 9)))

with

if (this.isInRange(x) && this.isInRange(y))

In case you had any problems with this activity, the class CompuFrogTest and the
corrected method isInRange() have been added to Unit13_Project_11_Completed.

Now that you have refactored the class CompuFrog, any other arithmetic methods you

might write in the future can just use isInRange() instead of doing the checking

themselves. As well as leading to better factored code, this also means that if

compufrogs one day learn to calculate with two-digit numbers, only isInRange()would

need to be altered, instead of having to change all the arithmetic methods. Of course

you would have to alter the test methods as well.

SAQ 4

Is there any further refactoring that could be done for the class CompuFrog?

ANSWER ...

Yes, both add() and times() have the condition

(this.isInRange(x) && (this.isInRange(y))

so we could refactor further and introduce another helper method as follows:

public bool bothInRange(int num1, int num2)

{

return (this.isInRange(num1) && (this.isInRange(num2));

}

The condition in both add() and times() would then be simplified to:

if (this.bothInRange(x, y))

46 Unit 13 Software testing

Exercise 3

If compufrogs learnt to handle numbers up to 99, what test cases would you then use for

the method add()? Your answer should be a description which is similar to Table 8. You

are not expected to carry out any tests.

Solution ...

Table 10 shows our test cases.

Table 10 Test cases for an updated method add() of CompuFrog

case

1st

argument

2nd

argument

Expected

result

RationaleTest

1 0 0 0 Both numbers on lower boundary

2 –1 –1 –1 Both numbers outside lower boundary

3 0 1 1 First number on lower boundary, second close but inside lower

boundary

4 0 –1 –1 First number on lower boundary, second close but outside lower

boundary

5 1 0 1 First number close but inside lower boundary, second number

on lower boundary

6 –1 0 –1 First number close but outside lower boundary, second number

on lower boundary

7 1 –1 –1 First number close but inside lower boundary, second number

close but outside lower boundary

8 –1 1 –1 First number close but outside lower boundary, second number

close but inside lower boundary

9 1 1 2 Both numbers near but inside lower boundary

10 47 53 100 Typical values near middle of range

11 98 98 196 Both numbers near but inside upper boundary

12 98 99 197 First number close but inside upper boundary, second number

on upper boundary

13 100 99 –1 First number close but outside upper boundary, second number

on upper boundary

14 99 98 197 First number on upper boundary, second close but inside upper

boundary

15 99 100 –1 First number on upper boundary, second close but outside

upper boundary

16 99 99 198 Both numbers on upper boundary

17 100 100 –1 Both numbers outside upper boundary

18 98 100 –1 First number close but inside upper boundary, second number

close but outside upper boundary

19 100 98 –1 First number close but outside upper boundary, second number

close but inside upper boundary

4 More about designing test data 47

More about designing test data 4

In this section we take a more systematic look at the question of how to choose an

adequate set of test cases

4.1 Boundary and computation errors

Imagine that an assignment has a total of 80 marks available and consider a very simple

program which takes an assignment score out of 80 and scales it to a percentage (i.e. a

raw score of 80 would scale to 100 per cent). Scores not in the range 0 to 80 are rejected

as invalid, with a warning to the user.

Imagine that this is an existing product which we need to test before it is distributed and

that we do not have access to the source code.

What test cases are we going to use? As we discussed previously, the only way to be

completely sure that the program is correct is to test every possible input. However the

number of possibilities is far too large for this to be feasible and we need a way to pick a

fairly small set of cases that will nevertheless have a high probability of detecting errors

in the program.

To understand how to do this, we think about the possible inputs and the ways in which

things could go wrong so that the program would produce the wrong answer. In very

general terms, when a program receives an input, a condition is evaluated to decide

which branch of the program should be taken. Then, when this branch is followed, some

particular action is carried out.

In the example we are considering, the condition would be something like whether the

input is valid; if it is, the action should be to convert it to a percentage and return the

result; otherwise the program should warn the user that the data was not valid.

Now remember testing is a search for defects, so we try to imagine what sort of things

could go wrong when a particular number, such as 40, is input. We can distinguish two

basic forms of error: boundary errors and computation errors.

A boundary error is when the input is classified wrongly and as a result the program

takes the wrong action. For example, 79 might be rejected as an invalid mark. We call

this a boundary error because when a program has to decide between alternatives this

usually involves working out on which side of some boundary an input lies. In our

example there are two boundaries, one at 0 and one at 80, and they separate the valid

from the invalid cases.

A computation error is when the program classifies the input correctly, but does the

wrong thing to it. For instance, the mark-scaling program might correctly classify 40 as a

valid input, but then divide it by 1.25, when it should have multiplied by 1.25. The result

would then be 32 per cent when it should have been 50 per cent. Or, as another

example, if the input were greater than 80, a computation error might lead to the user

being given the wrong warning message, even though the input was correctly identified

as invalid.

Thus a boundary error is when the program chooses the wrong course of action and a

computation error is when it chooses the right course of action but carries it out

incorrectly.

Where does 1.25 come
from? Multiplying our raw
scores by 1.25 will give us
the percentage, because
1.25 is equal to 100/80.

48 Unit 13 Software testing

Now how does this help us choose test cases? Well we can think of the boundaries as

splitting the range of possible inputs into distinct sets of possible values, usually called

The word ‘class’ in the equivalence classes. This term derives from the fact that all the inputs in the same set
term ‘equivalence class’ (equivalence class) will normally be subject to the same computation, so they are all
has nothing to do with
class in the object-oriented equivalent from the testing point of view, because, if the computation is programmed
sense. The term predates wrongly, any one of these inputs can be expected to show up the error. It is normally
object-oriented sufficient to choose just one representative input value from each equivalence class.
programming. Here the
word ‘class’ is being used For instance, Figure 20 shows a situation where there are three equivalence classes and
to mean ‘set of values’.

two boundaries. For each equivalence class we pick a typical value, which we have

shown as a blob.

equivalence class

typical value

equivalence classequivalence class

typical value typical value

boundary boundary

Figure 20 Choosing a typical value from equivalence classes

This approach is good for detecting computation errors, but does not work very well with

boundary errors. Although the inputs we choose to represent the equivalence classes

may get classified correctly, things may still go wrong closer to the boundaries. This is

because programmers frequently make mistakes when programming conditions. For

instance, a programmer might very easily write (x > 0) instead of(x >= 0) and an input

of 0 would then be handled incorrectly.

To look for boundary errors we normally do a test on the boundary itself and at two

values near it, one on either side of the boundary (Figure 21).

equivalence class

typical
value

equivalence classequivalence class

values

typical
value

typical
value

values

boundary boundary

boundary boundary

Figure 21 Testing near to the boundary values

4 More about designing test data 49

In the case of our imaginary program for converting raw marks to percentages we have

three equivalence classes as follows (the boundaries are at 0 and 80):

c input values less than 0;

c input values between 0 and 80 inclusive;

c input values more than 80.

Choosing typical values for each equivalence class, and values at each boundary and

close by on either side gives the test inputs shown in Table 11.

Table 11 Test cases for the raw scores to percentages program

Input RationaleTest Type of error this is designed to detect

1 –10 Typical value below 0

2 –1 Just below boundary

3 0 Boundary

4 1 Just above boundary

5 42 Typical value between 0 and 80

6 79 Just below boundary

7 80 Boundary

8 81 Just above boundary

9 90 Typical value above 80

SAQ 5

Computation

Boundary

Boundary

Boundary

Computation

Boundary

Boundary

Boundary

Computation

Look back at Activity 10 and consider the isInRange() method for instances of

CompuFrog. What equivalence classes can be determined for possible values of the

method’s argument?

ANSWER ...

The possible values for the isInRange()method’s argument fall into three equivalence

classes:

c values less than 0;

c values between 0 and 9 inclusive;

c values more than 9.

SAQ 6

In Activity 10 we stated that the method isInRange() should be tested with successive

arguments of -1, 0, 1, 5, 8, 9, 10. In the light of our discussion on equivalence classes
can you think of any other values that the method should have been tested with?

ANSWER ...

There are three equivalence classes and two boundaries. In testing isInRange() in

Activity 10, we correctly tested with values just below (-1), on (0) and just above (1) the
lower boundary; with values just below (8), on (9) and just above (10) the upper
boundary; and with a typical value from the equivalence class 0 to 9 inclusive (5).

However, we omitted to test with typical values from the other two equivalence classes

(values less than 0 and values more than 9). Therefore to fully test the method we should

50 Unit 13 Software testing

For greater security we
may decide to test at more
than one interior point.

have tested with a value some way below the lower boundary, such as -8, and with a
value some way above the upper boundary, such as 17.

Similarly, we omitted such tests for the add() and times()methods in order to keep

down the number of tests and to avoid overwhelming you as we introduced the idea of

testing around boundaries.

4.2 Using boundary values and equivalence
classes

Summarising the ideas of Subsection 4.1 gives the following general strategy for

choosing a small number of test cases that are likely to be effective at detecting errors.

1 Identify the boundary values and use them to divide the set of possible inputs into

equivalence classes.

2 For each equivalence class choose a typical value to represent that class.

3 Include a test at each boundary value and at two nearby values on either side of that

boundary.

By using this approach we can choose a set of test cases which is small enough to be

manageable but still retains a high chance of detecting the likely sorts of program error.

The next exercise asks you to put these ideas into practice.

Exercise 4

For both situations, (a) and (b), below you are asked to say what test cases you would

use for the methods described, using the strategy of boundary and equivalence class

testing.

For each test case, you should give the arguments, the state of the receiver object if the

method is state dependent, and the expected results, i.e. the return value and the

resulting state of any objects that have been changed. You can just list the tests; there is

no need to use a table format unless you wish to.

(a)	 The Amphibian Transport Company operates a shuttle railway which runs between

Olmby and Sirencester (a distance of 45 km), stopping at many places along the way.

Tickets cost £2 for a journey of up to 12 km, £4 for a journey over 12 km but not more

than 30km, and £6 to travel over 30 km.

A new method ticketPrice() is to be added to CompuFrog which takes as its
argument an integer representing the distance a customer wishes to travel and

returns the correct price for the ticket. If the value of the argument is less than 1 or

greater than 45 (a non-valid distance) the method returns –1.

(b)	 A subclass of Account has been created, called InterestAccount, which pays
interest on positive balances, at a sliding rate which depends on the current balance

as follows.

Balances of at least 0.00 but less than 100.00 earn an interest rate of 0.05.

Balances of at least 100.00 but less than 500.00 earn an interest rate of 0.07.

Balances of 500.00 or over earn an interest rate of 0.10.

Overdrawn accounts (i.e. negative balances) earn no interest.

4 More about designing test data 51

InterestAccount has an attribute interestRate and methods getInterestRate()
and computeInterestRate(). When executed, computeInterestRate() sets the

interest rate to the appropriate value for the receiver’s current balance. The return value

is void.

When picking a value of balance close to a boundary it should be as near as
possible. When dealing with money, this means a difference of 0.01.

Solution ...

(a)	 There are five equivalence classes:

c less than 1;

c at least 1 and not more than 12;

c more than 12 but not more than 30;

c more than 30 but not more than 45;

c greater than 45.

The method is not state dependent, so the state of the compuFrog object does not
matter. We need to test the method with arguments -5, 0, 1, 2, 6, 11, 12, 13, 21, 29,
30, 31, 37, 44, 45, 46 and 50. (You may have used different values for the

equivalence class tests at -5, 6, 21, 37 and 50.) The expected results are the return
values, which should be, respectively, -1, -1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, -1
and -1.

(b) There are four equivalence classes:

c less than 0.00, i.e. overdrawn;

c at least 0.00 but less than 100.00;

c at least 100.00 but less than 500.00;

c more than 500.00.

The method is state dependent but takes no argument. There is no return value but

the receiver changes state.

We need to test the method with the following balances of the account: -50.00,

-0.01, 0.00, 0.01, 50.00, 99.99, 100.00, 100.01, 350.00, 499.99, 500.00,

500.01 and 750.00. (As before, you may have picked different equivalence class

tests but your boundary tests should agree with ours.)

After the method has executed, the interestRate of the account (which we can

find out by using getInterestRate()) should be, respectively, 0.00, 0.00, 0.05,
0.05, 0.05, 0.05, 0.07, 0.07, 0.07, 0.07, 0.10, 0.10, 0.10.

4.3 When inputs are not ordered

The strategy discussed above assumes the inputs have some order to them – for

example, numbers are ordered by size, strings are ordered alphabetically, and many

other data such as days of the week or months of the year have their conventional order.

But what if the input data are without order? For example, suppose they are just

members of an unordered set. In such a case, the notion of boundaries, and testing at

and close to them, does not mean anything. But it may still be possible to form

equivalence classes and choose a representative test case from each one.

52 Unit 13 Software testing

What happens, for example, if a subclass of Frog overrides the methods right() and

left() so that instances of this subclass move right and left by two stones when their

colours are red or brown but otherwise behave normally? In this case, there are two

equivalence classes, red and brown, and all the other colours but there is no boundary

between them. In an example like this, we can choose representative test cases from the

equivalence classes as we did before but there will be no boundary tests.

5 Case study: congestion charging 53

Case study: congestion charging 5

In this section we reprise all you have learnt about testing by looking at a small case

study. This case study will also introduce you to an important and interesting

programming pattern called the Observer pattern. This pattern addresses the question

of how objects can be made to keep in step with other objects.

5.1 Congestion charging for frogs

Recently the amphibian world has become concerned about growing traffic congestion.

Certain stones in the central zone are heavily clogged with frogs at busy times and in

order to reduce the congestion a system of charging is to be introduced.

Here is a description of the classes involved.

ChargeableFrog
Instances of ChargeableFrog are frogs which have bank accounts (with an initial
balance of £250) that they use to pay for travel in the amphibian congestion charging

zone. Each chargeablefrog is watched by a czwarden which charges £10 by direct

debit each time a chargeablefrog makes a change of position to a stone in the outer

charging zone, and £20 if the change of position takes the frog to a stone in the inner

charging zone.

The outer charging zone is from stone 5 to stone 15 inclusive, and from stone 25 to stone

35 inclusive.

The inner charging zone is from stone 16 to stone 24 inclusive.

Stones 4 and below, and stones 36 and above, are outside the charging zones.

The stone that the chargeablefrog starts on is of no importance in the charging scheme.

CZWarden
An instance of CZWarden is an observer of a number of instances of chargeableFrog.
Whenever one of the chargeablefrogs that the czwarden is observing changes the value

of the instance variable position, the czwarden checks if the chargeablefrog has
moved to a stone in a charging zone and, if so, charges £10 or £20 as appropriate, by

direct debit from the chargeablefrog’s bank account.

Account
This class should be familiar from earlier units.

Exercise 5

This exercise asks you to devise a series of test cases for the above scenario.

First you need to pick a suitable set of test cases. To test the charging scheme, you need

to move a chargeablefrog to selected stones and check if its bank account is debited by

the correct amount. As you will have realised, the charging zones are natural equivalence

classes.

54 Unit 13 Software testing

On paper, applying what you learnt in Section 4 about equivalence class and boundary

testing, draw up a table of test cases for ChargeableFrog. All the tests should be carried
out on a single instance of ChargeableFrog that has a bank account with an initial
balance of £250 and which is sent the message setPosition().

For each case, say which stone the frog should be moved to, what the charge will be, the

new balance, and the rationale for the test. Note that chargeablefrogs must pay a charge

each time they move to a stone in a charging zone. Even if they start from a stone in a

charging zone already they must still pay again! Moving from either of the two charging

zones to the free zones does not incur a charge.

Solution ...

Table 12 shows the tests we came up with.

Table 12 Test cases for ChargeableFrog

Destination stone Charge RationaleTest case New balance

1 2 none 250 Well outside all charging zones

2 4 none 250 Just outside outer zone lower boundary

3 5 –10 240 Outer zone lower boundary

4 6 –10 230 Just inside outer zone lower boundary

5 10 –10 220 Typical value near middle of range

6 15 –10 210 Just outside inner zone lower boundary

7 16 –20 190 Inner zone lower boundary

8 17 –20 170 Just inside inner zone lower boundary

9 20 –20 150 Typical value near middle of inner zone

10 23 –20 130 Just inside inner zone upper boundary

11 24 –20 110 Inner zone upper boundary

12 25 –10 100 Just outside inner zone upper boundary

13 30 –10 90 Typical value near middle of range

14 34 –10 80 Just inside outer zone upper boundary

15 35 –10 70 Outer zone upper boundary

16 36 none 70 Just outside outer zone upper boundary

17 40 none 70 Well outside all charging zones

In the above table we have chosen the boundaries of:

c 5 for the outer zone lower boundary;

c 16 for the inner zone lower boundary;

c 24 for the inner zone upper boundary;

c 35 for the outer zone upper boundary.

5 Case study: congestion charging 55

However, you may have chosen slightly different boundaries and indeed, when dealing

with equivalence classes of adjacent discrete values, it is often debatable about where

the boundaries should fall. For example you might have chosen:

c 5 for the outer zone lower boundary,

c 15 for the outer zone upper boundary (to the left of the inner zone),

c 25 for the outer zone lower boundary (to the right of the inner zone),

c 35 for the outer zone upper boundary.

Either set of boundary values could be used to formulate adequate test cases for

ChargeableFrog.

The Observer pattern
Before we start testing the program we need to explain a little of how it works. How does

the czwarden watch what the chargeablefrogs are doing?

The answer to this will also explain something else you may have wondered about at

various times during the course – how does the graphical display manage to respond to

changes in an amphibian’s state – how does it ‘know’ there has been a change and what

that change is?

This magic comes about because of something called the Observer pattern.

In many programs there is a need for one object (known as an observer) to be kept

informed every time some other object (known as a subject) changes its state. The

observer must first register itself with the subject. Then every time the subject changes

its state, it sends a message update() to the observer (Figure 22).

subject Register me observer

subject I’ve changed observer

Later ...

Figure 22 A subject and an observer

The basic scheme is very simple. However there are a number of more subtle points you

need to know.

First, more than one observer may observe the same subject. The observers do not

know about one another. When a subject issues a message update(), it sends the
message to all observers registered with it.

Second, all a subject knows about observers is that they are observers – they

implement the interface Observer, which simply involves implementing a method

update(). It does not know what class they belong to. This means any observer can

be registered with a subject without changing the coding of the subject.

Third, an observer may be registered with lots of different subjects; for example, an

instance of CZWarden needs to keep watch over many instances of ChargeableFrog.
Therefore, when an observer object receives a message update(), it needs to know

Observer is an example of
a software pattern: a
tried and tested solution to
a programming problem
that comes up again and
again. In this case, the
problem solved is how one
object can be kept
informed when another
object changes state.

56 Unit 13 Software testing

exactly who the sender was. So the message update() includes an argument giving a

reference back to the subject that sent it.

Fourth, the observer also needs to know what aspect of the subject’s state has changed,

because not all observers will be interested in all aspects of the subject’s state.

Therefore the update()message also includes a second argument (which can be of

any class) that informs the observer what instance variable has changed. In our

example this second argument is a string denoting the instance variable, i.e.

"position". If an observer is not interested in whether that particular instance variable
has changed, it can just ignore the message.

Finally, a subject is able to notify an observer each time it changes, but it cannot

normally send the observer any other messages. The observer on the other hand can

send the subject whatever messages it likes.

In the case of chargeablefrogs, the exchange between the subject and the observer

goes something like the following.

chargeablefrog (subject) to czwarden (observer): My position has changed.

czwarden to chargeablefrog: Tell me your new position (message answer is position)

If the position is in a charging zone:

czwarden to chargeablefrog: Tell me your bank account

(message answer is account)

czwarden to account: Debit(10) (or 20 as appropriate)

All amphibians are
observable because the
abstract class Amphibian
is a subclass of
OUAnimatedObject which
in turn is a subclass of
Observable.

5.2 Frogs are already Observable

Not just any old object can be a subject in the Observer pattern described above. It has

to be an instance of a class which is a subclass of a special class called Observable.
So how can we make instances of ChargeableFrog subjects for an instance of
CZWarden?

Luckily frogs and all other amphibians are already observable! This is the reason why

the graphical display is able to respond to changes in amphibian state. It is an observer,

with the amphibians as subjects.

When an amphibian changes state, it sends the graphical display a message update().
The graphical display then asks the amphibian for details of its new state.

When the graphical display knows the new details, it updates the icons which represent

the amphibians, changing the colour or position (or in the case of hoverfrogs, height).

In this way the graphical display is kept in step with the state of the amphibians.

This means that all amphibians, including frogs, already issue the message update()
whenever their state alters. All we have to do to make a czwarden observe a

chargeablefrog is for the czwarden to register itself with the chargeablefrog. When the

message update() is issued it is sent to all observers, so as well as being sent to the

graphical display it will go the czwarden.

Let us look at the method setPosition() as defined in the class Amphibian.

public void setPosition (int aPosition)
{

position = aPosition;
this.update("position");

}

5 Case study: congestion charging 57

Note that in the method the receiver sends update() to itself! This may seem a little

strange at first, but let us explain. This message update() is not the one that is sent to

the observers, it is just the first in the chain of messages that occurs:

c Amphibian inherits update() from OUAnimatedObject, and this method sends the

message notifyObservers() (with the argument "position") to the receiver.

c OUAnimatedObject inherits notifyObservers() from Observable, and it is this
method that sends the message update(this, "position") to all the observers.

You do not need to remember the details of this, just that the ability of a czwarden to

watch what chargeablefrogs are doing can simply be piggy-backed onto the existing

arrangements for keeping the graphical display up to date.

The class CZWarden has no instance variables and has only one method which is shown

below (the initial comment has been omitted for brevity):

public void update(Observable subject, Object changedInstVar)

{

if (changedInstVar.equals("position"))

{

ChargeableFrog cf = (ChargeableFrog) subject;
int pos = cf.getPosition();
if (((pos >= 5) && (pos <= 15)) || ((pos >= 25) && (pos <= 35))) // outer zone
{

cf.getAccount().debit(10);

}

if ((pos >= 16) && (pos <= 24)) // inner zone

{

cf.getAccount().debit(20);

}

}

}

Notice that the first thing the method does is check whether the changed instance

variable is one that it is interested in, i.e. position. If it is, then the new position is
checked to see if it falls into one of the two charging zones, and, if it does, one of the two

if statements is executed and the subject’s bank account is appropriately debited. If it

does not, no money is debited.

5.3 Testing the classes ChargeableFrog,
CZWarden and Account

All the classes have been coded and your task is to test the interaction between

chargeablefrogs, czwardens and accounts (integration testing). To save time we have

already created unit tests for Account. Of course they will be run along with the tests you

create, because the policy is to do regression testing every time, retesting all the old

classes as well as testing the new.

The only class you need to write a new test class for is ChargeableFrog. The reason for
this is that instances of CZWarden have no state – they have no instances variables.
However this does not mean that the class CZWarden will not be tested, because testing
that messages setPosition() appropriately debit a chargeablefrog’s bank account

will of course test the logic of the only instance method in CZWarden which is update().

58 Unit 13 Software testing

ACTIVITY 11

Open Unit13_Project_12. You will find it contains the amphibian hierarchy, including the

class ChargeableFrog and the classes CZWarden and Account. Begin by making sure

all the classes are compiled.

1 Account already has a test class AccountTest. First right-click on the AccountTest
icon and choose Test All to confirm that Account passes all four of its unit tests.

2 Now create a test class for ChargeableFrog. We are going to provide this test class

with a test fixture.

Right-click on the CZWarden icon and select New CZWarden. Accept the default

name cZWarden1 and press Ok. A CZWarden object will appear on the Object Bench.

Next right-click on the ChargeableFrog icon and choose new ChargeableFrog

(CZWarden czw). In the argument field enter cZWarden1 and press Ok. The instance

of ChargeableFrog will be displayed on the Object Bench.

Finally right-click on the test class ChargeableFrogTest and choose Object Bench

to Test Fixture.

3	 Now you are nearly ready to test that the overall program behaves as specified. You

need to move the ChargeableFrog object created in the fixture to the positions in the
test plan in Table 12 and verify that, where appropriate, the CZWarden object debits
its bank balance is as expected.

Right-click on ChargeableFrogTest and select Create Test Method.... Name the

test testSetPosition. You will enter the tests manually into the method

testSetPosition(), not record them, so press End to stop recording.

The balance of an account is a float value and there is an important fact you need to

know about floating-point numbers. Without going into technical details, when two

numbers of type float or double are compared, they are not exact numbers in the

way integers are. You may have sometimes noticed that on your calculator you can

end up with say 2.999999999, when the answer is really 3. This is the same effect.

So when we compare two float values we have to specify how near they must be to

be considered equal. This tolerance is called delta. Since we are dealing with money,

within 0.01 seems appropriate.

When we assert that two floating-point values are equal, the statement takes the form

assertEquals(expected, actual, delta);

So, for example, to check the first test case in Table 12 we move the chargeablefrog

to stone 2, then make an assertion about its bank balance (which should not have

decreased).

chargeab1.setPosition(2);
assertEquals(250, chargeab1.getAccount().getBalance(), 0.01);

(Notice the collaboration here; we first ask chargeab1 for its account and then ask
the account for its balance.)

4	 Enter the 17 tests from Table 12. If you like you can run the tests from time to time as

you go along, to make sure that you have not made any typing errors, but remember

these are only partial results; we want the program to pass all 17 tests.

5	 When all the tests have been entered, press Run Tests. If all goes well you will be

rewarded with the following window (Figure 23). The classes have passed all the

tests!

5 Case study: congestion charging 59

Figure 23 The integration test is passed

In case you had any problems with this activity, the complete tests are available in

Unit13_Project_12_Completed.

60 Unit 13 Software testing

Summary6
After studying this unit you should understand the following ideas.

c The purpose of testing is to find the faults in software and an effective test is one

which discovers faults other tests have missed.

c White box tests take the internal workings of the code into consideration and try to

ensure that every part of the code is executed. Black box tests are designed purely

from the specification which the software is intended to meet, without any

knowledge of how the specification is actually implemented. In M255 we only

consider black box testing.

c The input–output model of testing compares actual results with expected ones. If the

actual results match the expected ones, the software passes the test, otherwise it

fails.

c A unit test is the smallest possible test – a test of a single method or class. A unit test

is an ‘atom’ of testing.

c Integration testing is when a number of components developed in isolation are

brought together and tested as a combination.

c Regression testing is testing an entire program each time any part of it is changed,

in case the changes have caused other parts of the program to stop working

correctly.

c Test-driven development is an approach in which software is developed in small

steps called increments, with the tests for each increment being written before the

code.

c Running tests manually is not practical, because regression testing may easily

involve hundreds or thousands of classes and methods, and test automation

becomes essential. JUnit is a framework which lets us write tests in a standard

format and takes care of the practicalities of managing and running tests for us.

c Using JUnit involves writing test classes and test methods. Most Java IDEs provide

some support for JUnit, by automating the writing of outline classes and methods,

but we must supply the bodies of the test methods, since only we can predict what

the result of a given test should be.

c An assertion is a statement which compares an expected value with an

actual one. The assertions we use in this unit are all of the form

assertEqual(<expectedValue>, <actualValue>).

c A test fixture is a set of test objects which will be created automatically before each

test method is run. Using a test fixture avoids duplicating object-creation code,

since the test objects are defined only once, in a special setUp() method.

c Using JUnit, suites of tests are built up and regression testing is done by running

them all every time the code is changed in any way. If the code fails any of the tests

we correct the fault before going any further.

c A boundary error is when faulty code causes an input to take an incorrect path

through the program.

c A computation error is when the correct path is taken but faulty code results in the

input being processed incorrectly.

Summary 61

c	 A general strategy for choosing a small number of test cases that are likely to be

effective at detecting errors is to:

identify the boundary cases, at which boundary errors are likely to occur, and

test on the boundary and close to it on either side;

choose a suitable representative of each of the equivalence classes into which

the inputs are split by the boundaries, in order to detect any computation error

affecting that region.

c	 The Observer pattern is a general solution to the problem of how to keep one object

(or set of objects), called the observer, updated whenever another object, called the

subject, changes its state. The Observer pattern underlies the ability of the

graphical display to respond to changes in the state of amphibians.

62 Unit 13 Software testing

LEARNING OUTCOMES

Having studied this unit (including the associated practical work) you should be able to:

c explain the purpose of software testing;

c explain the difference between black box and white box testing;

c explain the meaning of the terms unit testing, integration testing and regression

testing;

c understand the input–output model of testing, including the fact that tests must take

into account the state of objects, since behaviour is often state dependent;

c explain the test-first approach to development;

c given a method or class specification design a suitable set of test cases for it;

c use JUnit to set up and run unit tests and regression tests;

c use JUnit to set up and run a simple integration test;

c apply the technique of equivalence-class and boundary testing to the design of test

plans;

c appreciate the way in which the Observer pattern is used to keep objects updated

when other objects they have an interest in change state.

Glossary 63

Glossary
acceptance testing Testing that software fulfils a customer’s requirements.

actual results Given a set of test data, the result of executing a method or program.

alpha testing Testing which is done before a product is available publicly.

assertion A statement which tests whether an expected value matches an actual one.

beta testing Testing of a trial version of a product by potential users, who provide

feedback to the developers.

black box testing Testing something against specification, without any knowledge of

its inner workings.

boundary error A programming error which causes an incorrect path to be taken

through code.

computation error A programming error which causes data to be processed

incorrectly; for example, the wrong calculation may be performed on the data.

debugging Identifying the cause of faults in software and correcting them.

delta A tolerance used for comparing floating-point numbers, which are not

represented exactly in the computer, so that two values which should be equal may

differ marginally. We set a small delta and then consider that two floating-point numbers

are the same if they differ by less than the delta.

equivalence class All the possible input values to a block of code (for example, a

method) can be divided into mutually exclusive sets of values. Each set of values is

called an equivalence class. Each value in an equivalence class can be expected to be

processed by that block of code in the same manner. The corollary is that values from

different equivalence classes will be treated in a different manner (i.e. be processed by

a different branch of the code).

expected results Given a set of test data, results that a method or program should

produce according to its specification.

integration testing Testing that a group of components, already tested in isolation

from one another, work together in the way intended.

Observer pattern A software pattern in which one object (the observer) is

automatically kept informed whenever another object (the subject) changes state.

regression testing Testing that modifications or additions to one part of the code have

not made any other part stop working properly.

software pattern A tried and tested solution to a programming problem that comes up

again and again, presented as a pattern of classes and collaborations.

system testing Testing that the overall system functions correctly.

test data A set of data used as the inputs to a test.

test-driven development An approach to software development in which code is

written in increments, with the tests for each increment being written before the code.

64 Unit 13 Software testing

test-first A software development philosophy in which tests are written first and the

corresponding code follows.

test harness A programme written solely to test other software components.

testing The process of uncovering faults in software.

testing framework An API which provides support for automated software testing,

allowing tests to be created in a standardised way and reused.

unit testing A test of a single method.

white box testing Testing which is guided by information about internal structure and

which aims to ensure that every part of that structure has been tried.

Reference 65

Reference

Dijkstra, E.W. (1972) ‘Notes on structured programming’ in Dahl, O.-J., Dijkstra, E.W. and

Hoare, C.A.R. (eds), Structured Programming, London, Academic Press.

C

66 Unit 13 Software testing

Index

A

acceptance testing 14

actual results 12

alpha testing 13

assertion 16

B

beta testing. 13

black box testing 6

boundary error 47

computation error 47

D

debugging 6

delta 58

E T

equivalence class 48 test data 12

expected results 12 test fixture 30

I test harness 14

increment 14 test-driven development (TDD) 14

integration testing 14, 57 test-first approach 14

O testing 6

Object Bench 21 framework 15

Observer pattern 55 U

R
unit testing 5, 13

regression testing 14 W

S
white box testing 7

system testing 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

