
12U
ni

t

Streams, files and
persistent objects

Object-oriented
programming with Java

M255 Unit 12
UNDERGRADUATE COMPUTING



This publication forms part of an Open University course M255

Object-oriented programming with Java. Details of this and other

Open University courses can be obtained from the Student

Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn more about the wide

range of courses and packs offered at all levels by The Open

University.

To purchase a selection of Open University course materials visit

http://www.ouw.co.uk, or contact Open University Worldwide,

Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University

Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.

Copyright ª 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted or utilised in any form or by

any means, electronic, mechanical, photocopying, recording or

otherwise, without written permission from the publisher or a licence

from the Copyright Licensing Agency Ltd. Details of such licences

(for reprographic reproduction) may be obtained from the

Copyright Licensing Agency Ltd of 90 Tottenham Court Road,

London, W1T 4LP.

Open University course materials may also be made available in

electronic formats for use by students of the University. All rights,

including copyright and related rights and database rights, in

electronic course materials and their contents are owned by or

licensed to The Open University, or otherwise used by The Open

University as permitted by applicable law.

In using electronic course materials and their contents you agree

that your use will be solely for the purposes of following an Open

University course of study or otherwise as licensed by The Open

University or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website),

distribute, transmit or retransmit, broadcast, modify or show in

public such electronic materials in whole or in part without the prior

written consent of The Open University or in accordance with the

Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth

Group, Wakefield.

ISBN 978 0 7492 6793 3

2.1



CONTENTS

Introduction 5

1 Files and streams 6

1.1 File and stream classes in java.io 6

1.2 The File class 9

2 Simple writing and reading of text files 15

2.1 Exceptions, files and streams 15

2.2 Writing to a file 17

2.3 Reading from a file 21

3 Buffering and wrapping classes 24

3.1 Buffers 24

3.2 Wrapping stream classes 25

3.3 Writing to a file using a BufferedWriter 27

3.4 Reading from a file using a BufferedReader 31

4 Making objects persistent using text files 33

4.1 Writing the details of Account objects to file 33

4.2 Writing files that can be used to recreate objects 36

4.3 Reading a text file using the Scanner class 38

4.4 Summary of stream classes, messages and
exceptions 46

5 Persistence through serialisation 49

5.1 The Serializable interface 50

5.2 Reading and writing serialised objects 51

5.3 The limitations of serialisation 55

6 Streams and networks 56

7 Summary 58

Glossary 60

Index 61



M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.



Introduction
This unit is about exchanging information between a Java program and an external

source, thereby enabling Java programs to communicate with the wider world. It is also

about making information persistent, so that it can be stored at one time and retrieved

unchanged at a later time. For example, if you are word processing a document, you

expect to be able to save it one day and open the document the next day and find it in

the same state as you left it. Persistence involves saving data to files.

So far in M255 you have made information persistent using the features of both BlueJ

and the OUWorkspace: you have made changes to classes and saved those changes

to a file; you have created and saved new classes; and you may have saved statements

in the OUWorkspace’s Code Pane using the Save or Save As... options from the File

menu.

What you have not been able to do in M255, so far, is to make objects persistent. For

example, if you have created an account object in the OUWorkspace, you have not

been able to save that account so that you can retrieve it during a subsequent session of

the OUWorkspace. In this unit you will learn how to make objects persistent, so that they

may be created at one time on one computer and retrieved at another time, possibly on

a different computer.

In Section 1 you learn about Java’s io (input/output) library and the file and stream

classes it contains.

Section 2 starts off by revisiting exceptions, which were introduced in Unit 8, and

explains why they are important when working with files and streams. You go on to learn

about writing and reading characters to and from text files.

Section 3 introduces the concept of buffering, for improving the efficiency of writing and

reading to and from files. You learn what buffers are and when you should use them.

In Section 4 you learn how to make objects persistent by saving the textual

representation of their state to text files and then reading those files to recreate the

objects.

Section 5 details another strategy for making objects persistent: saving them as raw

bytes to a file. This is called serialisation.

Section 6 is a short introduction to how streams can be used to transfer information

across networks.

Introduction 5



1 Files and streams

1.1 File and stream classes in java.io

What is a stream? In the physical world, a stream of water flows from a source (for

example, a spring) down to a sink (for example, a pond). In the programming world, we

may have a data source (for example, a program generating a list of random numbers)

and a data sink (a file where we want to store these numbers). A stream is the object we

use to link them, enabling data to be transferred from the source to the sink (Figure 1).

Figure 1 A data stream

In most of this unit we are looking at streams which connect a Java program and a file.

When we want to save data that is currently in a Java program to a file, the source is the

Java program and the sink is the file, and the Java program writes data to the stream

(Figure 2).

Figure 2 Saving data to a file

When we want to read data into a Java program, the source is the file and the sink is the

Java program, and the Java program reads data from the stream (Figure 3).

Figure 3 Reading data from a file

source sink

stream of data from
source to sink

source sink

Java program

stream of data from
Java program to file

file

sourcesink

Java program

stream of data from file
into Java program

file

Unit 12 Streams, files and persistent objects6



Reading from (or writing to) a stream is done sequentially: when you read data from a

stream the first item is read, then the second, and so on until the last item is reached.

ACTIVITY 1

Java has a large number of classes to support the reading and writing of data using

streams. The purpose of this activity is to give you some feel for the number of these

classes and the naming conventions they use. Launch BlueJ and open the

documentation for the Java Class Libraries (select the Help menu then Java Class

Libraries). In the main frame, scroll down and select the package java.io. Scroll down to

the section labelled ‘Class Summary’, look at the class names, and see if you can use

them to identify related groups of classes. You are not expected to remember all the class

names; nor are you expected to understand everything in the descriptions. You should

spend no more than 10 minutes on this activity.

DISCUSSION OF
ACTIVITY 1

You have probably identified groups of classes whose names end with InputStream or

OutputStream and others whose names end with Reader or Writer. You will probably

have (correctly) deduced that FileReader, BufferedReader etc. are subclasses of the

Reader class. You will also have noticed that there are groups of classes whose names

start with the same word, such as FileInputStream, FileOutputStream, FileReader

and FileWriter (and a similar group whose names start with Buffered), and you have

probably concluded that these classes carry out similar tasks.

The number of classes available for input and output is daunting, and in M255 we will

only look at a small number of them. However, for completeness, Table 1 (overleaf) lists

all the java.io stream classes, which fall into four main groups subclassed from

InputStream, OutputStream, Reader and Writer.

The stream classes which you will be using during M255 are in bold in Table 1. To read

the table: the class InputStream has the subclasses ByteArrayInputStream,

FileInputStream etc.; the class FilterInputStream has the subclasses

BufferedInputStream, DataInputStream, etc.

There are two groups of stream classes to read data (InputStream and Reader) and

two groups of classes to write data (OutputStream and Writer). If you were reading

and writing data to/from a sink/source, you would pair an InputStream class with an

OutputStream class and a Reader class with a Writer class. The difference between

the two groups of stream classes is in the type of data which they handle.

c Instances of subclasses of the Reader and Writer classes handle (16-bit)

character streams. This means that they correctly handle textual information based

on characters and strings. We will use an instance of a subclass of the Writer class

(FileWriter) to write text to a file in Subsection 2.2.

c Instances of subclasses of the InputStream and OutputStream classes handle

(8-bit) byte streams. They are used when we make objects persistent through

serialisation (Section 5), and for writing binary data such as sounds and images.

1 Files and streams 7



Table 1 Java Stream classes in the java.io package

InputStream ByteArrayInputStream

FileInputStream

FilterInputStream BufferedInputStream

DataInputStream

LineNumberInputStream

PushbackInputStream

ObjectInputStream

PipedInputStream

SequenceInputStream

StringBufferInputStream

OutputStream ByteArrayOutputStream

FileOutputStream

FilterOutputStream BufferedOutputStream

DataOutputStream

PrintStream

ObjectOutputStream

PipedOutputStream

Reader BufferedReader LineNumberReader

CharArrayReader

FilterReader PushbackReader

InputStreamReader FileReader

PipedReader

StringReader

Writer BufferedWriter

CharArrayWriter

FilterWriter

OutputStreamWriter FileWriter

PipedWriter

PrintWriter

StringWriter

RandomAccessFile

Unit 12 Streams, files and persistent objects8



1.2 The File class

If we want to read from, or write to, files on the hard disk, then we need a way to specify

which file (or folder) we are interested in. The Java class that we use to do this is the

File class. The File class has a misleading name: you might think that an instance of

the class would represent a physical file on a hard disk, but it does not. It represents

either the name of a particular file or the name of a folder (directory).

C:\BlueJ\README.TXT is an example of how the Windows operating system expects

users and programs to specify file and folder pathnames. However, different operating

systems specify file pathnames in different formats; for example, Windows uses a ‘\’

(backslash) to separate file and folder names whereas Macintosh OSX, Unix and Linux

uses a ‘/’. The purpose of the File class is to allow pathnames to be represented in an

abstract or system-independent way and, when required, to convert them automatically

into the system-dependent format needed to access a particular physical file or folder.

In M255 we are only concerned with files and folders on the Windows operating system,

but you need to be aware that different operating systems do things slightly differently,

and because Java programs can be executed on different platforms they have to be

able to access file systems in platform-specific ways.

File pathnames can be absolute or relative. A relative pathname assumes the current

working directory as the starting point, whereas an absolute pathname contains all the

information you need to know about the location of a file and always starts from the root

directory of the disk, usually C: in Windows.

C:\BlueJ\README.TXT is an example of an absolute pathname. In M255 we are only

concerned with absolute pathnames.

In a program a pathname is represented as a string. However, this presents us with a

slight problem because when a backslash is encountered in a literal string it is

interpreted by the compiler as the escape character: it indicates that the next character

should be interpreted in some special way. For example, in the following string:

"string\twine"

the backslash combines with the very next character to form what is called an escape

sequence – in this case the escape sequence \t, which represents a tab. Therefore

executing the following statement in the Code Pane:

System.out.println("string\twine");

would output:

string wine

to the Display Pane. Fortunately there is a solution to this. In order to get a backslash

interpreted as just a backslash in a literal string we just precede the backslash by

another backslash. For example:

"string\\twine"

Now executing the following statement in the Code Pane:

System.out.println("string\\twine");

correctly displays:

string\twine

So to create a string to represent the pathname C:\BlueJ\README.TXTwe would write:

String pathname = "C:\\BlueJ\\README.TXT";

1 Files and streams 9



In Java you can use a string which represents a pathname to create an instance of the

class File, and you will see how to do this shortly.

When a string is used to specify a pathname it must be exactly right, and if you are

typing the pathname it is easy to make a mistake. So in order to simplify the specification

of the correct string to represent a pathname, we have provided you with the utility class

OUFileChooser. The OUFileChooser class has class methods for creating pathnames,

one of which displays a dialogue box, which we call a ‘file chooser’ dialogue box. Such a

dialogue box displays the contents of a folder (a list of physical files) and allows you to

select a particular file, whose pathname is then returned when you click on the OK

button. By using such dialogue boxes you do not have to worry about determining the

correct absolute pathname or using \\within the string.

ACTIVITY 2

In this activity you investigate the OUFileChooser. Launch BlueJ then open the Help

menu and select OU Class Library. Browse the documentation for the OUFileChooser

class (scroll down the text until you reach the Method Summary).

1 Open an OUWorkspace without first opening a project, then enter, select and execute

the following statement:

String pathname = OUFileChooser.getFilename();

When the dialogue box opens, the contents of which folder are displayed?

Select a file listed in the dialogue box and accept it using the OK button. Look at the

value of pathname either by inspecting pathname or by executing the following

statement:

System.out.println(pathname).

2 Again, execute the statement

String pathname = OUFileChooser.getFilename();

but this time select the Cancel button. Check the value of pathname.

3 Close the OUWorkspace and then open the project Unit12_Project_1. You will notice

that this project has no classes – this is intentional; the folder of this project is simply

being used to read and write files from the OUWorkspace. Reopen the OUWorkspace

and execute the following statement:

String pathname = OUFileChooser.getFilename();

Note the folder on which the file chooser dialogue box is focused, select a file and

then click on the OK button. Check the value of pathname.

4 Execute the statement

String newPathname = OUFileChooser.getFilename();

but this time do not select an existing file. Instead type the name of a file which does

not exist, such as foo.txt. Check the value of newPathname. You might like to do

this twice, the first time entering the name of a file that exists in the folder, and the

second time entering the name of a file that does not exist in the folder.

5 Execute the statements

String pathname1 = OUFileChooser.getFilename("README.TXT");

String pathname2 = OUFileChooser.getFilename("newFile.txt");

and then inspect pathname1 and pathname2.

Depending on your
computer, and particularly
if it is connected to a
network, it may take a few
seconds for the file
chooser dialogue box to
appear.

Unit 12 Streams, files and persistent objects10



DISCUSSION OF
ACTIVITY 2

From the documentation, you can see that the OUFileChooser class extends the

JFileChooser class by providing three additional class (static) methods. The

methods you will use to get pathnames have the signatures getFilename() and

getFilename(String).

1 When you execute the statement, the following dialogue box is shown (Figure 4).

The dialogue box will be focused on the BlueJ folder, which is the location where you

chose to install BlueJ. If you installed BlueJ in the default location, and you selected

the file README.TXT, pathname will reference the string "C:\BlueJ\README.TXT".

Figure 4 A file chooser dialogue box that has been opened in the OUWorkspace when a BlueJ
project has not been opened

2 When you close the dialogue box using the Cancel button, pathname will have the

value null, indicating that a pathname has not been returned.

3 The dialogue box will be focused on the Unit12_Project_1 folder, and if you installed

the M255 software in the default location and again you selected the file

README.TXT, pathname will reference either:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12_Project_1\README.TXT"

or:

"C:\My Documents\M255\M255Projects\Unit12_Project_1\README.TXT"

depending on your operating system.

4 On this occasion pathname will start with either:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12_Project_1\"

or:

"C:\My Documents\M255\M255Projects\Unit12_Project_1"

and the final part of the pathname string will be the file name you entered.

1 Files and streams 11



For example, if you typed myfile.txt in the input box, the full pathname string will

be either:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12_Project_1\myfile.txt"

or:

"C:\My Documents\M255\M255Projects\Unit12_Project_1\myfile.txt"

A pathname string will be returned regardless of whether or not the corresponding

file exists (which is what you need if you want to save data to a new file).

5 In this case a dialogue box is not displayed. The variable pathname1 now

references the string:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12_Project_1\README.TXT"

or:

"C:\My Documents\M255\M255Projects\Unit12_Project_1\README.TXT "

and pathname2 references the following string:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12_Project_1\newFile.txt"

or:

"C:\My Documents\M255\M255Projects\Unit12_Project_1\newFile.txt"

The first point to note is that the folder given in the pathname returned by the

OUFileChooser dialogue box is that of the current project. Secondly, if you check in

Windows Explorer, you can see that the physical file README.TXT exists, but

newFile.txt does not. So, as with Part 4, you can obtain a string that corresponds

to a valid but non-existent pathname. Invoking the method with the signature

OUFileChooser.getFilename(String) provides a shortcut to selecting the

pathname of a file in the folder of the current project, but remember that no check is

made as to whether or not the file exists.

The previous activity has shown how the OUFileChooser class provides two

getFilename()methods (one that takes an argument and one that does not). These

allow us to create strings which correspond either to the pathnames of existing physical

files or to the pathnames of files which we might want to create. You must remember that

both the getFilename() methods only return strings, and a further step is needed

before we have something that can actually refer to a file.

The next step is to create an instance of the File class, and we do this by using the

string returned by a getFilename()method as the argument to the File class

constructor:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

After the above code executes, the variable aFile references a new File object, which

may or may not correspond in some way to an existing physical file on the hard disk.

Whether it does or not will depend on whether you used a getFilename() method to

return the pathname of an existing physical file or to return a pathname that you intend to

associate with a new, as yet uncreated, physical file.

It is important to note that a File object cannot be written to, or read from. That is not its

purpose: it does not represent the contents of some physical file. However, a File

object does hold important information, for example: the pathname; whether the

pathname identifies a file or a folder (directory); whether a physical file exists at that

pathname; and, if a physical file exists, whether it can be written to.

Unit 12 Streams, files and persistent objects12



Therefore, the protocol of File objects includes the following messages:

c exists() – returns true if the file or directory denoted by the pathname exists;

false otherwise.

c isFile() – returns true if the file denoted by the pathname exists and is a file;

false otherwise.

c isDirectory() – returns true if the file denoted by the pathname exists and is a

directory; false otherwise.

c canWrite() – returns true if the file denoted by the pathname exists and the

current program is allowed to write to that file; false otherwise.

ACTIVITY 3

If it is not already open, launch BlueJ and open the project Unit12_Project_1. Write a

sequence of statements in the OUWorkspace to do the following.

1 Get the pathname of a file called README.TXT by using a file chooser dialogue box

and typing the file name README.TXT into the input box. Note that the

OUFileChooser dialogue does not automatically add an extension to a pathname

(because a .txt extension is not always appropriate), so you must remember to

include the extension.

2 Create a File object using the pathname obtained in step 1.

3 Using an if–then–else statement, test whether the new file object is associated with

an actual physical file on disk by sending it an exists() message. If the file does

exist, use an alert dialogue box to display the message, ‘A physical file exists!’ If no

physical file exists, use an alert dialogue box to display the message, ‘No physical file

exists!’

Repeat steps 1–3 using the file names backup.txt and myfile.txt.

Finally, what happens when you select and execute your complete code, and then you

click the Cancel button on the file chooser dialogue box?

DISCUSSION OF
ACTIVITY 3

Your code should look similar to the following.

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

if (aFile.exists())

{

OUDialog.alert("A physical file exists!");

}

else

{

OUDialog.alert("No physical file exists!");

}

If you enter README.TXT into the file chooser dialogue box, the alert dialogue box should

display:

A physical file exists!

If you enter backup.txt into the file chooser dialogue box, the alert dialogue box should

again display:

A physical file exists!

1 Files and streams 13



If you enter myfile.txt into the file chooser dialogue box, the alert dialogue box should

display:

No physical file exists!

If you click the Cancel button of the file chooser dialogue box, the following error

message is shown in the Display Pane:

Exception: line 2. java.lang.NullPointerException

This indicates that there was a problem evaluating the statement:

File aFile = new File(pathname);

If you inspect the variable pathname, you will find that it is null. This is perfectly

reasonable, as you did not supply a file name to the file chooser dialogue box, and when

the File constructor is presented with a null argument it fails. Exceptions are

discussed in more detail in the next section.

SAQ 1

Thinking back to what you learnt in Unit 8, what sort of error occurs when you execute

the statement

File aFile = new File(pathname);

and pathname is null?

ANSWER...............................................................................................................

The error is a runtime error (more precisely a dynamic semantic error), because whether

or not an error is thrown depends on the value of pathname at run-time. It is also an

example of an unchecked exception, specifically a NullPointerException. We know

that is an unchecked exception because the OUWorkspace interpreter did not insist that

we embed the call of the constructor within a try–catch statement.

In the next section we shall see that when using files there are many kinds of exceptions

that may occur, and most are ones that the BlueJ Java compiler or the OUWorkspace’s

Java interpreter will force you to try and catch (i.e. checked exceptions).

Unit 12 Streams, files and persistent objects14



2 Simple writing and reading of
text files

In this section we shall look at simple ways of writing and reading characters to and from

text files. Error detection and recovery is particularly important when working with file

input and output. This is because a program does not control its external environment.

For example, if a program requires input from a file, and that file does not exist, then the

problem must be handled in such a way that the program does not fail, or if it does fail at

least it does so gracefully. So we start this section by looking at what errors can occur

and the steps you must take to handle those errors.

2.1 Exceptions, files and streams

Unit 8 introduced you to the idea of errors and the need to catch exceptions.

SAQ 2

Which statement do you use to trap an exception thrown by a method?

ANSWER...............................................................................................................

The try–catch statement is used.

Exercise 1

We have indicated that non-existence of a file is a potential problem when reading from

files. Suggest some other potential problems of reading from and writing to files.

Solution.................................................................................................................

Possible problems include:

c trying to overwrite a file which is read-only;

c trying to write to a file when there is no space on the disk;

c trying to read from a file which has become corrupted – so though it exists, it does

not contain the data expected by the program.

In Unit 8 you learnt about unchecked exceptions. Unchecked exceptions should not

occur in normal program use, and their occurrence usually indicates that the

programmer has failed to take into account a problem which was predictable and

should have been guarded against. Programming errors that can result in unchecked

exceptions include: failing to test that an index is within the bounds of an array; dividing

a number by zero; and, as in the final part of Activity 3, using null where an object was

expected. In this last case, the test needed was

(pathname != null)

and only if this was true should the statement File aFile = new File(pathname);

have been executed. Alternatively the statement File aFile = new File(pathname);

could have been put within the try block of a try–catch statement, with the catch

block taking remedial action if an exception occurred. Unchecked exceptions all inherit

2 Simple writing and reading of text files 15



from the class RuntimeException, and the Java compiler does not force a programmer

to try and catch them.

The problems identified in Exercise 1 are all checked exceptions. For example, trying

to read from a file which has become corrupt will throw a checked exception. We cannot

know in advance whether a file has become corrupt, but we are aware that it might

happen and need to check that the file has been read successfully. Checked exceptions

have to be caught in a try–catch statement. Checked exceptions are known as such

because the Java compiler checks that any code which can throw a checked exception

is inside a try–catch statement, ensuring that if an exception occurs the catch block

will handle the exception in some way. If you try to compile code which could result in a

checked exception and you do not surround it by a try–catch statement you will get a

compile-time error message such as:

unreported exception java.io.FileNotFoundException; must be caught or

declared to be thrown

You then need to identify what code throws the checked exception and put it in within an

appropriate try–catch statement.

The question then becomes: how do we know if a method or constructor throws a

checked exception? The answer is to look in the documentation of the Java Class

Libraries.

If you look at the documentation for constructors from the classes FileWriter (which

you will use in the next subsection) and File, you can see how to distinguish between

checked and unchecked exceptions:

public FileWriter(File file) throws IOException

Constructs a FileWriter object given a File object.

Parameters:

file – a File object to write to.

Throws:

IOException – if the file exists but is a directory rather than a regular file,

does not exist but cannot be created, or cannot be opened for any other reason

public File (String pathname)

Creates a new File instance by converting the given pathname string into an

abstract pathname. If the given string is the empty string, then the result is the empty

abstract pathname.

Parameters:

pathname – A pathname string

Throws:

NullPointerException – If the pathname argument is null

You can open the Java
Class Libraries
documentation from
BlueJ’s Help menu.

Unit 12 Streams, files and persistent objects16



We can tell at once that the FileWriter constructor throws a checked exception,

because the header contains what is known as a throws clause:

public FileWriter(File file) throws IOException

This shows that the exception thrown is an IOException. Further on there is then a

paragraph describing when the exception will occur:

Throws:

IOException – if the file exists but is a directory rather than a regular file,

does not exist but cannot be created, or cannot be opened for any other reason

The File constructor also throws an exception, but it is an unchecked exception; we

can see this because there is no throws clause in the constructor’s header. From the

paragraph describing the throws clause we can see that it is an instance of

NullPointerException which is thrown. NullPointerException is a direct subclass

of RuntimeException, and you know from Unit 8 (Subsection 3.2) that a

RuntimeException is an unchecked exception, which the compiler does not force the

programmer to catch.

Reading the documentation tells us that when we use the FileWriter constructor we

must enclose it in a try–catch statement, but the File constructor can be used without

try–catch (although we ought to check that the pathname is not null, unless we want

to risk a NullPointerException!).

Throughout the rest of this unit you need to be aware that constructors and methods of

classes in the java.io library often throw checked exceptions, which you will need to

catch in try–catch statements.

2.2 Writing to a file

In Subsection 1.1 you learnt that the Reader and Writer classes of the java.io library

handle textual information made up of characters and strings, whereas the

InputStream and OutputStream classes handle binary data.

In this subsection we look at writing characters to a text file, so we will use a subclass of

the Writer class. Note that the files we produce here are just ordinary files. Not only can

we inspect them from Notepad or WordPad, but they can also be edited.

The FileWriter class

The simplest Writer class you can use to open an output stream to write text to a file is

FileWriter. However, first we need to create a File object to describe a physical file,

just as we did in Subsection 1.2:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

Now we can create an instance of FileWriter using our instance of File as an

argument to the FileWriter constructor with the following signature:

FileWriter(File)

The constructor will throw an IOException if the physical file described by its argument

cannot be opened. If the file specified does not exist, but the folder in which it should be

found is there, then the physical file will be created and no error is thrown. We are

opening the file to write something to it, so it is perfectly reasonable to specify a non-

existent file. However, if the file exists, but is marked as read-only then you will again get

2 Simple writing and reading of text files 17



an IOException. This is why it is sensible on creating the File object to test whether it

exists (and if so ask the user whether it should be overwritten) and test whether it is read-

only (and if so ask the user to choose another file). Although it is prudent to carry out the

tests, our examples will not include them since we wish to keep our code as concise as

possible, in order to concentrate on the teaching of reading and writing to files.

Because FileWriter constructors can throw checked exceptions, the code for the

creation of a FileWriter object must be written within the try block of a try–catch

statement:

try

{

FileWriter aFileWriter = new FileWriter(aFile);

// Code to write to the file goes here

}

catch (Exception anException)

{

// Code to catch any exceptions thrown by the FileWriter constructor

}

This would give us the following situation:

Figure 5 A FileWriter object acting as a stream between a source and a sink

Characters or strings can now be written one at a time to the file, via the FileWriter

stream using write()messages, as follows:

aFileWriter.write('H');

aFileWriter.write('e');

aFileWriter.write('l');

aFileWriter.write('l');

aFileWriter.write('o');

aFileWriter.write(System.getProperty("line.separator"));

aFileWriter.write("World");

The code System.getProperty("line.separator") is simply a way of getting a

platform-independent line break into the file.

You may be familiar with using the ‘newline’ escape sequence \n to end a line, and it is

after all much quicker to add \n on to the end of a string than to use an additional

statement. However, although \n works in the Display Pane, not all applications will

interpret it in the way we might expect. For example, suppose you were to use the

following statements to write to a file:

aFileWriter.write("Writing line 1 to a file.\n");

aFileWriter.write("Writing line 2 to a file.\n");

aFileWriter.write("Writing line 3 to a file.\n");

program

source

file

sink

D*-&V4*6&4 object

D*-&V4*6&4 object acts as a stream
between source and sink

Unit 12 Streams, files and persistent objects18



Then if you opened the resultant file in Notepad you would see this:

Writing line 1 to a file.tuWriting line 2 to a file.tuWriting line 3 to a file.tu

In fact whether \n will produce a new line also varies between different operating

systems, so if you want your program to be portable it is best to use

System.getProperty("line.separator"), because it is guaranteed to work

correctly. Note that it is a string, so you can assign it to a variable and then concatenate

it like any other string, for example:

String newLine = System.getProperty("line.separator");

aFileWriter.write("Greetings earthlings." + newLine);

aFileWriter.write("Take me to your leader!");

Once the data has been written to the file, the FileWriter stream needs to be closed

(the reasons for this are explained later). This is easily done with a close()message:

aFileWriter.close();

Putting all the code together from the steps above we get the following:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

try

{

FileWriter aFileWriter = new FileWriter(aFile);

aFileWriter.write('H');

aFileWriter.write('e');

aFileWriter.write('l');

aFileWriter.write('l');

aFileWriter.write('o');

aFileWriter.write(System.getProperty("line.separator"));

aFileWriter.write("World");

aFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

Finally we will now explain the catch block of the try–catch statement. The constructor

FileWriter() can throw instances of IOException, yet we have decided to declare

the argument to the catch block as being of type Exception. This means that the catch

block will catch any exception that is an instance of any subclass of Exception,

including of course IOException. We have done this to keep things simple.

Notice the print statement inside the catch block. It is recommended that you use such

a print statement in all catch blocks, as it will give you both the class of the exception

and the message associated with it. For example, if you selected the file backup.txt

from the file chooser dialogue box, which would cause the FileWriter() constructor to

throw an exception, the print statement would display the message

Error: java.io.FileNotFoundException:

C:\Documents and Settings\<username>\My Documents\M255\M255Projects\

Unit12_Project_1\backup.txt (Access is denied)

which in most cases should be sufficient to help you diagnose the problem.

2 Simple writing and reading of text files 19



Sometimes programmers are tempted to save effort by using empty catch blocks:

catch (Exception anException)

{

}

This is not wise! If an exception occurs something must have gone wrong, but because

the catch block contains no print statement there will be no feedback to indicate where

or what the problem is.

ACTIVITY 4

Launch BlueJ and open the project Unit12_Project_1. Open the OUWorkspace and

following the pattern given above, write statements to do the following.

1 Set the pathname of a new file (enter the filename firstWriteTest.txt when

requested).

2 Create a new File object.

3 Within a try block, create an instance of FileWriter, then:

(a) using a write() message, write the string "To be or not to be" to the

FileWriter stream;

(b) write a linebreak to the FileWriter stream;

(c) write the string "That is the question" to the FileWriter stream;

(d) close the FileWriter.

4 Write a catch block to catch any exceptions.

Once you have written all the code, select it all and execute it.

You can test that your code worked by examining the contents of the file in one of two

ways:

c Select Open from the OUWorkspace’s File menu. You will be asked via a dialogue

box whether you want to insert the contents of any file you select into the Code Pane

or whether you want to replace the contents of the Code Pane with the contents of the

file. Choose to insert, and then select your new file – its contents will appear at the

bottom of the Code Pane.

c Use Windows Explorer to navigate to the folder containing the Unit12_Project_1

project, and double-click on the file to open it (in most cases the file will be opened in

Notepad). Check that it contains the correct text. Close Notepad (or your default text

editor if different).

In the final part of this activity you are going to reuse the code you have already written to

write once more to the file firstWriteTest.txt. Modify your code so that it now writes

just the string "Whether 'tis nobler in the mind" to the file. Select and execute your

code and then check the contents of the file – are the contents what you expected?

Use Windows Explorer to
check that there is not
already a file called
firstWriteTest.txt in the
Unit12_Project_1 folder. If
there is such a file you
must either rename it or
use a different pathname
throughout the activity.

Unit 12 Streams, files and persistent objects20



DISCUSSION OF
ACTIVITY 4

Your code should look similar to this:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

try

{

FileWriter aFileWriter = new FileWriter(aFile);

aFileWriter.write("To be or not to be");

aFileWriter.write(System.getProperty("line.separator"));

aFileWriter.write("That is the question");

aFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

Alternatively, the first line of code could be written like this:

String pathname = OUFileChooser.getFilename("firstWriteTest.txt");

giving the name of the file directly, and letting the getFilename() method supply the

rest of the pathname, so avoiding use of the file chooser dialogue box.

You should find that the file contains the following:

To be or not to be

That is the question

After you have modified your code to write the single string "Whether 'tis nobler in

the mind" to the file firstWriteTest.txt, you will find that the file now contains only

that string – the previous contents of the file have been overwritten!

Congratulations! You have just created and written to your first file. You may have been

surprised to discover that reopening the file and writing to it again overwrote the

previous contents. However, in many situations this is exactly what we want. If we want

to append to a file rather than overwrite its previous contents we need to use a different

FileWriter constructor. Here is its header:

public FileWriter(File file, boolean append) throws IOException

If the second argument to this constructor is true, then characters will be written to the

end of the file rather than overwriting the previous contents.

2.3 Reading from a file

In the previous subsection we learnt how to write to a file. In this subsection we look at

reading characters from a text file, and to do so we will use a subclass of the Reader class.

The FileReader class

The simplest Reader class you can use to open an input stream to read characters from

a file is the FileReader class. Just as for writing to a physical file, we first need to create

a File object to describe the physical file we want to read:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

2 Simple writing and reading of text files 21



Now we can create an instance of FileReader and use our instance of File as an

argument to the FileReader constructor with the following header:

FileReader(File file)

The constructor will throw a FileNotFoundException if the physical file described by

its argument file does not exist, if it is a directory, or if for some other reason it cannot be

opened for reading. Hence code that uses the constructor must be put into the try

block of a try–catch statement:

try

{

FileReader aFileReader = new FileReader(aFile);

// Code to read from the file goes here

}

catch

{

// Code to catch any exceptions thrown

}

This would give us the following situation:

Figure 6 A FileReader object acting as a stream between a source and a sink

Characters can now be read one at a time from the file, via the FileReader stream using

read() messages. The read()method returns an integer (the ASCII value of the

character read from the stream), or –1 if the end of the stream has been reached. If we

wish to print the value returned by read() as a character (for example, to the Display

Pane) we need to cast the integer into a char. For example:

int ch = aFileReader.read();

System.out.print((char) ch);

To read and print out the entire contents of a file we need to use a while loop, which will

continue looping until read() returns -1 (i.e. the end of the stream has been reached).

For example:

int ch = aFileReader.read();

while (ch != -1)

{

System.out.print((char) ch);

ch = aFileReader.read();

}

Finally of course we need to close the stream with

aFileReader.close();

and of course write the code for the catch block, which would be exactly the same as

the code for the FileWriter examples.

program

sink

file

source

D*-&Q&a%&4 object

D*-&Q&a%&4 object acts as a stream
between source and sink

Unit 12 Streams, files and persistent objects22



ACTIVITY 5

Launch BlueJ and open the project Unit12_Project_1. Check that the file

firstWriteTest.txt exists in the folder Unit12_Project_1, and that it contains some

characters. Then open the OUWorkspace, and following the pattern given above, write

the code to read the contents of the file firstWriteTest.txt, printing the contents to the

Display Pane.

DISCUSSION OF
ACTIVITY 5

Your code should look similar to this:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

int ch;

try

{

FileReader aFileReader = new FileReader(aFile);

ch = aFileReader.read();

while (ch != -1)

{

System.out.print((char) ch);

ch = aFileReader.read();

}

aFileReader.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

2 Simple writing and reading of text files 23



3 Buffering and wrapping classes

In Section 2 we started writing and reading characters to and from files. The classes we

used to accomplish this were FileWriter and FileReader. While these classes

seemed to work well for us, they are in fact a very inefficient way to read and write any

sizeable amount of data to and from files. This is because reading and writing to

physical files on a hard disk (or any other peripheral device) are processor-intensive

operations: each write to a FileWriter stream involves another subsequent write to the

physical file, and every read from a FileReader stream involves another read from the

physical file. Furthermore a program can write or read data to or from memory (i.e. to or

from a stream) far faster than the operating system can (behind the scenes) write or

read that data to or from a physical file on a peripheral device. Hence, using

FileReader and FileWriter classes in this way can slow a program down to the

speed at which data can be read from and written to the physical device.

So we have a mismatch of capabilities: the speed at which a program can write to or

read from a stream (which is relatively fast); and the speed at which the operating

system can read from or write to a file on a peripheral device (which is relatively slow).

The answer to this is to use what are termed buffers, which are explained in the next

subsection.

3.1 Buffers

Among the classes in java.io are the Buffered classes: BufferedReader,

BufferedWriter, BufferedInputStream and BufferedOutputStream. Why are these

classes important?

You were introduced to the idea of buffers in Unit 9 (Section 5). An instance of

StringBuilder has an underlying character array which is usually larger than the

number of characters held. The ‘empty’ array positions form a buffer, which is used

when the characters held in the StringBuilder object are changed.

You can think of a buffer as a mechanism to even out supply and demand. For example,

Figure 7 shows a water butt. The butt is filled via a drainpipe. When it rains, water is

collected from the gutters of the house and flows down the drainpipe into the water butt.

When it is raining, the gardener does not need to water the garden, so the rainwater is

stored in the water butt. After a few dry days, the gardener will need to water the garden

and the watering can is filled via the tap in the water butt. Unless there is a prolonged

dry spell, there will be sufficient water in the water butt for the gardener to water the

garden without the water butt running dry. So the water butt is acting as a buffer allowing

the storage of water at a time when it is raining and allowing use of the water when it is

not.

Unit 12 Streams, files and persistent objects24



Figure 7 A water butt as a buffer enabling the gardener to even out the supply of and demand for
water in a garden

In a similar way, a program may produce data faster than it can be written to a file on a

hard disk. Rather than forcing the program to run more slowly, so that data is produced

at the same rate at which it can be written, the program can write the data to a buffer,

which holds it temporarily until it can be written to the file. In this case, we can see the

program as the producer (it is generating the data) and the file as the consumer (it is

accepting and storing the data). By using a buffer we are making the producer and

consumer more independent of one another, so they can work at different rates or on

different-sized chunks of data.

Most programming languages and operating systems use buffers to store data as it is

transferred between a program and an external device (e.g. hard disk, CD, DVD, printer

or scanner). By using a buffer, the external device can access the buffer in its preferred

way and the program can access the buffer as required. This decoupling of the program

and external device improves efficiency. In Java this efficiency is gained by using the

Buffered stream classes (BufferedReader, BufferedWriter, BufferedInputStream

and BufferedOutputStream) for input and output. For writing and reading text files we

shall use the BufferedWriter and BufferedReader classes. You will see how we do

this in the next subsection.

3.2 Wrapping stream classes

You might think that if you wanted to open a BufferedWriter to write to physical file,

you could do something like the following:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

BufferedWriter aBufferedWriter = new BufferedWriter(aFile);

However, you would quickly find that this would not compile. If you examine the

documentation for the class BufferedWriter you will see that neither of its constructors

accepts a File argument and both require an argument of type Writer, for example:

public BufferedWriter(Writer out)

3 Buffering and wrapping classes 25



This may seem rather perverse, because BufferedWriter is itself a subclass of

Writer!

However, if you think back to Activity 1 you will remember that there are many writer

classes in the Writer hierarchy, including FileWriter and PrintWriter. Any of these

Writer classes may need to be buffered for efficiency reasons. One approach would be

to write a buffered version of each class giving BufferedFileWriter,

BufferedPrintWriter etc., but this would give us a plethora of new classes. A far

better approach is to write a single new class (BufferedWriter) that can be wrapped

round objects of any particular non-buffered Writer class as required, for example:

BufferedWriter bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

BufferedWriter bufferedPrintWriter = new BufferedWriter(new PrintWriter(aFile));

Both of the above statements takes a non-buffered Writer object and layers the extra

functionality – the buffering – on top. The beauty of this solution is that we need define

only one extra class, instead of the umpteen that would be required otherwise.

We could assign an instance of FileWriter to a variable like this:

FileWriter aFileWriter = new FileWriter(aFile);

We could then use that variable as the argument to the BufferedWriter constructor

with the signature BufferedWriter(Writer out):

BufferedWriter bufferedFileWriter = new BufferedWriter(aFileWriter);

But as we never need to refer directly to the FileWriter object, it can be created

anonymously as an argument to the BufferedWriter constructor, as shown in the first

example above.

Here is what an instance of BufferedWriter might look diagrammatically:

Figure 8 Using a BufferedWriter to provide a temporary storage area for data produced by a
program before it is written to a file

program

(source)

file

(sink)

D*-&V4*6&4 object

program fills buffer with multiple 94*6&#$ messages

D*-&V4*6&4 object acts as a stream between
buffer and sink, and transfers the contents of
the buffer to the file with a single 94*6&#$

Unit 12 Streams, files and persistent objects26



Now when we want to write to a text file, we write characters or strings to the buffer, then

when the buffer is full, or if we explicitly flush it with a flush() message, the entire

contents of the buffer is written to the FileWriter stream as an array of characters. So

instead of lots of processor intensive writes to the physical file, we just have one big one,

which is much more efficient. Note also that when you send a close() message to a

BufferedWriter, its contents are automatically flushed to the stream before it closes.

Similarly, to read files we can wrap a FileReader with a BufferedReader as follows:

BufferedReader bufferedFileReader = new BufferedReader(new FileReader(aFile));

Here is what an instance of BufferedReader might look diagrammatically:

Figure 9 Using a BufferedReader to provide a temporary storage area for data from a file
before it is read by a program

As well as providing buffering, the classes BufferedWriter and BufferedReader also

define two important and useful methods. BufferedReader provides the method

readLine(), which reads in a whole line of text from the buffer as a string. (Remember

when just using a FileReader, we could read only one character at a time, as an ASCII

value, which we then had to cast into a char.) BufferedWriter provides the method

newLine(), which simplifies adding a platform-independent line break to a text file.

The first readLine()message sent to an instance of BufferedReader, before returning

the first line of the file, causes the FileReader stream to completely fill the buffer with

data from the file, in a single read. Subsequent readLine()messages gradually empty

the buffer, and it’s not until the buffer is empty that the FileReader needs to refill the

buffer with data from the file.

3.3 Writing to a file using a BufferedWriter

In this subsection we shall briefly look at the code needed to use a BufferedWriter to

efficiently write to a file. At first glance this code looks very similar to the type of code we

wrote using the FileWriter class, but there are some subtle differences which we have

labelled with numbers:

file

(source)

D*-&Q&a%&4 object

program empties buffer a line at a
time with 4&a%J*0&#$ messages

program

(sink)

D*-&Q&a%&4 object acts as a stream between
source and buffer, and can fill the buffer with a
single 4&a%#$ of the source

3 Buffering and wrapping classes 27



String pathName = OUFileChooser.getFilename();

File aFile = new File(pathName);

BufferedWriter bufferedFileWriter = null; //1

try

{

bufferedFileWriter = new BufferedWriter(new FileWriter(aFile)); //2

bufferedFileWriter.write("Writing to a file");

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally //3

{

try

{

bufferedFileWriter.close(); //4

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

The first difference (labelled 1) is that we declare a variable of type BufferedWriter

before the try block in which it is assigned an instance of BufferedWriter, whereas

with the FileWriter examples we declared a variable of type FileWriter and

assigned to it a FileWriter object in the try block of the try–catch statement. The

reason we have done this is because if we were to declare the variable

bufferedFileWriter inside the try statement block, it would be local to that block and

could not be accessed from outside that block. For reasons which will become clear

when we discuss the line of code labelled 3, we need to access the variable from

outside the try block. The other thing to note about this variable declaration is that we

have initialised it to null. We have done this because otherwise when the compiler

came to parse the line labelled 4 it would display the warning message

variable bufferedFileWriter might not have been initialized

and highlight the line of code labelled 4. The compiler does this because if at run-time

the line labelled 2 caused an exception, bufferedFileWriter would indeed not be

initialised.

The line labelled 2 is simply the creation of the BufferedWriter object, which we

discussed at length in Subsection 3.2.

The line labelled 3 introduces a new keyword – finally. This is an optional part of a

try–catch statement which is very important to use when working with streams and

files. It provides a cleanup mechanism which executes regardless of what happens

within the try block. If code within the try block throws an exception, the code in the

finally block will be executed before exception handling passes control to a different

part of the program. Hence, finally blocks are typically used to guarantee the closure

of files or to release other system resources.

You will notice that we close the BufferedWriter in the above code at the line

labelled 4 within the finally block. Although finally is semantically part of the

try–catch block, it has its own scope and is unable to refer to variables that are local to

the try block, which is why we had to declare our variable bufferedFileWriter

outside, and before, the try block in the line labelled 1.

Unit 12 Streams, files and persistent objects28



Because the close()method can itself throw an IOException (if for some reason the

stream cannot be closed) we need to enclose it in a further try–catch statement nested

within the finally block.

From now on in this unit we will close all streams from within a finally block rather than

from within the try block, as we have been doing previously. We should really have

done this with the FileWriter and FileReader streams too, but we did not want to give

you too many new concepts all at once. Consider the following code:

try

{

bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

bufferedFileWriter.write("Writing to a file");

bufferedFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

If the statement bufferedFileWriter.write("Writing to a file"); threw an

exception, the code bufferedFileWriter.close(); would not execute, as the catch

block would execute instead, then all execution would terminate and the file would

remain open. You will encounter the ramifications of leaving a file open in Activity 7.

ACTIVITY 6

Launch BlueJ and open the project Unit12_Project_1. Open the OUWorkspace.

Using an instance of BufferedWriter, write the following lines of text to a new file called

poem.txt:

Hope is the thing with feathers

That perches in the soul

And sings the tune without the words

And never stops at all

Once you have written (and closed!) the file poem.txt, check its contents to ensure your

code has worked properly.

After you have completed the activity, keep the OUWorkspace open, and immediately do

Activity 7, which uses the code that you write for this activity.

3 Buffering and wrapping classes 29



DISCUSSION OF
ACTIVITY 6

You code should look similar to this:

String pathname = OUFileChooser.getFilename("poem.txt");

File aFile = new File(pathname);

BufferedWriter bufferedFileWriter = null;

try

{
bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

bufferedFileWriter.write("Hope is the thing with feathers");

bufferedFileWriter.newLine();

bufferedFileWriter.write("That perches in the soul");

bufferedFileWriter.newLine();

bufferedFileWriter.write("And sings the tune without the words ");

bufferedFileWriter.newLine();

bufferedFileWriter.write("And never stops at all");

}

catch (Exception anException)

{
System.out.println("Error: " + anException);

}

finally

{
try

{
bufferedFileWriter.close();

}

catch (Exception anException)

{
System.out.println("Error: " + anException);

}
}

In the next activity you will learn why it is so important to close files.

ACTIVITY 7

Returning to the OUWorkspace and the code you wrote for Activity 6, change the name of

the file to be opened to poem2.txt:

String pathname = OUFileChooser.getFilename("poem2.txt");

Then comment out the try–catch statement nested in the finally block (using

/* and */) as shown below:

finally

{

/*

try

{
bufferedFileWriter.close();

}

catch (Exception anException)

{
System.out.println("Error: " + anException);

}
*/

}

Unit 12 Streams, files and persistent objects30



Next select and execute all the code from

String pathname = OUFileChooser.getFilename("poem2.txt");

to the closing brace of the finally block.

When the code has successfully executed, check the contents of poem2.txt – what do

you find? Is it what you expected?

Close Notepad if you used it to open the file.

Now try to delete poem2.txt, clicking on the Yes button when the Confirm File Delete

dialogue appears – what happens? Can you explain what has happened?

Now select and execute just the try–catch block nested in the finally block.

Again check the contents of poem2.txt, and then try to delete the file. What do you conclude?

DISCUSSION OF
ACTIVITY 7

When you comment out the nested try–catch statement within the finally block, you

find that after the code has been executed the file poem2.txt is empty. Then when you

try to delete the file you get the following error dialogue box:

Figure 10 Error dialogue box showing poem2.txt is still open

This indicates that the file poem2.txt is still open. Once you select and execute the

try–catch statement nested in the finally block and then check the contents of

poem2.txt once more, you should find that the file is no longer empty and now contains

the lines of the poem.

You should also find that the file can be deleted as you would expect.

It may not have surprised you to discover that the file could not be deleted until it had been

closed, but why was there no data in it when the write statements had been executed? The

answer is that the output is buffered and the characters you have written via the

BufferedWriter are still in the buffer. Closing the file flushes any characters remaining in

the buffer to the file before it is closed, ensuring that all the information is written.

3.4 Reading from a file using a BufferedReader

The basic pattern for reading from a text file using a BufferedReader is very similar to

the code we wrote for reading from a file using a FileReader, the differences being:

1 you must wrap an instance of FileReader with an instance of BufferedReader;

2 you read lines of text from the buffer with readLine()messages which you put

within a while loop which terminates when readLine() returns null;

3 just as we did with an instance of BufferedWriter, you should close a

BufferedReader from a try–catch statement nested within a finally block.

3 Buffering and wrapping classes 31



ACTIVITY 8

If they are not already open, launch BlueJ, open the project Unit12_Project_1, and then

open the OUWorkspace. Using an instance of BufferedReader, open the file poem.txt

that you created in Activity 6, and print the contents to the Display Pane.

DISCUSSION OF
ACTIVITY 8

Your code should look similar to this:

String pathname = OUFileChooser.getFilename("poem.txt");

File aFile = new File(pathname);

BufferedReader bufferedFileReader = null;

try

{

String currentLine;

bufferedFileReader = new BufferedReader(new FileReader(aFile));

currentLine = bufferedFileReader.readLine();

while (currentLine != null)

{

System.out.println(currentLine);

currentLine = bufferedFileReader.readLine();

}

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally

{

try

{

bufferedFileReader.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

Unit 12 Streams, files and persistent objects32



4 Making objects persistent using
text files

So far in this unit we have written text to files and read text from files. In this section we

will continue to work with text files, but in a way that will allow us to make objects

(specifically Account objects) persistent. By making an object persistent, we mean

saving the state of an object to a file on non-volatile storage, such as a hard disk, in such

a way that the file can be read back into memory to recreate that object.

4.1 Writing the details of Account objects to

file

To facilitate writing and reading the state of Account objects to and from files we will

develop a utility class called AccountsIO. But first, in the next activity, we will refresh

your knowledge of Account objects and how to iterate over collections, something you

will need to do when developing the AccountsIO class.

ACTIVITY 9

Launch BlueJ and open the project Unit12_Project_2. You can see that this contains the

familiar Account and CurrentAccount classes. Open the OUWorkspace and from its

File menu open the text file Activity9.txt. This will load into the Code Pane the

statements needed to create a number of Account objects and add them to a set. Select

and execute these statements to create the set of Account objects.

Your task in this activity is to write the code to iterate over the set of Account objects

(referenced by accountSet), printing details about the state of the objects (using

System.out.println()) to the Display Pane. Your code should first print out a string

describing what the output means, followed by the details for each account, like this:

Account Details (Holder, Account Number and Balance)

John Smith 020 150.0

David Green 010 50.0

Mary Jones 030 175.5

Note that because the Account objects are held in a set, and sets have no particular

order associated with them, your output to the Display Pane may print out the state of the

accounts in a different order.

DISCUSSION OF
ACTIVITY 9

Your code should look similar to the following:

System.out.println("Account Details (Holder, Account Number and

Balance)");

for (Account eachAccount : accountSet)

{

System.out.println(eachAccount.getHolder() + " "

+ eachAccount.getNumber() + " "

+ eachAccount.getBalance());

}

Sets were introduced in
Unit 10.

4 Making objects persistent using text files 33



Now you have refreshed your memory of sets, accounts and iteration, it is time to start

developing the AccountsIO class that we will use to write the details of account objects

to file and then read those details back to recreate the original account objects.

ACTIVITY 10

If it is not already open, Launch BlueJ and open the project Unit12_Project_2.

Click on the New Class button on the left-hand side of the BlueJ window and, when

prompted, type in the class name AccountsIO. When the icon for the new class appears

in the BlueJ window, double-click on it to open the editor.

You will need to import the collection classes from the library java.util, the stream

classes from the library java.io and the class OUFileChooser from the library ou. So at

the top of the class file insert the following import statements:

import java.util.*;

import java.io.*;

import ou.*;

The next step is to write a class method called generateReport() to write the details of

a collection of Account objects to a file using an instance of BufferedWriter. Here is

the method heading:

/**

*Prompts the user for a pathname and then attempts to open a stream

* on the file specified by the pathname. The method then writes

* the details of the accounts held in the argument accountCollection

* to the stream. The account details are preceded by an explanatory

* heading explaining the order of the information.

*/

public static void generateReport(Collection<Account> accountCollection)

Here is how you should tackle writing the method.

1 Prompt the user for a file name using a file chooser dialogue box, and use the

returned pathname to create an instance of the File class.

2 Declare a variable of type BufferedWriter named bufferedFileWriter, and

initialise it to null.

3 Within a try block, create an instance of BufferedWriter that wraps an instance of

FileWriter and assigns it to the variable bufferedFileWriter. Next, using a

write()message to bufferedFileWriter, write out to the stream what the output

means, that is:

Account Details (Holder, Account Number and Balance)

Follow this with a newLine() message.

Then iterate over the set of accounts referenced by the instance variable

accountCollection, in a manner similar to Activity 9, but instead of sending a

println() message to System.out send a write() message to

bufferedFileWriter, followed by a newLine() message.

4 Write a catch block to catch any exceptions.

5 Write a finally block with a nested try–catch statement to close the

BufferedWriter.

Once you have got your class to compile, open the OUWorkspace. From its File menu open

the text file Activity10.txt, which will load into the Code Pane the code needed to test

your generateReport() method. Once the code appears in the Code Pane, select and

execute the code. When prompted for a file name by the file chooser dialogue box, enter the

name accountsReport.txt. Finally check the contents of the text file written by

generateReport() (using Notepad) to ascertain that everything has worked correctly.

Unit 12 Streams, files and persistent objects34



DISCUSSION OF
ACTIVITY 10

The code for the class AccountsIO should be similar to the following (we have deleted

the default constructor that BlueJ automatically inserts):

import java.util.*;

import java.io.*;

import ou.*;

/**

* AccountsIO is a utility class that uses static methods to

*read from and write to text files the details of Account objects.

*

* @author M255 Course Team

* @version 1.0

*/

public class AccountsIO

{

public static void generateReport(Collection<Account> accountCollection)

{

String pathName = OUFileChooser.getFilename();

File accountFile = new File(pathName);

BufferedWriter bufferedFileWriter = null;

try

{

bufferedFileWriter = new BufferedWriter(new FileWriter(accountFile));

bufferedFileWriter.write

("Account Details (Holder, Account Number and Balance)");

bufferedFileWriter.newLine();

for (Account eachAccount : accountCollection)

{

bufferedFileWriter.write(eachAccount.getHolder() + " "

+ eachAccount.getNumber()+ " "

+ eachAccount.getBalance());

bufferedFileWriter.newLine();

}

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally

{

try

{

bufferedFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

}

}

4 Making objects persistent using text files 35



The method generateReport() should produce a text file containing the following:

Account Details (Holder, Account Number and Balance)

John Smith 020 150.0

David Green 010 50.0

Mary Jones 030 175.5

Note that because the collection used as an argument to generateReport() is a set,

and sets have no particular order associated with them, the text in your file may show the

state of the accounts in a different order. This text file is designed to be read by a

person. We could work out ways to present the information in neatly aligned columns

etc., but for now it is sufficient to allow us to see the details of the accounts held.

If you had any problems with Activity 10, the class AccountsIO as developed so far has

been added to Unit12_Project_3.

4.2 Writing files that can be used to recreate

objects

In the previous activity you created a new utility class, AccountsIO, and wrote the static

method generateReport(), which creates a text file which exactly reflects the current

state of a collection of Account objects given as its argument. So in some sense it

makes the data represented by those account objects persistent. What we look at in the

remainder of this section is what we need to do to create a text file that when

subsequently read programmatically can be used to recreate those account objects.

Exercise 2

Look again at the text written to the file generated by generateReport(). Can you see

any problems with using this data file to recreate, programmatically, the account objects it

describes? How do you think they might be overcome?

Solution.................................................................................................................

The first line in the file is:

Account Details (Holder, Account Number and Balance)

This is an informal description of the account details given in the subsequent lines. The

information helps human users understand the data that follows but is not sufficiently

precise to allow a program to read the subsequent lines to recreate the account objects.

Although a program could be written to recognise that each line in the file represents an

account object it needs to recreate, there is a problem. Each line of the report contains

four or five groups of characters separated by a space, and the program would have no

way of knowing if an account holder’s full name consisted of two, three or more names;

so it would have no way of knowing whether the third group of characters represents

part of a holder’s name or an account number.

This problem arises because we are using the space character in two different ways: to

separate individual names within an account holder’s full name; and to delimit (separate)

the values of the different instance variables within the account object. The solution to

this problem is to use an alternative character to delimit the values of the different

instance variables. One of the standard delimiters used in files is the comma, and the

delimited values are called ‘tokens’.

Unit 12 Streams, files and persistent objects36



The discussion of Exercise 2 would suggest that the first line of the file, which describes

how the data that represents the account objects is laid out in the file, is of no use to a

program which needs to use the data to recreate the objects, and that instead the file

should have the following structure:

John Smith,020,150.0

David Green,010,50.0

Mary Jones,030,175.5

The description of each account object is on a separate line, just as before, but the value

of each instance variable is separated from the next by a comma. A file in this format is

known as a CSV or comma-delimited file. ‘CSV’ stands for either comma-separated

variables or comma-separated values, and we say that each comma delimits

neighbouring tokens. So in the line

John Smith,020,150.0

the tokens are "John Smith", "020" and "150.0".

ACTIVITY 11

If necessary launch BlueJ and open the project Unit12_Project_3, to which the

AccountsIO class as so far developed has been added.

In this activity you are going to write a static method called saveAccounts(). Here is the

method comment and header:

/**

*Prompts the user for a pathname and then attempts to open a stream

* on the file specified by the pathname. The method then writes

* the details of the accounts held in the argument accountCollection

* to the stream. The account details are written in CSV format.

*/

public static void saveAccounts(Collection<Account> accountCollection)

To write this method, copy and paste generateReport() and change the method name

to saveAccounts(); then simply change the code

bufferedFileWriter.write(eachAccount.getHolder() + " "

+ eachAccount.getNumber() + " "

+ eachAccount.getBalance());

so that it writes the data to file in CSV format.

Test the saveAccounts() method by loading and adapting the code given in

Activity10.txt. When prompted for a file name by the file chooser dialogue box, enter

the name savedAccounts.txt.

Finally check the contents of the text file written by saveAccounts() using Notepad, to

ascertain that everything has worked correctly.

4 Making objects persistent using text files 37



DISCUSSION OF
ACTIVITY 11

The method saveAccounts() is virtually the same as generateReport(). The only

changes are to the first try block, which should now look like this:

try

{

bufferedFileWriter = new BufferedWriter(new FileWriter(accountFile));

for (Account eachAccount : accountCollection)

{

bufferedFileWriter.write(eachAccount.getHolder() + ","

+ eachAccount.getNumber() + ","

+ eachAccount.getBalance());

bufferedFileWriter.newLine();

}

}

When you open savedAccounts.txt using Notepad you should see (though perhaps in

a different order)

John Smith,020,150.0

David Green,010,50.0

Mary Jones,030,175.5

with the details of each account on a separate line, and the values of the instance

variables delimited by commas.

If you had any problems with Activity 11, the class AccountsIO as developed so far has

been added to Unit12_Project_4.

4.3 Reading a text file using the Scanner

class

In the previous subsection you created a text file that held details of the states of

Account objects in CSV format. In this subsection you will learn how to read such a file

to recreate the described objects.

From your experiences of reading files in Section 3, you might imagine that we would

simply use an instance of the BufferedReader class to read a text file saved in CSV

format, in order to recreate the objects represented by the data in the file. Well we could,

and we might, but then we would have to think of how to programmatically chop up each

line that was read, into the comma delimited tokens – this would be tedious. Fortunately

the library java.util provides a class called Scanner that will do all the hard work for

us.

ACTIVITY 12

If it is not already open, launch BlueJ. From the Help menu select Java Class Libraries.

When your browser opens, select java.util from the top-left scrollable frame. Then

from the bottom-left scrollable frame select the Scanner class.

Explore the documentation for the Scanner class and try to find some constructors and

methods that might help you to read a text file in CSV format and split each line into its

various tokens.

Unit 12 Streams, files and persistent objects38



DISCUSSION OF
ACTIVITY 12

You should have discovered that the Scanner class has many constructors. You may

have found the following constructor:

public Scanner(Readable source)

You might also have discovered that the BufferedReader class implements the

Readable interface, and so this constructor would be useful in conjunction with an

instance of BufferedReader.

We have been working with strings a lot in this unit, so the following constructor may

have caught your eye:

public Scanner(String source)

The following method may also have caught your attention:

public boolean hasNextLine()

It returns true if there is another line in the source (the argument given to the constructor)

and false otherwise – such a method would be useful to control a while loop.

The method

public String nextLine()

returns the next line in a source – so this method would be useful for getting the next line

in a multi-line source such as a File, FileReader or BufferedReader.

We have been discussing CSV files, and how commas can be used to delimit tokens. So

the following method looks useful:

public Scanner useDelimiter(String pattern)

It informs a Scanner object about the character(s) used to delimit tokens in the source.

The method

public boolean hasNext()

returns true if the there is another token in the source, so again this looks useful for

controlling a while loop.

The method

public String next()

returns the next token in the source as a string – this looks very promising.

Another method that might prove useful is:

public double nextDouble()

It returns the next token in the source as a double, but only if the characters in the token

can be interpreted as a double value.

From the previous activity you should have deduced that a Scanner object can be used

to parse a source such as a BufferedReader or a String into its constituent tokens. In

the next activity you will parse a string to print out the constituent components.

4 Making objects persistent using text files 39



ACTIVITY 13

In this activity you will investigate using a Scanner object to break down a string into its

constituent tokens. Launch BlueJ and open the OUWorkspace.

Enter the following code in the OUWorkspace:

Scanner aScanner = new Scanner("David Green,010,50.0");

while (aScanner.hasNext())

{

System.out.println(aScanner.next());

}

Note how the message-send aScanner.hasNext() is used to control the while loop.

The while loop will continue to execute until hasNext() returns false, i.e. when there

are no more tokens in the source. Note also how the next()message is used within the

while loop to return the next token in the source as a string.

Select and execute the above code, and observe the output in the Display Pane.

1 How many tokens are printed to the Display Pane?

2 What do you think is the default delimiter of a Scanner?

Now alter the code to include the statement aScanner.useDelimiter(","); as shown below:

Scanner aScanner = new Scanner("David Green,010,50.0");

aScanner.useDelimiter(",");

while (aScanner.hasNext())

{

System.out.println(aScanner.next());

}

Select and execute the modified code, and observe the output in the Display Pane.

3 How many tokens are printed to the Display Pane this time?

DISCUSSION OF
ACTIVITY 13

1 Two tokens are printed to the Display Pane. If there are more than two lines of text in

your Display Pane, check that you did not include any spaces around the commas

in the input text.

2 The string is split on the basis of the space character. The default delimiter of a

Scanner is one or more whitespace characters. Whitespace characters include

space, tab and newline characters.

3 Three tokens are returned: the tokens are now delimited by a comma rather than a space.

In the previous activity you saw how the message next() when sent to a Scanner

object returned the next token in the scanner’s source as a string. However, we may not

want the next token returned as a string, as the information held in the token may be a

character representation of a different type. Fortunately the class Scanner provides a

number of methods which will return the next token as a value of another type. For

example, nextInt() will return the characters comprising the next token as an int

value, so long as those characters can be interpreted as an int value – if they cannot,

an exception will be thrown. Similarly nextDouble() will return the characters

comprising the next token as a value of type double.

Note that there are no
spaces surrounding the
commas as otherwise the
spaces would be
interpreted as being part
of the tokens.

Unit 12 Streams, files and persistent objects40



ACTIVITY 14

Unless it is already open, launch BlueJ and open the project Unit12_Project_4. Then

open the OUWorkspace.

1 Use a Scanner to parse the source string

"David Green,010,50.0"

so that the extracted tokens are assigned to three variables, declared as follows:

String accountHolder;

String accountNumber;

double accountBalance;

Obviously the first two tokens you parse must be returned as strings and the third

must be returned as a double value. (Hint: you do not need a while loop to achieve

this.)

Once you have parsed the string and assigned values to the three variables, use

these variables as the arguments to an Account constructor to create and initialise an

Account object, which should be assigned to a variable named anAccount.

Once you have done this, inspect anAccount to ascertain that the Account object

has been correctly and successfully created.

2 Repeat the above activity, but this time using the string

"David Green,010,Fifty"

DISCUSSION OF
ACTIVITY 14

1 Your code should be similar to the following:

String accountHolder;

String accountNumber;

double accountBalance;

Account anAccount;

Scanner aScanner = new Scanner("David Green,010,50.0");

aScanner.useDelimiter(",");

//return the next token as a string

accountHolder = aScanner.next();

// return the next token as a string

accountNumber = aScanner.next();

// return the next token as a double

accountBalance = aScanner.nextDouble();

anAccount = new Account(accountHolder, accountNumber, accountBalance);

Inspecting anAccount should show that:

c accountHolder is set to "David Green";

c accountNumber is set to "010";

c accountBalance is set to 50.0.

2 When you repeated the activity with the string "David Green,010,Fifty", the

following error message should have appeared in the Display Pane:

Exception: line 12. java.util.InputMismatchException

The statement at line 12 is:

accountBalance = aScanner.nextDouble();

4 Making objects persistent using text files 41



What has happened is that nextDouble() is trying to convert the third token into a

double value but the third token consists of the characters F i f t y, which cannot

be converted to a double. Hence there is a mismatch between the expectation of

nextDouble() (it is looking for numeric characters) and what it finds (the alphabetic

characters F i f t y), and so the exception is thrown and no account is created.

Such exceptions can be avoided, as the Scanner class includes methods such as

hasNextInt() and hasNextDouble() which check whether the characters in the

next token are of the expected type. However, this of course would lead to lengthier,

more complicated code.

The previous activity has demonstrated how a scanner can be used to parse a string

into its constituent tokens. In Activity 8 you wrote code in the OUWorkspace to read the

contents of a file using a BufferedReader and printed the contents line by line to the

Display Pane. In Activity 11 you wrote a static method for AccountsIO that saved the

details of a collection of Account objects as characters in a text file in CSV format. In the

next activity you are going to bring this all together by completing a static method for the

AccountsIO class that will read a file containing the details of accounts in CSV format

and return a collection of Account objects constructed from those details.

ACTIVITY 15

If necessary launch BlueJ and open the project Unit12_Project_5. Double-click on the

AccountsIO class to open the editor. Scroll to the end of the file to find the static method

loadAccounts(). This is an incomplete method based largely on Activity 8, and we have

indicated with numbered comments where you need to add code.

1 Declare a variable of type Set and assign to it an instance of class HashSet.

2 Next, declare three variables as follows:

String accountHolder;

String accountNumber;

double accountBalance;

These will be used for the tokens that represent Account attribute values.

3 Declare a variable of type Scanner called lineScanner.

4 Create an instance of Scanner using the string object referenced by the variable

currentLine as the argument to the constructor. Assign the Scanner object to the

variable lineScanner.

5 Send a message to lineScanner to tell it that its source uses commas for the token

delimiters.

6 Just as you did in Activity 14, use lineScanner to parse the source string so that the

extracted tokens are assigned to the three variables accountHolder,

accountNumber and accountBalance.

7 Once you have parsed the source string and assigned values to the three variables,

use these variables as the arguments to an Account constructor to create and

initialise an Account object, which should be added to the set accountSet.

8 Finally, where indicated in the class file, return accountSet.

Once you have got AccountsIO to recompile, test your loadAccounts()method in the

OUWorkspace by executing the following code:

Set accounts = AccountsIO.loadAccounts();

When prompted for a file name, select the file Activity15_test1.txt, which holds

details of accounts in CSV format. After the code has executed, inspect the variable

accounts to ascertain that the set it references contains three Account objects. If there

is a problem you will need to debug your code!

Unit 12 Streams, files and persistent objects42



Once you are satisfied that your loadAccounts()method is working correctly, try it out

with the following files which have been designed to cause problems!

c Activity15_test2.txt

c Activity15_test3.txt

After each test, open the file with Notepad to look at its the contents, and then inspect

accounts. Does the set referenced by accounts contain Account objects that match

those described in the CSV file? Explain any error messages shown in the Display Pane.

DISCUSSION OF
ACTIVITY 15

Here is the code for the method loadAccounts():

public static Collection<Account> loadAccounts()

{

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

BufferedReader bufferedFileReader = null;

Set<Account> accountSet = new HashSet<Account>();

try

{

String accountHolder;

String accountNumber;

double accountBalance;

Scanner lineScanner;

bufferedFileReader = new BufferedReader(new FileReader(aFile));

String currentLine = bufferedFileReader.readLine();

while (currentLine != null)

{

lineScanner = new Scanner(currentLine);

lineScanner.useDelimiter(",");

accountHolder = lineScanner.next();

accountNumber = lineScanner.next();

accountBalance = lineScanner.nextDouble();

accountSet.add(new Account(accountHolder, accountNumber, accountBalance));

currentLine = bufferedFileReader.readLine();

}

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally

{

try

{

bufferedFileReader.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

return accountSet;

}

4 Making objects persistent using text files 43



When loadAccounts() is tested with the file Activity15_test1.txt, the accounts are

generated correctly from the file descriptions.

When loadAccounts() is tested with the file Activity15_test2.txt, the set

referenced by accounts contains only one Account object, and the message

java.util.InputMismatchException

appears in the Display Pane. Reading the file Activity15_test2.txt with Notepad,

you can see that in the second line of the file, the third token does not contain characters

that could represent a value of type double, so the exception

InputMismatchException is thrown.

When loadAccounts() is tested with the file Activity15_test3.txt, the set

referenced by accounts contains only two Account objects, and the message

java.util.NoSuchElementException

appears in the Display Pane. Reading the file Activity15_test3.txt with Notepad,

you can see that second line contains only two tokens, so the

NoSuchElementException is thrown.

If you had any problems with Activity 15, the class AccountsIO as developed so far has

been added to Unit12_Project_6.

In the previous activity you used a combination of a BufferedReader to read lines of

code from a file and a Scanner to then parse each line to extract the tokens. In

Activity 12, where you looked at the documentation for the Scanner class, you saw that it

had a constructor that took an argument of the interface type Reader. As the

BufferedReader class implements the Readable interface, you could create an

instance of Scanner whose source was a BufferedReader, i.e. you could wrap a

BufferedReader with a Scanner, just as you have previously wrapped a FileReader

with a BufferedReader. For example:

bufferedScanner = new Scanner(new BufferedReader(new FileReader(aFile)));

The above line of code creates a Scanner object which wraps a BufferedReader which

in turn wraps a FileReader. So why might we wish to wrap a BufferedReader with a

Scanner? The answer is for the additional protocol – the Scanner class provides some

useful methods which could be used to simplify reading from the buffer.

In particular the Scanner class has an instance method called hasNextLine() which

would have simplified the while loop in the loadAccounts()method, as it returns true

or false depending on whether there are any more lines in the source. For example, in

loadAccounts()we had to read the first line from the buffer before entering the while

loop, the while loop then tested that readLine() had not returned null, and then the

last line in the while loop read a line from the buffer again, as shown (in outline) below:

currentLine = bufferedFileReader.readLine();

while (currentLine != null)

{

...

currentLine = bufferedFileReader.readLine();

}

Unit 12 Streams, files and persistent objects44



If we had wrapped the BufferedReader with a Scanner we could have constructed the

while loop as follows:

while (bufferedScanner.hasNextLine())

{

currentLine = bufferedScanner.nextLine();

...

}

The message-send bufferedScanner.hasNextLine() returns true if there is another

line of text; otherwise it returns false. So the while loop will continue as long as there

are lines of text to be read. Now there is no need to read the first line from the buffer

before entering the while loop, and reading a line from the buffer occurs in only one

place – as the first line of the while block.

ACTIVITY 16

If necessary launch BlueJ and open the project Unit12_Project_6. Double-click on the

AccountsIO class to open the editor. Modify the loadAccounts()method so that it now

uses two Scanner objects: one that wraps a BufferedReader, as described above, to

read lines from the file, and another, created in the body of the while loop, to parse the

current line (returned by the first scanner) for the tokens to create an account (just as you

did in Activity 15). Do not forget to close the scanner that wraps the BufferedReader in

the finally block, in order to close the underlying stream.

DISCUSSION OF
ACTIVITY 16

Here is our code for the modified loadAccounts() method:

public static Collection<Account> loadAccounts()

{

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

Scanner bufferedScanner = null;

Set<Account> accountSet = new HashSet<Account>();

try

{

String accountHolder;

String accountNumber;

double accountBalance;

Scanner lineScanner;

String currentLine;

bufferedScanner = new Scanner(new BufferedReader(new FileReader(aFile)));

while (bufferedScanner.hasNextLine())

{

currentLine = bufferedScanner.nextLine();

lineScanner = new Scanner(currentLine);

lineScanner.useDelimiter(",");

accountHolder = lineScanner.next();

accountNumber = lineScanner.next();

accountBalance = lineScanner.nextDouble();

accountSet.add(new Account(accountHolder, accountNumber, accountBalance));

}

}

4 Making objects persistent using text files 45



catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally

{

try

{

bufferedScanner.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

return accountSet;

}

If you had any problems with Activity 16, the completed class AccountsIO has been

added to Unit12_Project_7.

4.4 Summary of stream classes, messages

and exceptions

Writing to a text file

1 Classes that make use of the stream classes need to import the java.io library:

import java.io.*;

2 In M255 you can get the pathname for a physical file name by invoking one of the

getFilename() methods on the OUFileChooser class, for example:

String pathname = OUFileChooser.getFilename();

3 When creating a File object, the pathname used as the argument to the constructor

need not describe an existing physical file if the intention is to create a new physical

file.

File aFile = new File(pathname);

4 Writing to a physical file is achieved via a stream. For text files the stream should be

an instance of FileWriter, which for efficiency should be wrapped by an instance

of BufferedWriter. For example:

bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

If the FileWriter fails to open or write to aFile it throws an IOException, which

must be caught. Therefore the code that creates the stream and writes to the stream

must be within the try block of a try–catch–finally statement.

5 Writing to a FileWriter stream buffered by an instance of BufferedWriter is

achieved by sending write() and newLine()messages to the BufferedWriter.

For example:

bufferedFileWriter.write("String data to be written");

bufferedFileWriter.newLine(); // Start a new line

Unit 12 Streams, files and persistent objects46



Putting it all together we have:

try

{

bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

bufferedFileWriter.write("String data to be written");

bufferedFileWriter.newLine(); // Start a new line

}

catch (Exception anException)

{

System.out.println("Error " + anException);

}

6 The stream is closed by sending a close() message to the BufferedWriter,

which in turn will close the underlying stream (an instance of FileWriter). The

stream must be closed from the finally block of the try–catch–finally statement.

As closing the stream can throw an exception, the finally block has a nested

try–catch statement. For example:

finally

{

try

{

bufferedFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error " + anException);

}

}

Reading from a text file using a Scanner

1 Classes that make use of the Scanner class need to import the java.util library:

import java.io.*;

import java.util.*;

2 In M255 you can get the pathname for a physical file name by invoking the method

getFilename() on the OUFileChooser class, for example:

String pathname = OUFileChooser.getFilename();

3 A File object can then be created as follows:

File aFile = new File(pathname);

4 Reading a physical file is achieved via a stream. For text files the stream should be

an instance of FileReader, which for efficiency should be wrapped by an instance

of BufferedReader. In order to easily read more than one character at a time from

the buffer, it is a good idea to wrap the BufferedReader with an instance of

Scanner. For example:

bufferedScanner = new Scanner (new BufferedReader(new FileReader (aFile)));

If the FileReader fails to open or read aFile it throws an IOException, which must

be caught. Therefore the code that creates the stream and reads from the stream

must be within the try block of a try–catch–finally statement.

4 Making objects persistent using text files 47



5 The message hasNextLine() when sent to a Scanner will return true if there are

any more lines of characters in the underlying stream, and false otherwise. The

message nextLine()when sent to a Scanner will return the next line of characters

from the stream as a string.

Putting it all together we have:

try

{

bufferedScanner = new Scanner (new BufferedReader(new FileReader (aFile)));

String line;

while (bufferedScanner.hasNextLine())

{

line = bufferedScanner.nextLine();

}

}

catch (Exception anException)

{

System.out.println("Error " + anException);

}

6 The underlying stream is closed by sending a close()message to the Scanner,

which in turn will close the underlying stream (an instance of FileReader). The

stream must be closed from the finally block of the try–catch–finally statement.

As closing the stream can throw an exception, the finally block has a nested

try–catch statement. For example:

finally

{

try

{

bufferedScanner.close();

}

catch (Exception anException)

{

System.out.println("Error " + anException);

}

}

Unit 12 Streams, files and persistent objects48



5 Persistence through serialisation

In Section 4 you implemented the AccountsIO class and learnt how to save the details

of Account objects to text files in CSV format. You also learnt how to read such files in

order to recreate Account objects from those stored details. In this way you were able to

make Account objects persistent.

You might like to think about how you would adapt AccountsIO to handle collections of

CurrentAccount objects. This would be fairly simple: all you would need to do is write

additional save and load methods that take into account the additional instance

variables creditLimit and pin.

But how might you adapt AccountsIO to handle mixed collections of Account and

CurrentAccount objects? This is more complex. For the saveAccounts()method you

would have to explicitly detect instances of CurrentAccount.

One way of doing this would be with an if statement whose condition used the

instanceof operator to detect instances of CurrentAccount. The statement block of

the if statement would then ensure that the extra information associated with instances

of CurrentAccount objects (creditLimit and pinNo) was written to file. For example:

for (Account eachAccount : accountCollection)

{

bufferedFileWriter.write(eachAccount.getHolder() + ","

+ eachAccount.getNumber() +","

+ eachAccount.getBalance());

if (eachAccount instanceof CurrentAccount)

{

bufferedFileWriter.write("," + ((CurrentAccount) eachAccount).getCreditLimit()

+ "," + ((CurrentAccount) eachAccount).getPin());

}

bufferedFileWriter.newLine();

}

For the loadAccounts()method you would need another strategy. After getting the first

three tokens you could use an if statement and a hasNext()message to the Scanner

to detect whether there were any more tokens in the current line. If there were, you would

know that you were dealing with a description of a current account; otherwise, you would

know that it was an ordinary account. For example:

accountHolder = lineScanner.next();

accountNumber = lineScanner.next();

accountBalance = lineScanner.nextDouble();

if (lineScanner.hasNext()) // it is a CurrentAccount

{

creditLimit = lineScanner.nextDouble();

pin = lineScanner.next();

this.accountSet.add (new CurrentAccount (holder, number, balance, creditLimit, pin));

}

else // just add an ordinary Account

{

this.accountSet.add(new Account (holder, number, balance));

}

instanceof is an
operator that tests
whether the run-time class
of its first operand is
assignment compatible
with the class name given
as the second operand.

5 Persistence through serialisation 49



While these solutions are tractable when Account has only a single subclass, it

becomes more difficult once we have a number of subclasses, e.g. SaverAccount,

PremierAccount etc. And what if we wanted to make Frog and Marionette objects

persistent? We would need to write other specialised classes to write and read them to

and from file.

However, Java provides a mechanism whereby any object can be turned into a

sequence of bytes (rather than characters), which can be saved to a file – and this file

can then be used to reconstruct the original object. This process is known as object

serialisation.

Important points to note about serialisation are:

1 For an object to be serialisable, its class (or one of its superclasses) must implement

the Serializable interface.

2 Serialisation produces bytes, not characters. So when a serialised object is written

to or read from a file, we have to use classes which read and write bytes rather than

characters. So serialisation uses classes based on InputStream and

OutputStream rather than the Reader and Writer classes.

3 Retrieving a serialised object requires access to the file containing the compiled

class.

5.1 The Serializable interface

The Serializable interface is a bit unusual. If you look at its documentation in

java.io, you will find that it contains no methods, and the interface only serves to mark

the implementing class as serialisable. Many of the standard Java classes implement

the Serializable interface. If a class implements Serializable then any subclasses

will also inherit the behaviour.

For example, if we want to make instances of the Account class serialisable then the

Account class needs to implement the Serializable interface. This requires just two

simple changes to the Account class.

1 Include the following import statement as the first line in the file containing the

Account class:

import java.io.Serializable;

Alternatively, just use

import java.io.*;

(to import every class in the java.io library).

2 Modify the first line of the definition of the Account class from

public class Account

to:

public class Account implements Serializable

That is all there is to making instances of a class serialisable!

In Unit 9, Activity 6, you
discovered that when you
compiled the source file
Welcome.java the file
Welcome.class was
created. Welcome.class
is known as the class file
and contains the bytecode
defining the class.

Unit 12 Streams, files and persistent objects50



5.2 Reading and writing serialised objects

As noted above, serialisation involves bytes rather than characters, and so we use an

instance of the ObjectInputStream class to read serialised objects from a file, and an

instance of the ObjectOutputStream class to write serialised objects to a file. Reading

from and writing to instances of ObjectInputStream and ObjectOutputStream is very

similar to using Reader and Writer classes and involves wrapping other InputStream

and OutputStream classes and catching the checked exceptions.

Writing a serialised object to a file

The overall structure of the code for writing a serialised object to a file is very similar to

that for writing characters to a text file:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

ObjectOutputStream bufferedOutputStream = null;

try

{

bufferedOutputStream = new ObjectOutputStream

(new BufferedOutputStream(new FileOutputStream(aFile)));

// writing a serialised object to the stream goes here

}

The catch and finally blocks are then the same as you have seen many times before.

Note how an instance of the ObjectOutputStream class wraps an instance of

BufferedOutputStream which in turn wraps an instance of FileOutputStream. If we

were not bothered about buffering we would just create our instance of

ObjectOutputStream as follows:

new ObjectOutputStream(new FileOutputStream(aFile));

Writing an object to the stream is accomplished by sending a writeObject()message

to the ObjectOutputStream. The writeObject() method has the following method

heading:

public final void writeObject(Object obj)

Hence writeObject() can be used to write an object of any class that implements the

Serializable interface, as all objects are type compatible with Object. As the

collections in the Collections Framework all implement the Serializable interface, the

writeObject()method can be used to write whole collections of objects that also

implement the Serializable interface, all in a single write.

When creating the ObjectOutputStream object there are two checked exceptions that

could be thrown:

c The FileOutputStream constructor will throw a FileNotFoundException if either

aFile cannot be created or it exists but cannot be opened.

c The ObjectOutputStream constructor will throw an IOException if an error occurs

when the stream is created.

As with a BufferedWriter, the constructor of a BufferedOutputStream does not

throw any exceptions.

5 Persistence through serialisation 51



If we look at the documentation for the writeObject(Object obj)method we can see

which exceptions it may throw:

Throws:

InvalidClassException – Something is wrong with a class used by

serialization.

NotSerializableException – Some object to be serialized does not

implement the java.io.Serializable interface.

IOException – Any exception thrown by the underlying OutputStream.

Reading a serialised object from a file

The code for reading a serialised object from a file is, apart from using InputStream

rather than OutputStream classes, very similar to that for writing a serialised object:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

ObjectInputStream bufferedInputStream = null;

Object anObject = null;

try

{

bufferedInputStream = new ObjectInputStream

(new BufferedInputStream(new FileInputStream(aFile)));

anObject = bufferedInputStream.readObject();

}

Note how an instance of the ObjectInputStream class wraps an instance of

BufferedInputStream which in turn wraps an instance of FileInputStream. If we

were not concerned about buffering we would just create our instance of

ObjectInputStream as follows:

new ObjectInputStream(new FileInputStream(aFile));

Reading an object from the stream is accomplished by sending a readObject()

message to the ObjectInputStream. The readObject()method has the following

method heading:

public final Object readObject() throws IOException, ClassNotFoundException

Notice that readObject() returns an instance of Object. It knows nothing about the

actual class of the object it has read (it’s just bytes); so to do anything useful with the

recovered object, you need to know what class of object to expect and then cast the

returned object reference into the expected type. The class of any object can be

determined by sending it a getClass()message.

When creating the ObjectInputStream object there are two checked exceptions that

could be thrown:

c The FileInputStream constructor will throw a FileNotFoundException if either

aFile cannot be created or it exists but cannot be opened.

c The ObjectInputStream constructor will throw an IOException if an error occurs

when the stream is created.

Unit 12 Streams, files and persistent objects52



As with a BufferedReader, the constructor of a BufferedInputStream does not throw

any exceptions.

The method readObject() throws two checked exceptions, an IOException and, if the

compiled class of the serialised object cannot be found, a ClassNotFoundException.

ACTIVITY 17

Launch BlueJ and open Unit12_Project_8. This project includes a class called ObjectIO

and a version of the Account class which implements the Serializable interface. Open

the class ObjectIO in the editor and complete the static methods saveObject() and

retrieveObject(), so that their behaviour matches their method headings. Once you

have got the ObjectIO class to compile, open the OUWorkspace.

1 Choose Open from the OUWorkspace’s File menu and select the file

Activity17.txt. This will load into the Code Pane the code needed to create a

mixed set of Account and CurrentAccount objects referenced by the variable

initialSet. Select and execute the code. Then inspect initialSet.

2 Test your saveObject() method by invoking it on the class ObjectIO with

initialSet as its argument. When prompted for a file name enter accounts.dat.

Note that we have given the file name a .dat extension, to indicate that it contains

raw data in the form of bytes rather than text.

Open the file accounts.dat using Notepad, and look at its contents. Close the file,

and if prompted do not save any changes

3 Next test your retrieveObject() method by writing and executing the following

statement:

recoveredSet = ObjectIO.retrieveObject();

Finally inspect recoveredSet, does the set it references contain the objects you

expected?

DISCUSSION OF
ACTIVITY 17

Your saveObject()method should be similar to this:

public static void saveObject(Object anObject)

{

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

ObjectOutputStream outStream = null;

try

{

outStream = new ObjectOutputStream

(new BufferedOutputStream(new FileOutputStream(aFile)));

outStream.writeObject(anObject);

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

Summary 53



finally

{

try

{

outStream.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

}

Your retrieveObject()method should be similar to this:

public static Object retrieveObject()

{

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname);

ObjectInputStream inStream = null;

Object anObject = null;

try

{

inStream = new ObjectInputStream

(new BufferedInputStream(new FileInputStream(aFile)));

anObject = inStream.readObject();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

finally

{

try

{

inStream.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

}

return anObject;

}

When you execute the statements loaded from file Activity17.txt:

1 The variable initialSet references a set containing three Account objects and

one CurrentAccount object.

2 The file accounts.dat contains bytecode, which is not designed to be read by

humans! When you open it in Notepad you will be able to pick out some words, but

there are many unintelligible characters.

3 The variable recoveredSet references a set containing clones of the objects in

initialSet. The CurrentAccount object in initialSet has been successfully

retrieved as a CurrentAccount in recoveredSet.

If you had any problems with Activity 17, the completed class ObjectIO has been

added to Unit12_Project_9.

Unit 12 Streams, files and persistent objects54



5.3 The limitations of serialisation

Serialisation is a much easier way of achieving persistence than explicitly writing the

details of an object as characters to a text file. However, in order to recover a serialised

object, the Java virtual machine must know where to find the compiled class of the

object (i.e. its .class file). For this reason, when a method in a class (or indeed the

OUWorkspace) attempts to recover a serialised object from a file, the compiled .class

file of the serialised object (and the .class files for the objects referenced by its

instance variables) must be ‘in scope’. That is the files should be in the same project or

brought into scope in some other way – perhaps through an import statement. If the

compiled class(es) cannot be found, the readObject() method of

ObjectInputStream will throw a ClassNotFoundException. In the case of a serialised

collection object, the Java virtual machine must know where to find the compiled class

of the collection class and the class of its element type and the classes of the element

type’s instance variables.

So if you want to save an object using serialisation to a file and then perhaps email that

file to someone else, you must make sure that the recipient also has access to the

classes on which that object is based.

This can be contrasted with saving the details of an object (values of the instance

variables) as characters in a text file and sending it to someone. The file can be read by

a human, and provided you tell them how the information is set out in the file (for

example, account holder followed by account number followed by balance), they will be

able to make use of that information (if only by reading) without having the original

Account class.

5 Persistence through serialisation 55



6 Streams and networks

Streams have an integral role in network programming and distributed computing.

These issues are covered in detail in other courses, but in this short section we shall

briefly outline how streams are used in this context.

The Java network classes (found in the package java.net) are designed to simplify

development of programs to run across networks, particularly the Internet. Sending and

receiving information across a network is achieved using streams, so once a connection

has been made between two machines, data can be transferred between the machines

in exactly the same way as reading and writing to and from files.

If we want to transfer information between two computers over a network connection,

one computer will have the role of the server and the other the role of the client. The

connection is achieved using sockets. A socket represents one end of a connection

between two machines, and a connection is made between a socket on the server and

the socket on the client.

A computer may have many server and/or client applications running at any one time,

but will usually only have one physical port for sending and receiving data across a

network (an Ethernet port). Therefore there is a need to ensure that data is directed to

the appropriate applications. This is achieved by the use of port numbers which identify

virtual (software) ports. Each server application is associated with a particular virtual

port (identified by its port number). Data is transferred across networks in chunks of

data called packets. Each packet contains the IP (internet protocol) address of the

destination computer and the port number of the intended application. When a packet

arrives at the computer (identified by its IP address), the operating system reads the

port number and directs the packet to the intended application.

The server

When a server is started, it waits for a connection from a client. A server waits for a

connection by ‘listening’ to a specific port number which represents the service, or

program, which the server is willing to offer to a client.

This waiting and listening for a connection is implemented through an instance of the

ServerSocket class as illustrated below:

Socket clientSocket = null;

ServerSocket listener = new ServerSocket(9999);

clientSocket = listener.accept();

The accept()method begins listening to the specified port (9999 in this example) and

execution of the method does not end until a connection is requested from a client on

that port. At that point, accept() accepts the connection, and creates and returns an

instance of Socket (which represents the client end of the connection). In the above

code this instance is assigned to the variable clientSocket.

To allow the server to read from, and write to, the client, a socket has both input and

output streams associated with it, which are accessed by the messages

getInputStream() and getOutputStream(). Theses streams, just like all the others

encountered in this unit, can be wrapped by instances of other stream classes for ease

of use.

Note that in all the code
samples given in this
section try-catch
statements have been
omitted for simplicity.

Unit 12 Streams, files and persistent objects56



For example, to write to the client we could write:

PrintWriter outStream = new PrintWriter(clientSocket.getOutputStream());

outStream.println("Hello Client");

Similarly to read from the client we could use:

BufferedReader inStream = null;

String stringFromClient;

inStream = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

stringFromClient = inStream.readLine();

Note try-catch statements have been omitted from the code above for simplicity.

The client

In order to contact the server the client needs to know two things:

c The IP address of the server. Every machine which connects to the Internet has to

have an IP address, such as 123.235.189.12.

c The port number of the service which the client wants to use.

Using this information, a client can then create a socket to the server as follows:

Socket serverSocket = new Socket(123.235.189.12, 9999);

The input and output streams of the server socket can then be obtained and wrapped to

allow the client to read from, and write to, the server socket.

PrintWriter outStream = new PrintWriter(serverSocket.getOutputStream());

outStream.println("Hello Server");

Similarly to read from the server

BufferedReader inStream = null;

String stringFromServer;

inStream = new BufferedReader(new InputStreamReader(serverSocket.getInputStream()));

stringFromServer = inStream.readLine();

Again, try-catch statements have been omitted from the code above for simplicity.

This communication between client and server is summarised in Figure 11.

You can see that once the input and output streams of the sockets have been wrapped

appropriately, reading and writing data across a network uses similar classes and

message-sends as reading and writing data to and from files.

Figure 11 Client-server communication

input stream of
server socket

forms

output stream of
client socket

input stream of
client socket

output stream of
server socket

server

server
program p

or
t client

program

client

p
or

t

is
formed

fromsocket socket

Summary 57



7 Summary

After studying this unit you should understand the following ideas.

c Files may be used to make data persistent.

c Streams may be used to transfer data from a source to a sink, where the source may

be a program, a file, a keyboard or a network connection, and the sink may be a

program, a file, a computer monitor or a network connection.

c The Reader and Writer classes are used to read and write character data (to and

from files), while the InputStream and OutputStream classes are used to read and

write binary data (to and from files).

c Exceptions may occur when using streams, and these are handled using

try–catch–finally statements.

c The details of objects can be written to file as character data, which can then be

later read from file to re-create those objects.

c Serialisation enables objects to be saved as binary data in files, with advantages in

terms of efficiency but some disadvantages in terms of transparency and portability.

Unit 12 Streams, files and persistent objects58



LEARNING OUTCOMES

After studying this unit you should be able to:

c appreciate the range of classes in the java.io library;

c understand how stream classes are wrapped;

c understand the difference between checked and unchecked exceptions;

c handle exceptions appropriately;

c write methods which allow character-based information to be read from or written to

an external file;

c write methods to save the details of objects as character data in a file;

c write methods to read the details of objects saved as character data in a file and,

from that data, re-create those objects;

c understand how objects may be serialised;

c write methods which allow objects to be serialised and saved to file as binary data;

c write methods which read serialised objects from files.

Summary 59



Glossary
buffer An area used for temporary storage as data is transferred between a data

source and a data sink.

checked exception An exception which has to be caught by a try–catch statement.

Checked exceptions relate to problems that can be foreseen (e.g. trying to write a file

larger than the available disk space) but cannot necessarily be detected before they

occur.

File An instance of this class contains the pathname to a file or folder in a system-

independent format. The file specified need not exist; instead the pathname may point

to a potential new file or folder.

InputStream The base class of a hierarchy of classes including FileInputStream,

BufferedInputStream and ObjectInputStream, which are used to read 8-bit byte

streams. InputStream classes are used to read binary data.

OutputStream The base class of a hierarchy of classes including

FileOutputStream, BufferedOutputStream and ObjectOutputStream, which are

used to write 8-bit byte streams. OutputStream classes are used to write binary data.

persistence The ability of objects or other data to continue in existence after a

program has stopped executing.

Reader The base class of a group of classes including FileReader and

BufferedReader, which are used to read 16-bit character streams. Reader classes are

used to read text files

Scanner A class used to read string tokens from a source. In M255 the source may be

a FileReader or a String.

serialisation The process by which an object implementing the Serializable

interface can be written to an ObjectOutputStream as a sequence of bytes.

stream An object used to connect a data source to a data sink, enabling data to be

transferred from the source to the sink.

Writer The base class of a group of classes including FileWriter and

BufferedWriter, which are used to write 16-bit character streams. Writer classes are

used to write text files.

Unit 12 Streams, files and persistent objects60



Index
B

buffer 24

C

client 56

comma-delimited file (CSV) 37

E

escape character 9

exception

checked 16

unchecked 15

F

File 9

finally 28

I

InputStream 7

instanceof 49

J

java.io 7–8

O

OUFileChooser 10

OutputStream 7

P

persistence 5, 33, 36

port numbers 56

R

Reader 7, 21

S

Scanner 38

serialisation 5, 50

server 56

socket 56

stream 6

T

token 37

try–catch statement 16

W

Writer 7, 17

Index 61






