M255 Unit 12
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

b

Streams, files and
persistent objects

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.
Copyright © 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the
Copyright Licensing Agency Ltd of 90 Tottenham Court Road,
London, W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

ISBN 978 0 7492 6793 3
2.1

CONTENTS

Introduction 5
1 Files and streams 6
1.1 File and stream classes in java.io 6
1.2 The File class 9
2 Simple writing and reading of text files 15
2.1 Exceptions, files and streams 15
2.2 Writing to a file 17
2.3 Reading from a file 21
3 Buffering and wrapping classes 24
3.1 Buffers 24
3.2 Wrapping stream classes 25
3.3 Writing to a file using a BufferedWriter 27
3.4 Reading from a file using a BufferedReader 31
4 Making objects persistent using text fles 33
4.1 Writing the details of Account objects to file 33

4.2 Writing files that can be used to recreate objects 36

4.3 Reading a text file using the Scanner class 38
4.4 Summary of stream classes, messages and
exceptions 46
5 Persistence through serialisation 49
51 The Serializable interface 50
5.2 Reading and writing serialised objects 51
5.3 The limitations of serialisation 55
6 Streams and networks 56
7 Summary 58
Glossary 60
Index 61

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

This unit is about exchanging information between a Java program and an external
source, thereby enabling Java programs to communicate with the wider world. It is also
about making information persistent, so that it can be stored at one time and retrieved
unchanged at a later time. For example, if you are word processing a document, you
expect to be able to save it one day and open the document the next day and find it in
the same state as you left it. Persistence involves saving data to files.

So far in M255 you have made information persistent using the features of both BlueJ
and the OUWorkspace: you have made changes to classes and saved those changes
to a file; you have created and saved new classes; and you may have saved statements
in the OUWorkspace’s Code Pane using the Save or Save As... options from the File
menu.

What you have not been able to do in M255, so far, is to make objects persistent. For
example, if you have created an account object in the OUWorkspace, you have not
been able to save that account so that you can retrieve it during a subsequent session of
the OUWorkspace. In this unit you will learn how to make objects persistent, so that they
may be created at one time on one computer and retrieved at another time, possibly on
a different computer.

In Section 1 you learn about Java’'s io (input/output) library and the file and stream
classes it contains.

Section 2 starts off by revisiting exceptions, which were introduced in Unit 8, and
explains why they are important when working with files and streams. You go on to learn
about writing and reading characters to and from text files.

Section 3 introduces the concept of buffering, for improving the efficiency of writing and
reading to and from files. You learn what buffers are and when you should use them.

In Section 4 you learn how to make objects persistent by saving the textual
representation of their state to text files and then reading those files to recreate the
objects.

Section 5 details another strategy for making objects persistent: saving them as raw
bytes to a file. This is called serialisation.

Section 6 is a short introduction to how streams can be used to transfer information
across networks.

Unit 12 Streams, files and persistent objects

Files and streams

m File and stream classes in java.io

What is a stream? In the physical world, a stream of water flows from a source (for

example, a spring) down to a sink (for example, a pond). In the programming world, we
may have a data source (for example, a program generating a list of random numbers)
and a data sink (a file where we want to store these numbers). A stream is the object we
use to link them, enabling data to be transferred from the source to the sink (Figure 1).

stream of data from
source to sink

source sink

Figure 1 A data stream

In most of this unit we are looking at streams which connect a Java program and a file.
When we want to save data that is currently in a Java program to a file, the source is the
Java program and the sink is the file, and the Java program writes data to the stream
(Figure 2).

stream of data from
Java program to file

Java program file

source sink

Figure 2 Saving data to a file

When we want to read data into a Java program, the source is the file and the sink is the
Java program, and the Java program reads data from the stream (Figure 3).

stream of data from file
into Java program

Java program file

sink source

Figure 3 Reading data from a file

1 Files and streams

Reading from (or writing to) a stream is done sequentially: when you read data from a
stream the first item is read, then the second, and so on until the last item is reached.

ACTIVITY 1

Java has a large number of classes to support the reading and writing of data using
streams. The purpose of this activity is to give you some feel for the number of these
classes and the naming conventions they use. Launch BlueJ and open the
documentation for the Java Class Libraries (select the Help menu then Java Class
Libraries). In the main frame, scroll down and select the package java.io. Scroll down to
the section labelled ‘Class Summary’, look at the class names, and see if you can use
them to identify related groups of classes. You are not expected to remember all the class
names; nor are you expected to understand everything in the descriptions. You should
spend no more than 10 minutes on this activity.

DISCUSSION OF
ACTIVITY 1

You have probably identified groups of classes whose names end with ITnputStream or
OutputStream and others whose names end with Reader or Writer. You will probably
have (correctly) deduced that FileReader, Buf feredReader etc. are subclasses of the
Reader class. You will also have noticed that there are groups of classes whose names
start with the same word, such as FileInputStream, FileOutputStream, FileReader
and FileWriter (and a similar group whose names start with Buf fered), and you have
probably concluded that these classes carry out similar tasks.

The number of classes available for input and output is daunting, and in M255 we will
only look at a small number of them. However, for completeness, Table 1 (overleaf) lists
all the java.io stream classes, which fall into four main groups subclassed from
InputStream, OutputStream, Reader and Writer.

The stream classes which you will be using during M255 are in bold in Table 1. To read
the table: the class InputStream has the subclasses ByteArrayInputStream,
FileInputStream etc.; the class FilterInputStream has the subclasses
BufferedInputStream, DatalnputStream, etcC.

There are two groups of stream classes to read data (InputStream and Reader) and
two groups of classes to write data (OutputStream and Writer). If you were reading
and writing data to/from a sink/source, you would pair an InputStream class with an

OutputStream class and a Reader class with a Writer class. The difference between
the two groups of stream classes is in the type of data which they handle.

» Instances of subclasses of the Reader and Writer classes handle (16-bit)
character streams. This means that they correctly handle textual information based
on characters and strings. We will use an instance of a subclass of the Writer class
(FileWriter) to write text to a file in Subsection 2.2.

» Instances of subclasses of the InputStream and OutputStream classes handle
(8-bit) byte streams. They are used when we make objects persistent through
serialisation (Section 5), and for writing binary data such as sounds and images.

Unit 12 Streams, files and persistent objects

Table 1 Java Stream classes in the java.io package

InputStream

OutputStream

Reader

Writer

RandomAccessFile

ByteArrayInputStream

FileInputStream

FilterInputStream

ObjectInputStream

PipedInputStream

SequencelInputStream

StringBufferInputStream

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

BufferedReader
CharArrayReader
FilterReader
InputStreamReader
PipedReader

StringReader

BufferedWriter
CharArrayWriter
FilterWriter
OutputStreamWriter
PipedWriter
PrintWriter

StringWriter

BufferedInputStream
DataInputStream
LineNumberInputStream

PushbackInputStream

BufferedOutputStream
DataOutputStream

PrintStream

LineNumberReader

PushbackReader

FileReader

FileWriter

1 Files and streams

m The File class

If we want to read from, or write to, files on the hard disk, then we need a way to specify
which file (or folder) we are interested in. The Java class that we use to do this is the
File class. The File class has a misleading name: you might think that an instance of
the class would represent a physical file on a hard disk, but it does not. It represents
either the name of a particular file or the name of a folder (directory).

C:\BlueJ\README.TXT is an example of how the Windows operating system expects
users and programs to specify file and folder pathnames. However, different operating
systems specify file pathnames in different formats; for example, Windows uses a ‘\’
(backslash) to separate file and folder names whereas Macintosh OSX, Unix and Linux
uses a‘/’. The purpose of the File class is to allow pathnames to be represented in an
abstract or system-independent way and, when required, to convert them automatically
into the system-dependent format needed to access a particular physical file or folder.
In M255 we are only concerned with files and folders on the Windows operating system,
but you need to be aware that different operating systems do things slightly differently,
and because Java programs can be executed on different platforms they have to be
able to access file systems in platform-specific ways.

File pathnames can be absolute or relative. A relative pathname assumes the current
working directory as the starting point, whereas an absolute pathname contains all the
information you need to know about the location of a file and always starts from the root
directory of the disk, usually c: in Windows.

C:\BlueJ\README.TXT is an example of an absolute pathname. In M255 we are only
concerned with absolute pathnames.

In a program a pathname is represented as a string. However, this presents us with a
slight problem because when a backslash is encountered in a literal string it is
interpreted by the compiler as the escape character: it indicates that the next character
should be interpreted in some special way. For example, in the following string:

"string\twine"

the backslash combines with the very next character to form what is called an escape
sequence — in this case the escape sequence \t, which represents a tab. Therefore
executing the following statement in the Code Pane:

System.out.println("string\twine");
would output:
string wine

to the Display Pane. Fortunately there is a solution to this. In order to get a backslash
interpreted as just a backslash in a literal string we just precede the backslash by
another backslash. For example:

"string\\twine"

Now executing the following statement in the Code Pane:
System.out.println("string\\twine");

correctly displays:
string\twine

So to create a string to represent the pathname C:\BlueJ\README . TXT we would write:

String pathname = "C:\\BlueJ\\README.TXT";

Unit 12 Streams, files and persistent objects

Depending on your
computer, and particularly
if it is connected to a
network, it may take a few
seconds for the file
chooser dialogue box to
appear.

In Java you can use a string which represents a pathname to create an instance of the
class File, and you will see how to do this shortly.

When a string is used to specify a pathname it must be exactly right, and if you are
typing the pathname it is easy to make a mistake. So in order to simplify the specification
of the correct string to represent a pathname, we have provided you with the utility class
OUFileChooser. The OUFileChooser class has class methods for creating pathnames,
one of which displays a dialogue box, which we call a ‘file chooser’ dialogue box. Such a
dialogue box displays the contents of a folder (a list of physical files) and allows you to
select a particular file, whose pathname is then returned when you click on the OK
button. By using such dialogue boxes you do not have to worry about determining the
correct absolute pathname or using \\ within the string.

ACTIVITY 2

In this activity you investigate the OUFileChooser. Launch Blued then open the Help
menu and select OU Class Library. Browse the documentation for the OUFileChooser
class (scroll down the text until you reach the Method Summary).

1 Open an OUWorkspace without first opening a project, then enter, select and execute

the following statement:

String pathname = OUFileChooser.getFilename();
When the dialogue box opens, the contents of which folder are displayed?
Select a file listed in the dialogue box and accept it using the OK button. Look at the
value of pathname either by inspecting pathname or by executing the following
statement:

System.out.println(pathname) .

2 Again, execute the statement

String pathname = OUFileChooser.getFilename();
but this time select the Cancel button. Check the value of pathname.

3 Close the OUWorkspace and then open the project Unit12_Project_1. You will notice
that this project has no classes - this is intentional; the folder of this project is simply
being used to read and write files from the OUWorkspace. Reopen the OUWorkspace
and execute the following statement:

String pathname = OUFileChooser.getFilename() ;

Note the folder on which the file chooser dialogue box is focused, select a file and
then click on the OK button. Check the value of pathname.

4 Execute the statement

String newPathname = OUFileChooser.getFilename();

but this time do not select an existing file. Instead type the name of a file which does
not exist, such as foo.txt. Check the value of newPathname. You might like to do
this twice, the first time entering the name of a file that exists in the folder, and the

second time entering the name of a file that does not exist in the folder.

5 Execute the statements
String pathnamel = OUFileChooser.getFilename ("README.TXT") ;
String pathname? = OUFileChooser.getFilename("newFile.txt");
and then inspect pathnamel and pathname?.

DISCUSSION OF
ACTIVITY 2

From the documentation, you can see that the OUFileChooser class extends the
JFileChooser class by providing three additional class (static) methods. The
methods you will use to get pathnames have the signatures getFilename() and
getFilename(String).

1 When you execute the statement, the following dialogue box is shown (Figure 4).
The dialogue box will be focused on the BluedJ folder, which is the location where you
chose to install Blued. If you installed Blued in the default location, and you selected
the file README . TXT, pathname will reference the string "C:\BlueJ\README . TXT".

Look i |1 Bl | BasEE

] examples
1 lib
[uninst

backup.
& bluejaxe

B Select VM

File name: || ak.

Filez af type: IA” Files ﬂ Cancel

Figure 4 A file chooser dialogue box that has been opened in the OUWorkspace when a Blued
project has not been opened

2 When you close the dialogue box using the Cancel button, pathname will have the
value null, indicating that a pathname has not been returned.

3 The dialogue box will be focused on the Unit12_Project_1 folder, and if you installed
the M255 software in the default location and again you selected the file
README . TXT, pathname will reference either:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unit12 Project 1\README.TXT"
or:

"C:\My Documents\M255\M255Projects\Unitl2 Project 1\README.TXT"
depending on your operating system.

4 On this occasion pathname will start with either:

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unitl2 Project 1\"
or:

"C:\My Documents\M255\M255Projects\Unitl2 Project 1"
and the final part of the pathname string will be the file name you entered.

Unit 12 Streams, files and persistent objects

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unitl2 Project 1\myfile.txt"

For example, if you typed myfile. txt in the input box, the full pathname string will
be either:

or:

"C:\My Documents\M255\M255Projects\Unitl2 Project I\myfile.txt"

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unitl2 Project 1\README.TXT"

A pathname string will be returned regardless of whether or not the corresponding
file exists (which is what you need if you want to save data to a new file).

5 In this case a dialogue box is not displayed. The variable pathnamel now
references the string:

or:

"C:\My Documents\M255\M255Projects\Unitl2 Project 1\README.TXT "

"C:\Documents and Settings\<username>\My Documents\M255\M255Projects\Unitl2 Project 1l\newFile.txt"

and pathname?2 references the following string:

or:

"C:\My Documents\M255\M255Projects\Unitl2 Project I\newFile.txt"

The first point to note is that the folder given in the pathname returned by the
OUFileChooser dialogue box is that of the current project. Secondly, if you check in
Windows Explorer, you can see that the physical file README . TXT exists, but
newFile.txt does not. So, as with Part 4, you can obtain a string that corresponds
to a valid but non-existent pathname. Invoking the method with the signature
OUFileChooser.getFilename(String) provides a shortcut to selecting the
pathname of a file in the folder of the current project, but remember that no check is
made as to whether or not the file exists.

The previous activity has shown how the OUFileChooser class provides two
getFilename() methods (one that takes an argument and one that does not). These
allow us to create strings which correspond either to the pathnames of existing physical
files or to the pathnames of files which we might want to create. You must remember that
both the getFilename () methods only return strings, and a further step is needed
before we have something that can actually refer to a file.

The next step is to create an instance of the File class, and we do this by using the
string returned by a getFilename() method as the argument to the File class
constructor:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;

After the above code executes, the variable aFile references a new File object, which
may or may not correspond in some way to an existing physical file on the hard disk.

Whether it does or not will depend on whether you used a getFilename() method to
return the pathname of an existing physical file or to return a pathname that you intend to
associate with a new, as yet uncreated, physical file.

It is important to note that a File object cannot be written to, or read from. That is not its
purpose: it does not represent the contents of some physical file. However, a File
object does hold important information, for example: the pathname; whether the
pathname identifies a file or a folder (directory); whether a physical file exists at that
pathname; and, if a physical file exists, whether it can be written to.

1 Files and streams

Therefore, the protocol of File objects includes the following messages:

> exists() - returns true if the file or directory denoted by the pathname exists;
false otherwise.

> isFile() - returns true if the file denoted by the pathname exists and is a file;
false otherwise.

P isDirectory() — returns true if the file denoted by the pathname exists and is a
directory; false otherwise.

» canWrite() — returns true if the file denoted by the pathname exists and the
current program is allowed to write to that file; false otherwise.

ACTIVITY 3

If it is not already open, launch Blued and open the project Unit12_Project_1. Write a
sequence of statements in the OUWorkspace to do the following.

1 Get the pathname of a file called README . TXT by using a file chooser dialogue box
and typing the file name README . TXT into the input box. Note that the
OUFileChooser dialogue does not automatically add an extension to a pathname
(because a .txt extension is not always appropriate), so you must remember to
include the extension.

2 Create a File object using the pathname obtained in step 1.

3 Using an if-then-else statement, test whether the new file object is associated with
an actual physical file on disk by sending it an exists() message. If the file does
exist, use an alert dialogue box to display the message, ‘A physical file exists!’ If no
physical file exists, use an alert dialogue box to display the message, ‘No physical file
exists!’

Repeat steps 1-3 using the file names backup. txt and myfile. txt.

Finally, what happens when you select and execute your complete code, and then you
click the Cancel button on the file chooser dialogue box?

DISCUSSION OF
ACTIVITY 3

Your code should look similar to the following.

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
if (aFile.exists())

{
OUDialog.alert("A physical file exists!");

}

else

{
OUDialog.alert("No physical file exists!");

}

If you enter README . TXT into the file chooser dialogue box, the alert dialogue box should
display:

A physical file exists!

If you enter backup. txt into the file chooser dialogue box, the alert dialogue box should
again display:

A physical file exists!

Unit 12 Streams, files and persistent objects

If you enter myfile. txt into the file chooser dialogue box, the alert dialogue box should
display:

No physical file exists!

If you click the Cancel button of the file chooser dialogue box, the following error
message is shown in the Display Pane:

Exception: line 2. java.lang.NullPointerException
This indicates that there was a problem evaluating the statement:
File aFile = new File(pathname) ;

If you inspect the variable pathname, you will find that it is null. This is perfectly
reasonable, as you did not supply a file name to the file chooser dialogue box, and when
the File constructor is presented with a null argument it fails. Exceptions are
discussed in more detail in the next section.

SAQ 1

Thinking back to what you learnt in Unit 8, what sort of error occurs when you execute
the statement

File aFile = new File(pathname) ;
and pathname iS null?

ANSWER ...

The error is a runtime error (more precisely a dynamic semantic error), because whether
or not an error is thrown depends on the value of pathname at run-time. It is also an
example of an unchecked exception, specifically a NullPointerException. We know
that is an unchecked exception because the OUWorkspace interpreter did not insist that
we embed the call of the constructor within a try—catch statement.

In the next section we shall see that when using files there are many kinds of exceptions
that may occur, and most are ones that the Blued Java compiler or the OUWorkspace’s
Java interpreter will force you to try and catch (i.e. checked exceptions).

2 Simple writing and reading of text files

Simple writing and reading of
text files

In this section we shall look at simple ways of writing and reading characters to and from
text files. Error detection and recovery is particularly important when working with file
input and output. This is because a program does not control its external environment.
For example, if a program requires input from a file, and that file does not exist, then the
problem must be handled in such a way that the program does not fail, or if it does fail at
least it does so gracefully. So we start this section by looking at what errors can occur
and the steps you must take to handle those errors.

m Exceptions, files and streams

Unit 8 introduced you to the idea of errors and the need to catch exceptions.

SAQ 2
Which statement do you use to trap an exception thrown by a method?

AN SR .
The try—catch statement is used.

Exercise 1

We have indicated that non-existence of a file is a potential problem when reading from
files. Suggest some other potential problems of reading from and writing to files.

S T} U1 (o] o TSP SEEERPR
Possible problems include:

» trying to overwrite a file which is read-only;

» trying to write to a file when there is no space on the disk;

> trying to read from a file which has become corrupted — so though it exists, it does
not contain the data expected by the program.

In Unit 8 you learnt about unchecked exceptions. Unchecked exceptions should not
occur in normal program use, and their occurrence usually indicates that the
programmer has failed to take into account a problem which was predictable and
should have been guarded against. Programming errors that can result in unchecked
exceptions include: failing to test that an index is within the bounds of an array; dividing
a number by zero; and, as in the final part of Activity 3, using null where an object was
expected. In this last case, the test needed was

(pathname !'=null)

and only if this was true should the statement File aFile = new File(pathname) ;
have been executed. Alternatively the statement File aFile = new File(pathname) ;
could have been put within the try block of a try-catch statement, with the catch
block taking remedial action if an exception occurred. Unchecked exceptions all inherit

Unit 12 Streams, files and persistent objects

You can open the Java
Class Libraries
documentation from
BlueJ’s Help menu.

from the class RuntimeException, and the Java compiler does not force a programmer
to try and catch them.

The problems identified in Exercise 1 are all checked exceptions. For example, trying
to read from a file which has become corrupt will throw a checked exception. We cannot
know in advance whether a file has become corrupt, but we are aware that it might
happen and need to check that the file has been read successfully. Checked exceptions
have to be caught in a try—catch statement. Checked exceptions are known as such
because the Java compiler checks that any code which can throw a checked exception
is inside a try—catch statement, ensuring that if an exception occurs the catch block
will handle the exception in some way. If you try to compile code which could result in a
checked exception and you do not surround it by a try—catch statement you will get a
compile-time error message such as:

unreported exception java.io.FileNotFoundException; must be caught or
declared to be thrown

You then need to identify what code throws the checked exception and put it in within an
appropriate try—catch statement.

The question then becomes: how do we know if a method or constructor throws a
checked exception? The answer is to look in the documentation of the Java Class
Libraries.

If you look at the documentation for constructors from the classes FileWriter (which
you will use in the next subsection) and File, you can see how to distinguish between
checked and unchecked exceptions:

public FileWriter(File file) throws IOException
Constructs a FilewWriter object given a File object.
Parameters:

file — a File object to write to.

Throws:

TIOException — if the file exists but is a directory rather than a regular file,
does not exist but cannot be created, or cannot be opened for any other reason

public File (String pathname)

Creates a new File instance by converting the given pathname string into an
abstract pathname. If the given string is the empty string, then the result is the empty
abstract pathname.

Parameters:
pathname — A pathname string
Throws:

NullPointerException — If the pathname argument is null

2 Simple writing and reading of text files

We can tell at once that the FilewWriter constructor throws a checked exception,
because the header contains what is known as a throws clause:

public FileWriter(File file) throws IOException

This shows that the exception thrown is an I0Exception. Further on there is then a
paragraph describing when the exception will occur:

Throws:

IOException — if the file exists but is a directory rather than a regular file,
does not exist but cannot be created, or cannot be opened for any other reason

The File constructor also throws an exception, but it is an unchecked exception; we
can see this because there is no throws clause in the constructor’s header. From the
paragraph describing the throws clause we can see that it is an instance of
NullPointerException Which is thrown. NullPointerException is a direct subclass
of RuntimeException, and you know from Unit 8 (Subsection 3.2) that a
RuntimeException is an unchecked exception, which the compiler does not force the
programmer to catch.

Reading the documentation tells us that when we use the FileWriter constructor we
must enclose it in a try—catch statement, but the File constructor can be used without
try—catch (although we ought to check that the pathname is not null, unless we want
to risk a NullPointerException!).

Throughout the rest of this unit you need to be aware that constructors and methods of
classes in the java.io library often throw checked exceptions, which you will need to
catch in try—catch statements.

m Writing to a file

In Subsection 1.1 you learnt that the Reader and Writer classes of the java.io library
handle textual information made up of characters and strings, whereas the
InputStream and OutputStream classes handle binary data.

In this subsection we look at writing characters to a text file, so we will use a subclass of
the Wwriter class. Note that the files we produce here are just ordinary files. Not only can
we inspect them from Notepad or WordPad, but they can also be edited.

The FileWriter class

The simplest Writer class you can use to open an output stream to write text to a file is
FileWriter. However, first we need to create a File object to describe a physical file,
just as we did in Subsection 1.2:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;

Now we can create an instance of FilelWriter using our instance of File as an
argument to the FileWriter constructor with the following signature:

FileWriter(File)

The constructor will throw an TO0Exception if the physical file described by its argument
cannot be opened. If the file specified does not exist, but the folder in which it should be
found is there, then the physical file will be created and no error is thrown. We are

opening the file to write something to it, so it is perfectly reasonable to specify a non-
existent file. However, if the file exists, but is marked as read-only then you will again get

Unit 12 Streams, files and persistent objects

an IOException. This is why it is sensible on creating the File object to test whether it
exists (and if so ask the user whether it should be overwritten) and test whether it is read-
only (and if so ask the user to choose another file). Although it is prudent to carry out the
tests, our examples will not include them since we wish to keep our code as concise as
possible, in order to concentrate on the teaching of reading and writing to files.

Because FileWriter constructors can throw checked exceptions, the code for the
creation of a FileWriter object must be written within the try block of a try-catch
statement:

try

{
FileWriter aFileWriter = new FileWriter(aFile);
// Code to write to the file goes here

}

catch (Exception anException)

{

// Code to catch any exceptions thrown by the FileWriter constructor

}

This would give us the following situation:

FileWriter object

program file

source sink

FileWriter object acts as a stream
between source and sink

Figure 5 A FileWriter object acting as a stream between a source and a sink

Characters or strings can now be written one at a time to the file, via the FileWriter
stream using write() messages, as follows:

aFileWriter.write
aFileWriter.write
aFileWriter.write

(

(

(
aFileWriter.write('
aFileWriter.write(
aFileWriter.write(System.getProperty("line.separator"));
(

aFileWriter.write("World");

The code System.getProperty("line.separator") is simply a way of getting a
platform-independent line break into the file.

You may be familiar with using the ‘newline’ escape sequence \n to end a ling, and it is
after all much quicker to add \n on to the end of a string than to use an additional
statement. However, although \n works in the Display Pane, not all applications will
interpret it in the way we might expect. For example, suppose you were to use the
following statements to write to a file:

aFileWriter.write("Writing line 1 to a file.\n");
aFileWriter.write("Writing line 2 to a file.\n");
aFileWriter.write("Writing line 3 to a file.\n");

2 Simple writing and reading of text files

Then if you opened the resultant file in Notepad you would see this:

Writing line 1 toa file.OWriting line 2 to a file.OWriting line 3 to a file.O

In fact whether \n will produce a new line also varies between different operating
systems, so if you want your program to be portable it is best to use
System.getProperty("line.separator"), because it is guaranteed to work
correctly. Note that it is a string, so you can assign it to a variable and then concatenate
it like any other string, for example:

String newLine = System.getProperty("line.separator");
aFileWriter.write("Greetings earthlings." + newLine);
aFileWriter.write("Take me to your leader!");

Once the data has been written to the file, the FilelWriter stream needs to be closed
(the reasons for this are explained later). This is easily done with a close() message:

aFileWriter.close();
Putting all the code together from the steps above we get the following:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
try
{
FileWriter aFileWriter = new FileWriter(aFile);
aFileWriter.write('H");

’

aFileWriter.write('e'")

'1');
1)
o

aFileWriter.write

’

(

(
aFileWriter.write(
aFileWriter.write('o');
aFileWriter.write(System.getProperty("line.separator"));
aFileWriter.write("World");

(

aFileWriter.close();

}
catch (Exception anException)
{
System.out.println("Error: " + anException);

}

Finally we will now explain the catch block of the try—catch statement. The constructor
FileWriter() can throw instances of TOException, yet we have decided to declare
the argument to the catch block as being of type Exception. This means that the catch
block will catch any exception that is an instance of any subclass of Exception,
including of course I0Exception. We have done this to keep things simple.

Notice the print statement inside the catch block. It is recommended that you use such
a print statement in all catch blocks, as it will give you both the class of the exception
and the message associated with it. For example, if you selected the file backup. txt
from the file chooser dialogue box, which would cause the FileWriter () constructor to
throw an exception, the print statement would display the message

Error: java.io.FileNotFoundException:
C:\Documents and Settings\<username>\My Documents\M255\M255Projects\
Unitl2 Project 1\backup.txt (Access is denied)

which in most cases should be sufficient to help you diagnose the problem.

Unit 12 Streams, files and persistent objects

Use Windows Explorer to
check that there is not
already a file called
firstWriteTest.txt in the
Unit12_Project_1 folder. If
there is such a file you
must either rename it or
use a different pathname
throughout the activity.

Sometimes programmers are tempted to save effort by using empty catch blocks:

catch (Exception anException)
{
}

This is not wise! If an exception occurs something must have gone wrong, but because
the catch block contains no print statement there will be no feedback to indicate where
or what the problem is.

ACTIVITY 4
Launch Blued and open the project Unit12_Project_1. Open the OUWorkspace and
following the pattern given above, write statements to do the following.
1 Set the pathname of a new file (enter the filename firstWriteTest.txt when
requested).
2 Create a new File object.
Within a try block, create an instance of FileWriter, then:
(a) using a write() message, write the string "To be or not to be" to the
FileWriter stream;
(b) write a linebreak to the FileWriter stream;
(c) write the string "That is the question™ to the FileWriter stream;
(d) close the FilewWriter.
4 Write a catch block to catch any exceptions.

Once you have written all the code, select it all and execute it.

You can test that your code worked by examining the contents of the file in one of two

ways:

> Select Open from the OUWorkspace’s File menu. You will be asked via a dialogue
box whether you want to insert the contents of any file you select into the Code Pane
or whether you want to replace the contents of the Code Pane with the contents of the
file. Choose to insert, and then select your new file — its contents will appear at the
bottom of the Code Pane.

> Use Windows Explorer to navigate to the folder containing the Unit12_Project_1
project, and double-click on the file to open it (in most cases the file will be opened in
Notepad). Check that it contains the correct text. Close Notepad (or your default text
editor if different).

In the final part of this activity you are going to reuse the code you have already written to
write once more to the file firstiWriteTest. txt. Modify your code so that it now writes
just the string "Whether 'tis nobler in the mind" to the file. Select and execute your
code and then check the contents of the file — are the contents what you expected?

2 Simple writing and reading of text files

DISCUSSION OF
ACTIVITY 4

Your code should look similar to this:

String pathname = OUFileChooser.getFilename();

File aFile = new File(pathname) ;

try

{
FileWriter aFileWriter = new FileWriter(aFile);
aFileWriter.write("To be or not to be");
aFileWriter.write(System.getProperty("line.separator"));
aFileWriter.write("That is the question");
aFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}
Alternatively, the first line of code could be written like this:

String pathname = OUFileChooser.getFilename("firstWriteTest.txt");

giving the name of the file directly, and letting the getFilename () method supply the
rest of the pathname, so avoiding use of the file chooser dialogue box.

You should find that the file contains the following:

To be or not to be
That is the question

After you have modified your code to write the single string "Whether 'tis nobler in
the mind" to the file firstWriteTest.txt, you will find that the file now contains only
that string — the previous contents of the file have been overwritten!

Congratulations! You have just created and written to your first file. You may have been
surprised to discover that reopening the file and writing to it again overwrote the
previous contents. However, in many situations this is exactly what we want. If we want
to append to a file rather than overwrite its previous contents we need to use a different
FileWriter constructor. Here is its header:

public FileWriter(File file, boolean append) throws IOException

If the second argument to this constructor is true, then characters will be written to the
end of the file rather than overwriting the previous contents.

g Reading from a file

In the previous subsection we learnt how to write to a file. In this subsection we look at
reading characters from a text file, and to do so we will use a subclass of the Reader class.

The FileReader class

The simplest Reader class you can use to open an input stream to read characters from
afile is the FileReader class. Just as for writing to a physical file, we first need to create
a File object to describe the physical file we want to read:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;

Unit 12 Streams, files and persistent objects

Now we can create an instance of FileReader and use our instance of File as an
argument to the FileReader constructor with the following header:

FileReader (File file)

The constructor will throw a FileNotFoundException if the physical file described by
its argument file does not exist, if it is a directory, or if for some other reason it cannot be
opened for reading. Hence code that uses the constructor must be put into the try
block of a try—-catch statement:

try

{
FileReader aFileReader = new FileReader(aFile);
// Code to read from the file goes here

}

catch

{

// Code to catch any exceptions thrown

}

This would give us the following situation:

FileReader object

program file

sink source

FileReader Object acts as a stream
between source and sink

Figure 6 A FileReader Object acting as a stream between a source and a sink

Characters can now be read one at a time from the file, via the FileReader stream using
read () messages. The read () method returns an integer (the ASCII value of the
character read from the stream), or —1 if the end of the stream has been reached. If we
wish to print the value returned by read() as a character (for example, to the Display
Pane) we need to cast the integer into a char. For example:

int ch = aFileReader.read();
System.out.print((char) ch);

To read and print out the entire contents of a file we need to use a while loop, which will
continue looping until read () returns -1 (i.e. the end of the stream has been reached).
For example:

int ch = aFileReader.read();
while (ch !=-1)
{
System.out.print((char) ch);
ch = aFileReader.read();

}
Finally of course we need to close the stream with
aFileReader.close();

and of course write the code for the catch block, which would be exactly the same as
the code for the FileWriter examples.

2 Simple writing and reading of text files

ACTIVITY 5

Launch BlueJ and open the project Unit12_Project_1. Check that the file
firstWriteTest.txt exists in the folder Unit12_Project_1, and that it contains some
characters. Then open the OUWorkspace, and following the pattern given above, write
the code to read the contents of the file firstWriteTest . txt, printing the contents to the
Display Pane.

DISCUSSION OF
ACTIVITY 5

Your code should look similar to this:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
int ch;
try
{
FileReader aFileReader = new FileReader(aFile);
ch = aFileReader.read();
while (ch !=-1)
{
System.out.print((char) ch);
ch = aFileReader.read();
}
aFileReader.close();
}
catch (Exception anException)

{

System.out.println("Error: " + anException);

Unit 12 Streams, files and persistent objects

Buffering and wrapping classes

In Section 2 we started writing and reading characters to and from files. The classes we
used to accomplish this were FileWriter and FileReader. While these classes
seemed to work well for us, they are in fact a very inefficient way to read and write any
sizeable amount of data to and from files. This is because reading and writing to
physical files on a hard disk (or any other peripheral device) are processor-intensive
operations: each write to a FileWriter stream involves another subsequent write to the
physical file, and every read from a FileReader Stream involves another read from the
physical file. Furthermore a program can write or read data to or from memory (i.e. to or
from a stream) far faster than the operating system can (behind the scenes) write or
read that data to or from a physical file on a peripheral device. Hence, using
FileReader and FileWriter classes in this way can slow a program down to the
speed at which data can be read from and written to the physical device.

So we have a mismatch of capabilities: the speed at which a program can write to or
read from a stream (which is relatively fast); and the speed at which the operating
system can read from or write to a file on a peripheral device (which is relatively slow).
The answer to this is to use what are termed buffers, which are explained in the next
subsection.

m Buffers

Among the classes in java.io are the Buffered classes: BufferedReader,
BufferediWiriter, BufferedInputStream and Buf feredOutputStream. Why are these
classes important?

You were introduced to the idea of buffers in Unit 9 (Section 5). An instance of
StringBuilder has an underlying character array which is usually larger than the
number of characters held. The ‘empty’ array positions form a buffer, which is used
when the characters held in the StringBuilder object are changed.

You can think of a buffer as a mechanism to even out supply and demand. For example,
Figure 7 shows a water butt. The butt is filled via a drainpipe. When it rains, water is
collected from the gutters of the house and flows down the drainpipe into the water butt.
When it is raining, the gardener does not need to water the garden, so the rainwater is
stored in the water butt. After a few dry days, the gardener will need to water the garden
and the watering can is filled via the tap in the water butt. Unless there is a prolonged
dry spell, there will be sufficient water in the water butt for the gardener to water the
garden without the water butt running dry. So the water butt is acting as a buffer allowing
the storage of water at a time when it is raining and allowing use of the water when it is
not.

3 Buffering and wrapping classes

Figure 7 A water butt as a buffer enabling the gardener to even out the supply of and demand for
water in a garden

In a similar way, a program may produce data faster than it can be written to a file on a
hard disk. Rather than forcing the program to run more slowly, so that data is produced
at the same rate at which it can be written, the program can write the data to a buffer,
which holds it temporarily until it can be written to the file. In this case, we can see the
program as the producer (it is generating the data) and the file as the consumer (it is
accepting and storing the data). By using a buffer we are making the producer and
consumer more independent of one another, so they can work at different rates or on
different-sized chunks of data.

Most programming languages and operating systems use buffers to store data as it is
transferred between a program and an external device (e.g. hard disk, CD, DVD, printer
or scanner). By using a buffer, the external device can access the buffer in its preferred
way and the program can access the buffer as required. This decoupling of the program
and external device improves efficiency. In Java this efficiency is gained by using the
Buffered stream classes (Buf feredReader, Bufferediiriter, BufferedInputStream
and BufferedOutputStream) for input and output. For writing and reading text files we
shall use the BufferedWriter and BufferedReader classes. You will see how we do
this in the next subsection.

g Wrapping stream classes

You might think that if you wanted to open a BufferedWriter to write to physical file,
you could do something like the following:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
BufferedWriter aBufferedWriter = new BufferedWriter(aFile);

However, you would quickly find that this would not compile. If you examine the
documentation for the class Bufferedwriter you will see that neither of its constructors
accepts a File argument and both require an argument of type Writer, for example:

public BufferedWriter(Writer out)

Unit 12 Streams, files and persistent objects

This may seem rather perverse, because BufferedWriter is itself a subclass of
Writer!

However, if you think back to Activity 1 you will remember that there are many writer
classes in the Writer hierarchy, including FileWriter and PrintWriter. Any of these
Writer classes may need to be buffered for efficiency reasons. One approach would be
to write a buffered version of each class giving BufferedFileliriter,
BufferedPrintWriter etc., but this would give us a plethora of new classes. A far
better approach is to write a single new class (BufferedWriter) that can be wrapped
round objects of any particular non-buffered wWriter class as required, for example:

BufferedWriter bufferedFileWriter = new BufferediWiriter(new FileWriter(aFile));
BufferedWriter bufferedPrintWriter = new BufferedWriter (new PrintWriter(aFile));

Both of the above statements takes a non-buffered writer object and layers the extra
functionality — the buffering — on top. The beauty of this solution is that we need define
only one extra class, instead of the umpteen that would be required otherwise.

We could assign an instance of FilelWriter to a variable like this:
FileWriter aFileWriter = new FileWriter(aFile);

We could then use that variable as the argument to the Bufferediiriter constructor
with the signature BufferedWriter (Writer out):

BufferedWriter bufferedFileWriter = new BufferedWriter(aFileWriter);

But as we never need to refer directly to the FilelWriter object, it can be created
anonymously as an argument to the BufferedWriter constructor, as shown in the first
example above.

Here is what an instance of BufferedWriter might look diagrammatically:

program

(source)

program fills buffer with multiple write () messages

N

2N
N

FileWriter object

file

(sink)

FileWriter object acts as a stream between
buffer and sink, and transfers the contents of
the buffer to the file with a single write ()

Figure 8 Using aBufferedWriter to provide a temporary storage area for data produced by a
program before it is written to a file

3 Buffering and wrapping classes

Now when we want to write to a text file, we write characters or strings to the buffer, then
when the buffer is full, or if we explicitly flush it with a flush() message, the entire

contents of the buffer is written to the FileWriter stream as an array of characters. So
instead of lots of processor intensive writes to the physical file, we just have one big one,
which is much more efficient. Note also that when you send a close() message to a
Bufferediiriter, its contents are automatically flushed to the stream before it closes.

Similarly, to read files we can wrap a FileReader with a BufferedReader as follows:
BufferedReader bufferedFileReader = new BufferedReader (new FileReader (aFile));

Here is what an instance of BufferedReader might look diagrammatically:

program

(sink)

program empties buffer a line at a
time with readLine () messages

FileReader object
\/ file

(source)

FileReader Object acts as a stream between
source and buffer, and can fill the buffer with a
single read () of the source

Figure 9 Using a BufferedReader to provide a temporary storage area for data from a file
before it is read by a program

As well as providing buffering, the classes Bufferediriter and BufferedReader also
define two important and useful methods. BufferedReader provides the method
readLine (), which reads in a whole line of text from the buffer as a string. (Remember
when just using a FileReader, we could read only one character at a time, as an ASCI|
value, which we then had to cast into a char.) BufferedWriter provides the method
newLine (), which simplifies adding a platform-independent line break to a text file.

The first readLine () message sent to an instance of Buf feredReader, before returning
the first line of the file, causes the FileReader stream to completely fill the buffer with
data from the file, in a single read. Subsequent readlLine () messages gradually empty
the buffer, and it's not until the buffer is empty that the FileReader needs to refill the

buffer with data from the file.

m Writing to a file using a Buf feredWriter

In this subsection we shall briefly look at the code needed to use a BufferedWriter to
efficiently write to a file. At first glance this code looks very similar to the type of code we
wrote using the FileWriter class, but there are some subtle differences which we have
labelled with numbers:

_ Unit 12 Streams, files and persistent objects

String pathName = OUFileChooser.getFilename();
File aFile = new File(pathName) ;
BufferedWriter bufferedFileWriter = null; //1
try
{
bufferedFileWriter = new BufferedWriter(new FileWriter(aFile)); //2
bufferedFileWriter.write("Writing to a file");
}
catch (Exception anException)
{
System.out.println("Error: " + anException);
}
finally //3
{
try
{
bufferedFileWriter.close(); //4
}
catch (Exception anException)
{

System.out.println("Error: " + anException);

}

The first difference (labelled 1) is that we declare a variable of type BufferedWriter
before the try block in which it is assigned an instance of Buf feredWriter, whereas
with the FileWriter examples we declared a variable of type FileWriter and
assigned to it a FileWriter object in the try block of the try—catch statement. The
reason we have done this is because if we were to declare the variable
bufferedFilelriter inside the try statement block, it would be local to that block and
could not be accessed from outside that block. For reasons which will become clear
when we discuss the line of code labelled 3, we need to access the variable from
outside the try block. The other thing to note about this variable declaration is that we
have initialised it to null. We have done this because otherwise when the compiler
came to parse the line labelled 4 it would display the warning message

variable bufferedFileWriter might not have been initialized

and highlight the line of code labelled 4. The compiler does this because if at run-time
the line labelled 2 caused an exception, bufferedFileWriter would indeed not be
initialised.

The line labelled 2 is simply the creation of the BufferedwWriter object, which we
discussed at length in Subsection 3.2.

The line labelled 3 introduces a new keyword — finally. This is an optional part of a
try—catch statement which is very important to use when working with streams and
files. It provides a cleanup mechanism which executes regardless of what happens
within the try block. If code within the try block throws an exception, the code in the
finally block will be executed before exception handling passes control to a different
part of the program. Hence, finally blocks are typically used to guarantee the closure
of files or to release other system resources.

You will notice that we close the Buf feredWriter in the above code at the line
labelled 4 within the finally block. Although finally is semantically part of the
try—catch block, it has its own scope and is unable to refer to variables that are local to
the try block, which is why we had to declare our variable bufferedFileWriter
outside, and before, the try block in the line labelled 1.

3 Buffering and wrapping classes

Because the close() method can itself throw an I0Exception (if for some reason the
stream cannot be closed) we need to enclose it in a further try—catch statement nested
within the finally block.

From now on in this unit we will close all streams from within a finally block rather than
from within the try block, as we have been doing previously. We should really have
done this with the FileWriter and FileReader streams too, but we did not want to give
you too many new concepts all at once. Consider the following code:

try

{
bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));
bufferedFileWriter.write("Writing toa file");
bufferedFileWriter.close();

}

catch (Exception anException)

{
System.out.println("Error: " + anException);

}

If the statement bufferedFileWriter.write("Writing to a file"); threw an
exception, the code bufferedFileWriter.close(); would not execute, as the catch
block would execute instead, then all execution would terminate and the file would
remain open. You will encounter the ramifications of leaving a file open in Activity 7.

ACTIVITY 6
Launch Blued and open the project Unit12_Project_1. Open the OUWorkspace.

Using an instance of BufferediWriter, write the following lines of text to a new file called
poem. txt:

Hope is the thing with feathers

That perches in the soul

And sings the tune without the words
And never stops at all

Once you have written (and closed!) the file poem. txt, check its contents to ensure your
code has worked properly.

After you have completed the activity, keep the OUWorkspace open, and immediately do
Activity 7, which uses the code that you write for this activity.

_ Unit 12 Streams, files and persistent objects

DISCUSSION OF
ACTIVITY 6

You code should look similar to this:

String pathname = OUFileChooser.getFilename("poem.txt");

File aFile = new File(pathname) ;

BufferedWriter bufferedFileWriter = null;

try

{
bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));
bufferedFileWriter.write("Hope is the thing with feathers");
bufferedFileWriter.newlLine();
bufferedFileWriter.write("That perches in the soul");
bufferedFileWriter.newLine();
bufferedFileWriter.write("And sings the tune without the words ");
bufferedFileWriter.newLine();
bufferedFileWriter.write("And never stops at all");

}

catch (Exception anException)

{
System.out.println("Error: " + anException);

}

finally

{
try
{

bufferedFileWriter.close();
}
catch (Exception anException)
{
System.out.println("Error: " + anException);

}

In the next activity you will learn why it is so important to close files.

ACTIVITY 7

Returning to the OUWorkspace and the code you wrote for Activity 6, change the name of
the file to be opened to poem2. txt:

String pathname = OUFileChooser.getFilename("poem2.txt") ;

Then comment out the try—catch statement nested in the finally block (using
/* and */) as shown below:

finally
{
/*
try
{
bufferedFileWriter.close();
}
catch (Exception anException)
{
System.out.println("Error: " + anException);
}
*/
}

3 Buffering and wrapping classes

Next select and execute all the code from
String pathname = OUFileChooser.getFilename ("poem2.txt");
to the closing brace of the finally block.

When the code has successfully executed, check the contents of poem2 . txt — what do
you find? Is it what you expected?

Close Notepad if you used it to open the file.

Now try to delete poem2. txt, clicking on the Yes button when the Confirm File Delete
dialogue appears — what happens? Can you explain what has happened?

Now select and execute just the try—catch block nested in the finally block.
Again check the contents of poem2. txt, and then try to delete the file. What do you conclude?

DISCUSSION OF
ACTIVITY 7

When you comment out the nested try—catch statement within the finally block, you
find that after the code has been executed the file poem2. txt is empty. Then when you
try to delete the file you get the following error dialogue box:

Error Deleting File or Folder

@ Cannot delete poemz;: It is being used by another person or program,

Close amy programs that might be using the file and try again.

Figure 10 Error dialogue box showing poem?2. txt is still open

This indicates that the file poem2. txt is still open. Once you select and execute the
try—catch statement nested in the finally block and then check the contents of
poem? . txt once more, you should find that the file is no longer empty and now contains
the lines of the poem.

You should also find that the file can be deleted as you would expect.

It may not have surprised you to discover that the file could not be deleted until it had been
closed, but why was there no data in it when the write statements had been executed? The
answer is that the output is buffered and the characters you have written via the
BufferedWriter are still in the buffer. Closing the file flushes any characters remaining in
the buffer to the file before it is closed, ensuring that all the information is written.

g Reading from a file using a Buf feredReader

The basic pattern for reading from a text file using a BufferedReader is very similar to

the code we wrote for reading from a file using a FileReader, the differences being:

1 you must wrap an instance of FileReader with an instance of BufferedReader;

2 you read lines of text from the buffer with readLine () messages which you put
within a while loop which terminates when readLine() returns null;

3 just as we did with an instance of Buf ferediWiriter, you should close a
BufferedReader from a try-catch statement nested within a finally block.

Unit 12 Streams, files and persistent objects

ACTIVITY 8

If they are not already open, launch Blued, open the project Unit12_Project_1, and then
open the OUWorkspace. Using an instance of Buf feredReader, open the file poem. txt
that you created in Activity 6, and print the contents to the Display Pane.

DISCUSSION OF
ACTIVITY 8

Your code should look similar to this:

String pathname = OUFileChooser.getFilename("poem.txt");
File aFile = new File(pathname) ;
BufferedReader bufferedFileReader = null;
try
{
String currentline;
bufferedFileReader = new BufferedReader (new FileReader(aFile));
currentLine = bufferedFileReader.readLine();
while (currentLine !=null)
{
System.out.println(currentLine);
currentlLine = bufferedFileReader.readlLine();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}
finally
{
try
{

bufferedFileReader.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

4 Making objects persistent using text files m

Making objects persistent using
text files

So far in this unit we have written text to files and read text from files. In this section we
will continue to work with text files, but in a way that will allow us to make objects
(specifically Account objects) persistent. By making an object persistent, we mean
saving the state of an object to a file on non-volatile storage, such as a hard disk, in such
a way that the file can be read back into memory to recreate that object.

Writing the details of Account objects to
file

To facilitate writing and reading the state of Account objects to and from files we will
develop a utility class called AccountsIO. But first, in the next activity, we will refresh
your knowledge of Account objects and how to iterate over collections, something you
will need to do when developing the AccountsIO class.

ACTIVITY 9

Launch BluedJ and open the project Unit12_Project_2. You can see that this contains the
familiar Account and CurrentAccount classes. Open the OUWorkspace and from its
File menu open the text file Activity9.txt. This will load into the Code Pane the
statements needed to create a number of Account objects and add them to a set. Select
and execute these statements to create the set of Account objects.

Your task in this activity is to write the code to iterate over the set of Account objects Sets were introduced in
(referenced by accountSet), printing details about the state of the objects (using Unit 10.
System.out.println()) to the Display Pane. Your code should first print out a string

describing what the output means, followed by the details for each account, like this:

Account Details (Holder, Account Number and Balance)
John Smith 020 150.0
David Green 010 50.0
Mary Jones 030 175.5

Note that because the Account objects are held in a set, and sets have no particular
order associated with them, your output to the Display Pane may print out the state of the
accounts in a different order.

DISCUSSION OF
ACTIVITY 9

Your code should look similar to the following:

System.out.println("Account Details (Holder, Account Number and
Balance)");
for (Account eachAccount : accountSet)
{
System.out.println(eachAccount.getHolder() + " "
+ eachAccount.getNumber() + " "
+ eachAccount.getBalance());

_ Unit 12 Streams, files and persistent objects

Now you have refreshed your memory of sets, accounts and iteration, it is time to start
developing the AccountsTO class that we will use to write the details of account objects
to file and then read those details back to recreate the original account objects.

ACTIVITY 10

If it is not already open, Launch BluedJ and open the project Unit12_Project_2.

Click on the New Class button on the left-hand side of the BlueJ window and, when
prompted, type in the class name AccountsIO. When the icon for the new class appears
in the BlueJ window, double-click on it to open the editor.

You will need to import the collection classes from the library java.util, the stream
classes from the library java.io and the class OUFileChooser from the library ou. So at
the top of the class file insert the following import statements:

import java.util.*;

import java.io.*;

import ou.*;
The next step is to write a class method called generateReport () to write the details of
a collection of Account objects to a file using an instance of BufferedWriter. Here is
the method heading:

/**
* Prompts the user for a pathname and then attempts to open a stream
* on the file specified by the pathname. The method then writes
* the details of the accounts held in the argument accountCollection
* to the stream. The account details are preceded by an explanatory
* heading explaining the order of the information.
*/

public static void generateReport (Collection<Account> accountCollection)

Here is how you should tackle writing the method.

1 Prompt the user for a file name using a file chooser dialogue box, and use the
returned pathname to create an instance of the File class.

2 Declare a variable of type BufferedwWriter nhamed bufferedFileWriter, and
initialise it to null.

3 Within a try block, create an instance of Buf ferediriter that wraps an instance of
FileWriter and assigns it to the variable bufferedrilelriter. Next, using a
write() message to bufferedFileWriter, write out to the stream what the output
means, that is:

Account Details (Holder, Account Number and Balance)
Follow this with a newLine () message.

Then iterate over the set of accounts referenced by the instance variable
accountCollection, in a manner similar to Activity 9, but instead of sending a
println() message to System.out send a write() message to
bufferedFileliriter, followed by a newLine() message.

4 Write a catch block to catch any exceptions.

5 Write a finally block with a nested try—catch statement to close the
BufferedWriter.

Once you have got your class to compile, open the OUWorkspace. From its File menu open
the text file Activity10.txt, which will load into the Code Pane the code needed to test
your generateReport () method. Once the code appears in the Code Pane, select and
execute the code. When prompted for a file name by the file chooser dialogue box, enter the
name accountsReport.txt. Finally check the contents of the text file written by
generateReport () (using Notepad) to ascertain that everything has worked correctly.

4 Making objects persistent using text files m

DISCUSSION OF
ACTIVITY 10

The code for the class AccountsIO should be similar to the following (we have deleted
the default constructor that Blued automatically inserts):

import java.util.*;
import java.io.*;
import ou.*;
/**
* AccountsIO is a utility class that uses static methods to
* read from and write to text files the details of Account objects.
*
* @author M255 Course Team
* @version 1.0
*/
public class AccountsIO
{
public static void generateReport (Collection<Account> accountCollection)
{
String pathName = OUFileChooser.getFilename();
File accountFile = new File(pathName) ;
BufferedWriter bufferedFileWriter = null;
try
{
bufferedFileWriter = new BufferedWriter (new FileWriter (accountFile));
bufferedFileWriter.write
("Account Details (Holder, Account Number and Balance)");
bufferedFileWriter.newLine();
for (Account eachAccount : accountCollection)
{
bufferedFileWriter.write(eachAccount.getHolder() + " "
+ eachAccount.getNumber() + " "
+ eachAccount.getBalance());
bufferedFileWriter.newLine();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}
finally
{
try
{

bufferedFileWriter.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

Unit 12 Streams, files and persistent objects

The method generateReport () should produce a text file containing the following:

Account Details (Holder, Account Number and Balance)
John Smith 020 150.0
David Green 010 50.0
Mary Jones 030 175.5

Note that because the collection used as an argument to generateReport() IS a set,
and sets have no particular order associated with them, the text in your file may show the
state of the accounts in a different order. This text file is designed to be read by a
person. We could work out ways to present the information in neatly aligned columns
etc., but for now it is sufficient to allow us to see the details of the accounts held.

If you had any problems with Activity 10, the class AccountsIO as developed so far has
been added to Unit12_Project 3.

Writing files that can be used to recreate
objects

In the previous activity you created a new utility class, AccountsIO, and wrote the static
method generateReport (), which creates a text file which exactly reflects the current
state of a collection of Account objects given as its argument. So in some sense it
makes the data represented by those account objects persistent. What we look at in the
remainder of this section is what we need to do to create a text file that when
subsequently read programmatically can be used to recreate those account objects.

Exercise 2

Look again at the text written to the file generated by generateReport (). Can you see
any problems with using this data file to recreate, programmatically, the account objects it
describes? How do you think they might be overcome?

ST o1 (511 o TSR
The first line in the file is:

Account Details (Holder, Account Number and Balance)

This is an informal description of the account details given in the subsequent lines. The
information helps human users understand the data that follows but is not sufficiently
precise to allow a program to read the subsequent lines to recreate the account objects.

Although a program could be written to recognise that each line in the file represents an
account object it needs to recreate, there is a problem. Each line of the report contains
four or five groups of characters separated by a space, and the program would have no
way of knowing if an account holder’s full name consisted of two, three or more names;
so it would have no way of knowing whether the third group of characters represents
part of a holder's name or an account number.

This problem arises because we are using the space character in two different ways: to
separate individual names within an account holder’s full name; and to delimit (separate)
the values of the different instance variables within the account object. The solution to
this problem is to use an alternative character to delimit the values of the different
instance variables. One of the standard delimiters used in files is the comma, and the
delimited values are called ‘tokens’.

4 Making objects persistent using text files

The discussion of Exercise 2 would suggest that the first line of the file, which describes
how the data that represents the account objects is laid out in the file, is of no use to a
program which needs to use the data to recreate the objects, and that instead the file
should have the following structure:

John Smith,020,150.0
David Green,010,50.0
Mary Jones, 030,175.5

The description of each account object is on a separate line, just as before, but the value
of each instance variable is separated from the next by a comma. A file in this format is
known as a CSV or comma-delimited file. 'CSV’ stands for either comma-separated
variables or comma-separated values, and we say that each comma delimits
neighbouring tokens. So in the line

John smith,020,150.0

the tokens are "John Smith", "020" and "150.0".

ACTIVITY 11

If necessary launch Blued and open the project Unit12_Project_3, to which the
AccountsIO class as so far developed has been added.

In this activity you are going to write a static method called saveAccounts(). Here is the
method comment and header:

/**
* Prompts the user for a pathname and then attempts to open a stream
* on the file specified by the pathname. The method then writes
* the details of the accounts held in the argument accountCollection
* to the stream. The account details are written in CSV format.
*/

public static void saveAccounts(Collection<Account> accountCollection)

To write this method, copy and paste generateReport () and change the method name
to saveAccounts(); then simply change the code

bufferedFileWriter.write(eachAccount.getHolder() + " "
+ eachAccount.getNumber () + " "
+ eachAccount.getBalance());

so that it writes the data to file in CSV format.

Test the saveAccounts() method by loading and adapting the code given in
Activityl0.txt. When prompted for a file name by the file chooser dialogue box, enter
the name savedAccounts. txt.

Finally check the contents of the text file written by saveAccounts() using Notepad, to
ascertain that everything has worked correctly.

Unit 12 Streams, files and persistent objects

DISCUSSION OF
ACTIVITY 11

The method saveAccounts () is virtually the same as generateReport (). The only
changes are to the first try block, which should now look like this:

try
{
bufferedFileWriter = new BufferedWriter(new FileWriter (accountFile));
for (Account eachAccount : accountCollection)
{
bufferedFileWriter.write(eachAccount.getHolder() +","
+ eachAccount.getNumber () +","
+ eachAccount.getBalance());
bufferedFileWriter.newLine();

When you open savedAccounts. txt using Notepad you should see (though perhaps in
a different order)

John Smith,020,150.0
David Green,010,50.0
Mary Jones,030,175.5

with the details of each account on a separate line, and the values of the instance
variables delimited by commas.

If you had any problems with Activity 11, the class AccountsIO as developed so far has
been added to Unit12_Project_4.

Reading a text file using the Scanner
class

In the previous subsection you created a text file that held details of the states of
Account objects in CSV format. In this subsection you will learn how to read such a file
to recreate the described objects.

From your experiences of reading files in Section 3, you might imagine that we would
simply use an instance of the BufferedReader class to read a text file saved in CSV
format, in order to recreate the objects represented by the data in the file. Well we could,
and we might, but then we would have to think of how to programmatically chop up each
line that was read, into the comma delimited tokens — this would be tedious. Fortunately
the library java.util provides a class called Scanner that will do all the hard work for
us.

ACTIVITY 12

If it is not already open, launch Blued. From the Help menu select Java Class Libraries.
When your browser opens, select java.util from the top-left scrollable frame. Then
from the bottom-left scrollable frame select the Scanner class.

Explore the documentation for the Scanner class and try to find some constructors and
methods that might help you to read a text file in CSV format and split each line into its
various tokens.

4 Making objects persistent using text files

DISCUSSION OF
ACTIVITY 12

You should have discovered that the Scanner class has many constructors. You may
have found the following constructor:

public Scanner (Readable source)

You might also have discovered that the Buf feredReader class implements the
Readable interface, and so this constructor would be useful in conjunction with an
instance of Buf feredReader.

We have been working with strings a lot in this unit, so the following constructor may
have caught your eye:

public Scanner (String source)
The following method may also have caught your attention:
public boolean hasNextLine()

It returns true if there is another line in the source (the argument given to the constructor)
and false otherwise — such a method would be useful to control a while loop.

The method
public String nextLine()

returns the next line in a source — so this method would be useful for getting the next line
in a multi-line source such as a File, FileReader Or BufferedReader.

We have been discussing CSV files, and how commas can be used to delimit tokens. So
the following method looks useful:

public Scanner useDelimiter(String pattern)
It informs a Scanner object about the character(s) used to delimit tokens in the source.
The method

public boolean hasNext()

returns true if the there is another token in the source, so again this looks useful for
controlling a while loop.

The method

public String next()
returns the next token in the source as a string — this looks very promising.
Another method that might prove useful is:

public double nextDouble()

It returns the next token in the source as a double, but only if the characters in the token
can be interpreted as a double value.

From the previous activity you should have deduced that a Scanner object can be used
to parse a source such as a BufferedReader Or a String into its constituent tokens. In
the next activity you will parse a string to print out the constituent components.

Unit 12 Streams, files and persistent objects

Note that there are no
spaces surrounding the
commas as otherwise the
spaces would be
interpreted as being part
of the tokens.

ACTIVITY 13

In this activity you will investigate using a Scanner object to break down a string into its
constituent tokens. Launch BlueJ and open the OUWorkspace.

Enter the following code in the OUWorkspace:

Scanner aScanner = new Scanner ("David Green,010,50.0");
while (aScanner.hasNext())

{

System.out.println(aScanner.next());

}

Note how the message-send aScanner.hasNext () is used to control the while loop.
The while loop will continue to execute until hasNext () returns false, i.e. when there
are no more tokens in the source. Note also how the next () message is used within the
while loop to return the next token in the source as a string.

Select and execute the above code, and observe the output in the Display Pane.

1 How many tokens are printed to the Display Pane?
2 What do you think is the default delimiter of a Scanner?

Now alter the code to include the statement aScanner.usebDelimiter(","); as shown below:

Scanner aScanner = new Scanner ("David Green,010,50.0");
aScanner.useDelimiter(",");
while (aScanner.hasNext())

{

System.out.println(aScanner.next());
}
Select and execute the modified code, and observe the output in the Display Pane.

3 How many tokens are printed to the Display Pane this time?

DISCUSSION OF
ACTIVITY 13

1 Two tokens are printed to the Display Pane. If there are more than two lines of text in
your Display Pane, check that you did not include any spaces around the commas
in the input text.

2 The string is split on the basis of the space character. The default delimiter of a
Scanner IS one or more whitespace characters. Whitespace characters include
space, tab and newline characters.

3 Three tokens are returned: the tokens are now delimited by a comma rather than a space.

In the previous activity you saw how the message next () when sent to a Scanner
object returned the next token in the scanner’s source as a string. However, we may not
want the next token returned as a string, as the information held in the token may be a
character representation of a different type. Fortunately the class Scanner provides a
number of methods which will return the next token as a value of another type. For
example, nextInt () will return the characters comprising the next token as an int
value, so long as those characters can be interpreted as an int value — if they cannot,
an exception will be thrown. Similarly nextDouble () will return the characters
comprising the next token as a value of type double.

4 Making objects persistent using text files m

ACTIVITY 14

Unless it is already open, launch Blued and open the project Unit12_Project_4. Then
open the OUWorkspace.

1 Use a scanner to parse the source string

"David Green,010,50.0"
so that the extracted tokens are assigned to three variables, declared as follows:
String accountHolder;

String accountNumber ;
double accountBalance;

Obviously the first two tokens you parse must be returned as strings and the third
must be returned as a double value. (Hint: you do not need a while loop to achieve
this.)

Once you have parsed the string and assigned values to the three variables, use
these variables as the arguments to an Account constructor to create and initialise an
Account object, which should be assigned to a variable named anAccount.

Once you have done this, inspect anAccount to ascertain that the Account object
has been correctly and successfully created.

2 Repeat the above activity, but this time using the string

"David Green,010,Fifty"

DISCUSSION OF
ACTIVITY 14

1 Your code should be similar to the following:

String accountHolder;

String accountNumber ;

double accountBalance;

Account anAccount;

Scanner aScanner = new Scanner ("David Green,010,50.0");
aScanner.useDelimiter(",");

//return the next token as a string

accountHolder = aScanner.next();

// return the next token as a string

accountNumber = aScanner.next();

// return the next token as a double

accountBalance = aScanner .nextDouble();

anAccount = new Account (accountHolder, accountNumber, accountBalance);

Inspecting anAccount should show that:
» accountHolder is set to "David Green";
» accountNumber iS setto "010™;
» accountBalance is set to 50.0.
2 When you repeated the activity with the string "David Green,010,Fifty", the
following error message should have appeared in the Display Pane:
Exception: line 12. java.util.InputMismatchException

The statement at line 12 is:

accountBalance = aScanner.nextDouble();

Unit 12 Streams, files and persistent objects

What has happened is that nextDouble () is trying to convert the third token into a
double value but the third token consists of the characters F i £ t y, which cannot
be converted to a double. Hence there is a mismatch between the expectation of
nextDouble () (it is looking for numeric characters) and what it finds (the alphabetic
characters F i f t y), and so the exception is thrown and no account is created.

Such exceptions can be avoided, as the Scanner class includes methods such as
hasNextInt () and hasNextDouble() which check whether the characters in the
next token are of the expected type. However, this of course would lead to lengthier,
more complicated code.

The previous activity has demonstrated how a scanner can be used to parse a string

into its constituent tokens. In Activity 8 you wrote code in the OUWorkspace to read the
contents of a file using a BufferedReader and printed the contents line by line to the
Display Pane. In Activity 11 you wrote a static method for AccountsI0 that saved the

details of a collection of Account objects as characters in a text file in CSV format. In the
next activity you are going to bring this all together by completing a static method for the
AccountsIO class that will read a file containing the details of accounts in CSV format
and return a collection of Account objects constructed from those details.

ACTIVITY 15

If necessary launch Blued and open the project Unit12_Project_5. Double-click on the
AccountsTO class to open the editor. Scroll to the end of the file to find the static method
loadAccounts (). This is an incomplete method based largely on Activity 8, and we have
indicated with numbered comments where you need to add code.

1 Declare a variable of type Set and assign to it an instance of class HashSet.
2 Next, declare three variables as follows:

String accountHolder;
String accountNumber ;
double accountBalance;
These will be used for the tokens that represent Account attribute values.

3 Declare a variable of type Scanner called 1ineScanner.

4 Create an instance of Scanner using the string object referenced by the variable
currentLine as the argument to the constructor. Assign the Scanner object to the
variable 1ineScanner.

5 Send a message to 1ineScanner to tell it that its source uses commas for the token
delimiters.

6 Justas you did in Activity 14, use 1ineScanner to parse the source string so that the
extracted tokens are assigned to the three variables accountHolder,
accountNumber and accountBalance.

7 Once you have parsed the source string and assigned values to the three variables,
use these variables as the arguments to an Account constructor to create and
initialise an Account object, which should be added to the set accountSet.

8 Finally, where indicated in the class file, return accountset.

Once you have got AccountsIO to recompile, test your 1oadAccounts() method in the
OUWorkspace by executing the following code:

Set accounts = AccountsIO.loadAccounts();

When prompted for a file name, select the file Activityl5 testl.txt, which holds
details of accounts in CSV format. After the code has executed, inspect the variable
accounts to ascertain that the set it references contains three Account objects. If there
is a problem you will need to debug your code!

4 Making objects persistent using text files m

Once you are satisfied that your 1oadAccounts () method is working correctly, try it out
with the following files which have been designed to cause problems!

» Activityl5 test2.txt
» Activityl5 test3.txt
After each test, open the file with Notepad to look at its the contents, and then inspect

accounts. Does the set referenced by accounts contain Account objects that match
those described in the CSV file? Explain any error messages shown in the Display Pane.

DISCUSSION OF
ACTIVITY 15

Here is the code for the method loadAccounts():

public static Collection<Account> loadAccounts()
{
String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
BufferedReader bufferedFileReader = null;
Set<Account> accountSet = new HashSet<Account>();
try
{
String accountHolder;
String accountNumber ;
double accountBalance;
Scanner lineScanner;
bufferedFileReader = new BufferedReader (new FileReader (aFile));
String currentLine = bufferedFileReader.readlLine();
while (currentLine !=null)
{

lineScanner = new Scanner (currentLine);

lineScanner.useDelimiter(",");

accountHolder = lineScanner.next();

accountNumber = lineScanner.next();
accountBalance = lineScanner.nextDouble() ;
accountSet.add(new Account (accountHolder, accountNumber, accountBalance));

currentlLine = bufferedFileReader.readlLine();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}
finally

{
try
{

bufferedFileReader.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

return accountSet;

_ Unit 12 Streams, files and persistent objects

When loadAccounts () is tested with the file Activityl5 testl.txt, the accounts are
generated correctly from the file descriptions.

When loadAccounts() is tested with the file Activityl5 test2.txt, the set
referenced by accounts contains only one Account object, and the message

Java.util.InputMismatchException

appears in the Display Pane. Reading the file Activityl5 test2.txt with Notepad,
you can see that in the second line of the file, the third token does not contain characters
that could represent a value of type double, so the exception
InputMismatchException is thrown.

When loadAccounts() is tested with the file Activityl5 test3.txt, the set
referenced by accounts contains only two Account objects, and the message

java.util.NoSuchElementException

appears in the Display Pane. Reading the file Activityl5 test3.txt with Notepad,
you can see that second line contains only two tokens, so the
NoSuchElementException is thrown.

If you had any problems with Activity 15, the class AccountsIO as developed so far has
been added to Unit12_Project_6.

In the previous activity you used a combination of a Buf feredReader to read lines of
code from a file and a Scanner to then parse each line to extract the tokens. In
Activity 12, where you looked at the documentation for the Scanner class, you saw that it
had a constructor that took an argument of the interface type Reader. As the

Buf feredReader class implements the Readable interface, you could create an
instance of Scanner whose source was a BufferedReader, i.e. you could wrap a

Buf feredReader with a Scanner, just as you have previously wrapped a FileReader
with a Buf feredReader. For example:

bufferedScanner = new Scanner (new BufferedReader (new FileReader (aFile)));

The above line of code creates a Scanner object which wraps a Buf feredReader which
in turn wraps a FileReader. So why might we wish to wrap a BufferedReader with a
Scanner? The answer is for the additional protocol — the Scanner class provides some
useful methods which could be used to simplify reading from the buffer.

In particular the Scanner class has an instance method called hasNextLine () which
would have simplified the while loop in the loadAccounts () method, as it returns true
or false depending on whether there are any more lines in the source. For example, in
loadAccounts() we had to read the first line from the buffer before entering the while
loop, the while loop then tested that readLine() had not returned null, and then the
last line in the while loop read a line from the buffer again, as shown (in outline) below:

currentlLine = bufferedFileReader.readLine();
while (currentLine !=null)

{

currentLine = bufferedFileReader.readLine();

4 Making objects persistent using text files m

If we had wrapped the Buf feredReader with a Scanner we could have constructed the
while loop as follows:

while (bufferedScanner.hasNextLine())

{

currentLine = bufferedScanner.nextLine();

}

The message-send bufferedScanner .hasNextLine() returns true if there is another
line of text; otherwise it returns false. So the while loop will continue as long as there
are lines of text to be read. Now there is no need to read the first line from the buffer
before entering the while loop, and reading a line from the buffer occurs in only one
place — as the first line of the while block.

ACTIVITY 16

If necessary launch Blued and open the project Unit12_Project_6. Double-click on the
AccountsTO class to open the editor. Modify the 1oadAccounts () method so that it now
uses two Scanner objects: one that wraps a Buf feredReader, as described above, to
read lines from the file, and another, created in the body of the while loop, to parse the
current line (returned by the first scanner) for the tokens to create an account (just as you
did in Activity 15). Do not forget to close the scanner that wraps the BufferedReader in
the finally block, in order to close the underlying stream.

DISCUSSION OF
ACTIVITY 16

Here is our code for the modified loadAccounts () method:

public static Collection<Account> loadAccounts()
{
String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
Scanner bufferedScanner = null;
Set<Account> accountSet = new HashSet<Account>();
try
{
String accountHolder;
String accountNumber ;
double accountBalance;
Scanner lineScanner;
String currentLine;
bufferedScanner = new Scanner (new BufferedReader (new FileReader(aFile)));
while (bufferedScanner.hasNextLine())
{
currentLine = bufferedScanner.nextLine();
lineScanner = new Scanner (currentLine);
lineScanner.useDelimiter(",");
accountHolder = lineScanner.next();
accountNumber = lineScanner.next();
accountBalance = lineScanner.nextDouble() ;
accountSet.add(new Account (accountHolder, accountNumber, accountBalance));

_ Unit 12 Streams, files and persistent objects

catch (Exception anException)

{

System.out.println("Error: " + anException);

}
finally

{
try
{

bufferedScanner.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

return accountSet;

}

If you had any problems with Activity 16, the completed class AccountsIO has been
added to Unit12_Project_7.

Summary of stream classes, messages
and exceptions

Writing to a text file
1 Classes that make use of the stream classes need to import the java.io library:
import java.io.*;

2 In M255 you can get the pathname for a physical file name by invoking one of the
getFilename() methods on the OUFileChooser class, for example:

String pathname = OUFileChooser.getFilename();

3 When creating a File object, the pathname used as the argument to the constructor
need not describe an existing physical file if the intention is to create a new physical
file.

File aFile = new File(pathname);

4 Writing to a physical file is achieved via a stream. For text files the stream should be
an instance of FileWriter, which for efficiency should be wrapped by an instance
of BufferedWriter. For example:

bufferedFileWriter = new BufferedWriter(new FileWriter(aFile));

If the FileWriter fails to open or write to aFile it throws an I0Exception, which
must be caught. Therefore the code that creates the stream and writes to the stream
must be within the try block of a try—-catch-finally statement.

5 Writing to a FileWriter stream buffered by an instance of BufferedWriter is
achieved by sending write() and newLine () messages to the BufferedWriter.
For example:

bufferedFileWriter.write("String data to be written");
bufferedFileWriter.newLine(); // Start a new line

4 Making objects persistent using text files

Putting it all together we have:

try

{
bufferedFileWriter = new BufferedWriter (new FileWriter(aFile));
bufferedFileWriter.write("String data to be written");
bufferedFileWriter.newlLine(); // Start a new line

}

catch (Exception anException)

{
System.out.println("Error " + anException);

}

6 The stream is closed by sending a close() message to the BufferedWriter,
which in turn will close the underlying stream (an instance of FileWriter). The
stream must be closed from the finally block of the try—catch-finally statement.
As closing the stream can throw an exception, the finally block has a nested
try—catch statement. For example:

finally
{
try
{

bufferedFileWriter.close();
}
catch (Exception anException)
{

System.out.println("Error " + ankException);

Reading from a text file using a Scanner

1 Classes that make use of the Scanner class need to import the java.util library:
import java.io.*;
import java.util.*;

2 In M255 you can get the pathname for a physical file name by invoking the method

getFilename() on the OUFileChooser class, for example:

String pathname = OUFileChooser.getFilename();

3 A File object can then be created as follows:

File aFile = new File(pathname) ;

4 Reading a physical file is achieved via a stream. For text files the stream should be
an instance of FileReader, which for efficiency should be wrapped by an instance
of Buf feredReader. In order to easily read more than one character at a time from
the buffer, it is a good idea to wrap the Buf feredReader with an instance of
Scanner. For example:

bufferedScanner = new Scanner (new BufferedReader (new FileReader (aFile)));

If the FileReader fails to open or read aFile it throws an IOException, which must
be caught. Therefore the code that creates the stream and reads from the stream
must be within the try block of a try—catch-finally statement.

Unit 12 Streams, files and persistent objects

5 The message hasNextLine() when sent to a Scanner will return true if there are

any more lines of characters in the underlying stream, and false otherwise. The

message nextLine () when sent to a Scanner will return the next line of characters
from the stream as a string.

Putting it all together we have:

try
{

bufferedScanner = new Scanner (new BufferedReader (new FileReader (aFile)));

String line;
while (bufferedScanner.hasNextLine())
{

line = bufferedScanner.nextLine() ;

}
catch (Exception anException)
{

System.out.println("Error " + anException);

}

The underlying stream is closed by sending a close() message to the Scanner,
which in turn will close the underlying stream (an instance of FileReader). The
stream must be closed from the finally block of the try—catch—finally statement.
As closing the stream can throw an exception, the finally block has a nested
try—catch statement. For example:

finally
{
try
{
bufferedScanner.close();
}
catch (Exception anException)
{

System.out.println("Error " + anException) ;

5 Persistence through serialisation m

Persistence through serialisation

In Section 4 you implemented the AccountsIO class and learnt how to save the details
of Account objects to text files in CSV format. You also learnt how to read such files in
order to recreate Account objects from those stored details. In this way you were able to
make Account objects persistent.

You might like to think about how you would adapt AccountsTO to handle collections of
CurrentAccount objects. This would be fairly simple: all you would need to do is write
additional save and load methods that take into account the additional instance
variables creditLimit and pin.

But how might you adapt AccountsIO to handle mixed collections of Account and
CurrentAccount objects? This is more complex. For the saveAccounts () method you
would have to explicitly detect instances of CurrentAccount.

One way of doing this would be with an if statement whose condition used the instanceof is an
instanceof operator to detect instances of Currentaccount. The statement block of operator that tests
. . . . L whether the run-time class
the 1f statement would then ensure that the extra information associated with instances of its first operand is
of CurrentAccount objects (creditLimit and pinNo) was written to file. For example: assignment compatible
with the class name given
for (Account eachAccount : accountCollection) as the second operand.

{

bufferedFileWriter.write(eachAccount.getHolder() +","
+ eachAccount.getNumber () +","
+ eachAccount.getBalance());

if (eachAccount instanceof CurrentAccount)

{

bufferedFileWriter.write("," + ((CurrentAccount) eachAccount).getCreditLimit()
+"," + ((CurrentAccount) eachAccount).getPin());
}
bufferedFileWriter.newLine();

}

For the 1oadAccounts () method you would need another strategy. After getting the first
three tokens you could use an if statement and a hasNext () message to the Scanner
to detect whether there were any more tokens in the current line. If there were, you would
know that you were dealing with a description of a current account; otherwise, you would
know that it was an ordinary account. For example:

accountHolder = lineScanner.next();
accountNumber = lineScanner.next();
accountBalance = lineScanner.nextDouble();
if (lineScanner.hasNext()) // it is a CurrentAccount
{
creditLimit = lineScanner.nextDouble();
pin = lineScanner.next();
this.accountSet.add (new CurrentAccount (holder, number, balance, creditLimit, pin));
1
else // just add an ordinary Account

{

this.accountSet.add(new Account (holder, number, balance));

Unit 12 Streams, files and persistent objects

In Unit 9, Activity 6, you
discovered that when you
compiled the source file
Welcome. java the file
Welcome.class was
created. Welcome.class
is known as the class file
and contains the bytecode
defining the class.

While these solutions are tractable when Account has only a single subclass, it
becomes more difficult once we have a number of subclasses, e.g. SaverAccount,
PremierAccount etc. And what if we wanted to make Frog and Marionette objects
persistent? We would need to write other specialised classes to write and read them to
and from file.

However, Java provides a mechanism whereby any object can be turned into a
sequence of bytes (rather than characters), which can be saved to a file — and this file
can then be used to reconstruct the original object. This process is known as object
serialisation.

Important points to note about serialisation are:

1 For an object to be serialisable, its class (or one of its superclasses) must implement
the serializable interface.

2 Serialisation produces bytes, not characters. So when a serialised object is written
to or read from a file, we have to use classes which read and write bytes rather than
characters. So serialisation uses classes based on InputStream and
OutputStream rather than the Reader and Writer classes.

3 Retrieving a serialised object requires access to the file containing the compiled
class.

m The Serializable interface

The serializable interface is a bit unusual. If you look at its documentation in
java.io, you will find that it contains no methods, and the interface only serves to mark
the implementing class as serialisable. Many of the standard Java classes implement
the Serializable interface. If a class implements Serializable then any subclasses
will also inherit the behaviour.

For example, if we want to make instances of the Account class serialisable then the
Account class needs to implement the serializable interface. This requires just two
simple changes to the Account class.

1 Include the following import statement as the first line in the file containing the
Account class:

import java.io.Serializable;

Alternatively, just use
import java.io.*;
(to import every class in the java.io library).
2 Modify the first line of the definition of the Account class from

public class Account

to:
public class Account implements Serializable

That is all there is to making instances of a class serialisable!

5 Persistence through serialisation

m Reading and writing serialised objects

As noted above, serialisation involves bytes rather than characters, and so we use an
instance of the ObjectInputStream class to read serialised objects from a file, and an
instance of the ObjectOutputStream class to write serialised objects to a file. Reading
from and writing to instances of ObjectInputStream and ObjectOutputStream is very
similar to using Reader and Writer classes and involves wrapping other InputStream
and OutputStream classes and catching the checked exceptions.

Writing a serialised object to a file

The overall structure of the code for writing a serialised object to a file is very similar to
that for writing characters to a text file:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
ObjectOutputStream bufferedOutputStream = null;
try
{
bufferedOutputStream = new ObjectOutputStream
(new BufferedOutputStream(new FileOutputStream(aFile)));
// writing a serialised object to the stream goes here

}
The catch and finally blocks are then the same as you have seen many times before.

Note how an instance of the ObjectOutputStream class wraps an instance of
BufferedOutputStream which in turn wraps an instance of FileOutputStream. If we
were not bothered about buffering we would just create our instance of
ObjectOutputStream as follows:

new ObJjectOutputStream(new FileOutputStream(aFile));

Writing an object to the stream is accomplished by sending a writeObject () message
to the ObjectOutputStream. The writeObject () method has the following method
heading:

public final void writeObject (Object obj)

Hence writeObject () can be used to write an object of any class that implements the
Serializable interface, as all objects are type compatible with Object. As the
collections in the Collections Framework all implement the Serializable interface, the
writeObject () method can be used to write whole collections of objects that also
implement the serializable interface, all in a single write.

When creating the ObjectOutputStream object there are two checked exceptions that
could be thrown:

» The FileOutputStream constructor will throw a FileNotFoundException if either
aFile cannot be created or it exists but cannot be opened.

» The ObjectOutputStream constructor will throw an IO0Exception if an error occurs
when the stream is created.

As with a BufferediWriter, the constructor of a Buf feredOutputStream does not
throw any exceptions.

_ Unit 12 Streams, files and persistent objects

If we look at the documentation for the writeObject (Object obj) method we can see
which exceptions it may throw:

Throws:

InvalidClassException — Something is wrong with a class used by
serialization.

NotSerializableException — Some object to be serialized does not
implement the java.io.Serializable interface.

TOException — Any exception thrown by the underlying OutputStream.

Reading a serialised object from a file

The code for reading a serialised object from a file is, apart from using InputStream
rather than outputStream classes, very similar to that for writing a serialised object:

String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
ObjectInputStream bufferedInputStream = null;
Object anObject = null;
try
{
bufferedInputStream = new ObjectInputStream
(new BufferedInputStream(new FileInputStream(aFile)));
anObject = bufferedInputStream.readObject();
}

Note how an instance of the ObjectInputStream class wraps an instance of
BufferedInputStream which in turn wraps an instance of FileInputStream. If we
were not concerned about buffering we would just create our instance of
ObjectInputStream as follows:

new ObjectInputStream(new FileInputStream(aFile));

Reading an object from the stream is accomplished by sending a readObject()
message to the ObjectInputStream. The readObject () method has the following
method heading:

public final Object readObject() throws IOException, ClassNotFoundException

Notice that readObject () returns an instance of Object. It knows nothing about the
actual class of the object it has read (it’s just bytes); so to do anything useful with the
recovered object, you need to know what class of object to expect and then cast the
returned object reference into the expected type. The class of any object can be
determined by sending it a getClass() message.

When creating the ObjectInputStream object there are two checked exceptions that
could be thrown:

» The FileInputStream constructor will throw a FileNotFoundException if either
aFile cannot be created or it exists but cannot be opened.

» The ObjectInputStream constructor will throw an I0Exception if an error occurs
when the stream is created.

Summary

As with a Buf feredReader, the constructor of a Buf feredInputStream does not throw
any exceptions.

The method readObject () throws two checked exceptions, an I0Exception and, if the
compiled class of the serialised object cannot be found, a ClassNotFoundException.

ACTIVITY 17

Launch Blued and open Unit12_Project_8. This project includes a class called ObjectI0O
and a version of the Account class which implements the Serializable interface. Open
the class ObjectIO in the editor and complete the static methods saveObject () and
retrieveObject (), so that their behaviour matches their method headings. Once you
have got the ObjectI0 class to compile, open the OUWorkspace.

1 Choose Open from the OUWorkspace’s File menu and select the file
Activityl7.txt. This will load into the Code Pane the code needed to create a
mixed set of Account and CurrentAccount objects referenced by the variable
initialSet. Select and execute the code. Then inspect initialSet.

2 Test your saveObject () method by invoking it on the class ObjectIO with
initialSet as its argument. When prompted for a file name enter accounts.dat.
Note that we have given the file name a .dat extension, to indicate that it contains
raw data in the form of bytes rather than text.

Open the file accounts.dat using Notepad, and look at its contents. Close the file,
and if prompted do not save any changes

3 Next test your retrieveObject () method by writing and executing the following
statement:

recoveredSet = ObjectIO.retrieveObject();

Finally inspect recoveredset, does the set it references contain the objects you
expected?

DISCUSSION OF
ACTIVITY 17

Your saveObject () method should be similar to this:

public static void saveObject(Object anObject)
{
String pathname = OUFileChooser.getFilename();
File aFile = new File(pathname) ;
ObjectOutputStream outStream = null;
try
{
outStream = new ObjectOutputStream
(new BufferedOutputStream(new FileOutputStream(aFile)));
outStream.writeObject (anObject) ;
}
catch (Exception anException)

{

System.out.println("Error: " + anException);

Unit 12 Streams, files and persistent objects

}

finally

{
try

{
outStream.close();
}
catch (Exception anException)

{

System.out.println("Error: " + anException);

Your retrieveObject () method should be similar to this:

public static Object retrieveObject()

{

}

String pathname = OUFileChooser.getFilename() ;
File aFile = new File(pathname) ;
ObjectInputStream inStream = null;
Object anObject = null;
try
{

inStream = new ObjectInputStream

(new BufferedInputStream(new FileInputStream(aFile)));

anObject = inStream.readObject () ;
}
catch (Exception anException)
{

System.out.println("Error: " + anException);
}
finally
{

try

{

inStream.close();

}

catch (Exception anException)

{

System.out.println("Error: " + anException);

}

return anObject;

When you execute the statements loaded from file Activityl7.txt:

The variable initialSet references a set containing three Account objects and
one CurrentAccount object.

The file accounts.dat contains bytecode, which is not designed to be read by
humans! When you open it in Notepad you will be able to pick out some words, but
there are many unintelligible characters.

The variable recoveredSet references a set containing clones of the objects in
initialSet. The CurrentAccount object in initialSet has been successfully
retrieved as a CurrentAccount in recoveredsSet.

1

If you had any problems with Activity 17, the completed class ObjectI0 has been
added to Unit12_Project_9.

5 Persistence through serialisation

m The limitations of serialisation

Serialisation is a much easier way of achieving persistence than explicitly writing the
details of an object as characters to a text file. However, in order to recover a serialised
object, the Java virtual machine must know where to find the compiled class of the
object (i.e. its .class file). For this reason, when a method in a class (or indeed the
OUWorkspace) attempts to recover a serialised object from a file, the compiled .class
file of the serialised object (and the .class files for the objects referenced by its
instance variables) must be ‘in scope’. That is the files should be in the same project or
brought into scope in some other way — perhaps through an import statement. If the
compiled class(es) cannot be found, the readObject () method of
ObjectInputStream will throw a ClassNotFoundException. In the case of a serialised
collection object, the Java virtual machine must know where to find the compiled class
of the collection class and the class of its element type and the classes of the element
type’s instance variables.

So if you want to save an object using serialisation to a file and then perhaps email that
file to someone else, you must make sure that the recipient also has access to the
classes on which that object is based.

This can be contrasted with saving the details of an object (values of the instance
variables) as characters in a text file and sending it to someone. The file can be read by
a human, and provided you tell them how the information is set out in the file (for
example, account holder followed by account number followed by balance), they will be
able to make use of that information (if only by reading) without having the original
Account class.

Unit 12 Streams, files and persistent objects

Note that in all the code
samples given in this
section try-catch
statements have been
omitted for simplicity.

Streams and networks

Streams have an integral role in network programming and distributed computing.
These issues are covered in detail in other courses, but in this short section we shall
briefly outline how streams are used in this context.

The Java network classes (found in the package java.net) are designed to simplify
development of programs to run across networks, particularly the Internet. Sending and
receiving information across a network is achieved using streams, so once a connection
has been made between two machines, data can be transferred between the machines
in exactly the same way as reading and writing to and from files.

If we want to transfer information between two computers over a network connection,
one computer will have the role of the server and the other the role of the client. The
connection is achieved using sockets. A socket represents one end of a connection
between two machines, and a connection is made between a socket on the server and
the socket on the client.

A computer may have many server and/or client applications running at any one time,
but will usually only have one physical port for sending and receiving data across a
network (an Ethernet port). Therefore there is a need to ensure that data is directed to
the appropriate applications. This is achieved by the use of port numbers which identify
virtual (software) ports. Each server application is associated with a particular virtual
port (identified by its port number). Data is transferred across networks in chunks of
data called packets. Each packet contains the IP (internet protocol) address of the
destination computer and the port number of the intended application. When a packet
arrives at the computer (identified by its IP address), the operating system reads the
port number and directs the packet to the intended application.

The server

When a server is started, it waits for a connection from a client. A server waits for a
connection by ‘listening’ to a specific port number which represents the service, or
program, which the server is willing to offer to a client.

This waiting and listening for a connection is implemented through an instance of the
ServerSocket class as illustrated below:

Socket clientSocket = null;
ServerSocket listener = new ServerSocket (9999);
clientSocket = listener.accept():;

The accept () method begins listening to the specified port (9999 in this example) and
execution of the method does not end until a connection is requested from a client on
that port. At that point, accept () accepts the connection, and creates and returns an
instance of socket (which represents the client end of the connection). In the above
code this instance is assigned to the variable clientSocket.

To allow the server to read from, and write to, the client, a socket has both input and
output streams associated with it, which are accessed by the messages
getInputStream() and getOutputStream(). Theses streams, just like all the others
encountered in this unit, can be wrapped by instances of other stream classes for ease
of use.

For example, to write to the client we could write:

PrintWriter outStream = new PrintWriter(clientSocket.getOutputStream()) ;
outStream.println("Hello Client");

Similarly to read from the client we could use:

BufferedReader inStream = null;

String stringFromClient;

inStream = new BufferedReader (new InputStreamReader (clientSocket.getInputStream()));
stringFromClient = inStream.readLine();

Note try-catch statements have been omitted from the code above for simplicity.

The client
In order to contact the server the client needs to know two things:

» The IP address of the server. Every machine which connects to the Internet has to
have an IP address, such as 123.235.189.12.

» The port number of the service which the client wants to use.
Using this information, a client can then create a socket to the server as follows:
Socket serverSocket = new Socket(123.235.189.12, 9999);

The input and output streams of the server socket can then be obtained and wrapped to
allow the client to read from, and write to, the server socket.

PrintWriter outStream = new PrintWriter (serverSocket.getOutputStream());
outStream.println("Hello Server");

Similarly to read from the server

BufferedReader inStream = null;

String stringFromServer;

inStream = new BufferedReader (new InputStreamReader (serverSocket.getInputStream()));
stringFromServer = inStream.readLine();

Again, try-catch statements have been omitted from the code above for simplicity.
This communication between client and server is summarised in Figure 11.

You can see that once the input and output streams of the sockets have been wrapped
appropriately, reading and writing data across a network uses similar classes and
message-sends as reading and writing data to and from files.

output stream of input stream of
server socket forms client socket

server //L x client
server % g client
program = \ / = program

/ input stream of output stream of \

is
formed -
server socket client socket
socket from socket

Figure 11 Client-server communication

_ Unit 12 Streams, files and persistent objects

Summary

After studying this unit you should understand the following ideas.

>
>

Files may be used to make data persistent.

Streams may be used to transfer data from a source to a sink, where the source may
be a program, a file, a keyboard or a network connection, and the sink may be a
program, a file, a computer monitor or a network connection.

The Reader and Writer classes are used to read and write character data (to and
from files), while the InputStream and OutputStream classes are used to read and
write binary data (to and from files).

Exceptions may occur when using streams, and these are handled using
try—catch—finally statements.

The details of objects can be written to file as character data, which can then be
later read from file to re-create those objects.

Serialisation enables objects to be saved as binary data in files, with advantages in
terms of efficiency but some disadvantages in terms of transparency and portability.

Summary

LEARNING OUTCOMES

After studying this unit you should be able to:

| 2

vvyyy

vy

appreciate the range of classes in the java.io library;

understand how stream classes are wrapped;

understand the difference between checked and unchecked exceptions;
handle exceptions appropriately;

write methods which allow character-based information to be read from or written to
an external file;

write methods to save the details of objects as character data in a file;

write methods to read the details of objects saved as character data in a file and,
from that data, re-create those objects;

understand how objects may be serialised;
write methods which allow objects to be serialised and saved to file as binary data;
write methods which read serialised objects from files.

Unit 12 Streams, files and persistent objects

Glossary

buffer An area used for temporary storage as data is transferred between a data
source and a data sink.

checked exception An exception which has to be caught by a try—catch statement.
Checked exceptions relate to problems that can be foreseen (e.g. trying to write a file
larger than the available disk space) but cannot necessarily be detected before they
occur.

File An instance of this class contains the pathname to a file or folder in a system-
independent format. The file specified need not exist; instead the pathname may point
to a potential new file or folder.

InputStream The base class of a hierarchy of classes including FileInputStream,
Buf feredInputStream and ObjectInputStream, which are used to read 8-bit byte
streams. InputStream classes are used to read binary data.

outputStream The base class of a hierarchy of classes including
FileOutputStream, BufferedOutputStream and ObjectOutputStream, which are
used to write 8-bit byte streams. OutputStream classes are used to write binary data.

persistence The ability of objects or other data to continue in existence after a
program has stopped executing.

Reader The base class of a group of classes including FileReader and
Buf feredReader, which are used to read 16-bit character streams. Reader classes are
used to read text files

Scanner A class used to read string tokens from a source. In M255 the source may be
a FileReader Or a String.

serialisation The process by which an object implementing the Serializable
interface can be written to an ObjectOutputStream as a sequence of bytes.

stream An object used to connect a data source to a data sink, enabling data to be
transferred from the source to the sink.

Writer The base class of a group of classes including FileWriter and
BufferedWriter, which are used to write 16-bit character streams. Writer classes are
used to write text files.

Index m

Index

B I S
buffer 24 InputStream 7 Scanner 38
C instanceof 49 serialisation 5, 50
client 56 J server 56
comma-delimited file (CSV) 37 java.io 7-8 socket 56
E @) stream 6
escape character 9 OUFileChooser 10 T
exception OutputStream 7 token 37
checked 16 16
unchecked 15 P try—catch statement
persistence 5, 33, 36
= W
t b 56 -
File O port numboers Writer 7,17
finally 28 R

Reader 7, 21

