
11

M255 Unit 11
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Ordered and sorted
collections

U
ni

t

This publication forms part of an Open University course M255

Object-oriented programming with Java. Details of this and other

Open University courses can be obtained from the Student

Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn more about the wide

range of courses and packs offered at all levels by The Open

University.

To purchase a selection of Open University course materials visit

http://www.ouw.co.uk, or contact Open University Worldwide,

Michael Young Building, Walton Hall, Milton Keynes,

MK7 6AA, United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University

Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.

Copyright ª 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted or utilised in any form or by

any means, electronic, mechanical, photocopying, recording or

otherwise, without written permission from the publisher or a licence

from the Copyright Licensing Agency Ltd. Details of such licences

(for reprographic reproduction) may be obtained from the Copyright

Licensing Agency Ltd of 90 Tottenham Court Road, London,

W1T 4LP.

Open University course materials may also be made available in

electronic formats for use by students of the University. All rights,

including copyright and related rights and database rights, in

electronic course materials and their contents are owned by or

licensed to The Open University, or otherwise used by The Open

University as permitted by applicable law.

In using electronic course materials and their contents you agree

that your use will be solely for the purposes of following an Open

University course of study or otherwise as licensed by The Open

University or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website),

distribute, transmit or retransmit, broadcast, modify or show in

public such electronic materials in whole or in part without the prior

written consent of The Open University or in accordance with the

Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth

Group, Wakefield.

ISBN 978 0 7492 6792 6

2.1

CONTENTS

Introduction 5

1 List – an ordered and indexed collection 6

1.1 Getting started with lists 7

1.2 Basic operations with lists 7

1.3 A summary of some List methods 16

1.4 Lists and arrays compared 16

2 Can a list be sorted? 19

2.1 Collections – a utility class 19

2.2 New collections for old 23

2.3 Bulk operations on lists 24

3 How to keep frogs in order 26

3.1 The Comparable interface 26

4 Sorted collections 32

4.1 Are some objects more equal than others? 34

5 Summary 40

Glossary 43

Index 45

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

In the first part of this unit we study an important new interface from the Java

Collections Framework. The interface is List and Figure 1 shows how it relates to the
interface hierarchy we met in Unit 10.

Collection

Set List Queue

SortedSet

Map

SortedMap

Figure 1 The principal interfaces of the Collections Framework

A list in the programming sense is roughly similar to a list in the everyday sense of the

word. It holds a sequence of items, in a definite order, for example:

d, b, d, a, m, e, d, w.

The list above has a size – eight at the moment – and each item has a position in the list,

starting with d at position 0. Items can be added (which means the size changes):

d, b, d, a, m, e, d, w, q.

They can be removed:

d, b, a, m, e, d, w, q.

And they can be inserted anywhere:

d, b, a, m, e, p, d, w, q.

Repetitions are allowed. The items in the list may have a natural ordering – alphabetical

in this case – but the sequence followed by the items in the list does not have to follow it.

This is only an outline, of course, and the first business of the unit will be to examine the

properties of lists in much more detail. We will then go on to look at a very versatile utility

class called Collections, which is a treasure store of class (static) methods for doing

things to collections, such as sorting or shuffling them, picking out the biggest or

smallest item, and so on. Note the ‘s’ in the name of the Collections class – it should
not be confused with the Collection interface.

Sorting the items in a list is an important task that we as programmers will often need to

do, and in Section 2 we investigate how the classes we write can be given a natural

ordering, so instances of those classes can be sorted.

We shall see that there are collection classes which are always sorted – their contents

are always held in natural order, and new items are automatically added at the right

position to preserve this order. These classes implement the interfaces SortedSet and
SortedMap shown in Figure 1.

Finally we look at what it means to say that two objects are equal. This is important

because equality is what decides what counts as a duplicate in sets and maps.

6 Unit 11 Ordered and sorted collections

1 List – an ordered and indexed collection

The set of criteria used for differentiating different kinds of collection, introduced at the

beginning of Unit 10, provides a good way of gaining an initial impression of what lists

can do and what they are ‘about’.

c	 Fixed size versus dynamic: Lists are dynamically sized. A list will grow and shrink

as elements are added or removed.

c	 Ordering: Lists are ordered. A list can be grown simply by tagging items onto the

end, in which case the elements will be in the order they were added. Alternatively

an item can be inserted at a specified position.

c Homogeneity: Like any Java collection, a list is homogeneous – all the elements

must be of the same type.

c Indexing: Every element in a list has an integer index 0, 1, 2, 3, ... to indicate its

position. The index provides a way of directly accessing the element.

If an item is inserted in the middle of a list then all the elements beyond it will be

moved up to make space for it, so their indexes will increase by 1. If an item is

removed from a list, all the elements beyond it will have their indexes decreased

by 1, so the gap closes up.

c	 Duplicates: Unlike sets, which do not allow duplicates, a list can contain any

number of repeated elements.

List is a subinterface of Collection
In Unit 10 we met the Collection interface and looked at the abstract methods it

defined. For convenience we have repeated the details in Table 1 below. Note that we

have given longer and more informative names to the formal arguments than you will find

in the Java documentation.

Table 1 Some methods of the Collection interface

Method Category Description

add(ElementType obj) adding Adds the argument to the collection. Returns true if the operation is
successful, false otherwise.

addAll(Collection aCol) adding Adds all the elements in the argument to the receiver. Returns true
if the operation is successful, false otherwise.

remove(Object obj) removing Removes one occurrence of the argument from the collection.

Returns true if the operation is successful, false otherwise.

clear() removing Removes all elements from the collection (if there are any).

size() testing Returns the number of elements in the collection.

contains(Object obj) testing Tests whether the argument is present in the collection. Returns

true if the argument is an element of the collection, false
otherwise.

isEmpty() testing Tests whether the collection is empty. Returns true if the collection
is empty, false otherwise.

1 List – an ordered and indexed collection 7

In Figure 1 we see that List is a subinterface of Collection, and so we can tell straight
away that any list must implement all the methods in Table 1 and honour the promises

made there. So we already know quite a lot about lists! This is an excellent example of

how understanding the interfaces of the Collections Framework gives a good insight into

what particular collection classes are going to be capable of, even before we have

studied them in detail.

Of course a class that implements List may do more than Table 1 promises and, as we

shall see, this is the case with the class ArrayList, which we introduce shortly.

1.1 Getting started with lists

In Unit 10 we saw that to use a collection class we have to do three things:

c decide the interface type;

c choose an implementation class;

c declare an element type.

Here the interface type is List and, as we discussed in Unit 10, best practice is to use a
variable declared as being of the interface type, because that gives us flexibility to

change our mind later about what implementation class we will use.

A good general-purpose choice for a class that implements the List interface is
ArrayList and this is the one to use unless we know of a particular reason for using
another list class.

The element type is, as we have seen, the type of the elements that the collection will be

allowed to hold, and is declared using angle brackets < >.

Putting this all together, if we wanted a list to hold instances of class HoverFrog we
could use a statement such as the following:

List<HoverFrog> hoverFrogList = new ArrayList<HoverFrog>();

This declaration follows the same pattern as the declarations we made for sets in

Unit 10.

1.2 Basic operations with lists

Getting the size of a list
As with other collections you have seen, one of the simplest things you can do with a Note that the elements of

list is to get its size. The size of a list is simply the number of elements it contains. You

can get the size of a list by sending it the message size() in the same way as we saw

a list may include null; if
so, it will be counted in the
size.

size() being used with sets and maps in Unit 10. As you might expect, the size of

newly created empty list is 0. Our first example illustrates this.

List<String> herbList = new ArrayList<String>();
int size = herbList.size();
System.out.println("Size of newly created list is: " + size);

Notice that as in Unit 10 we have declared the variable as being of an interface type,

and we have to declare the element type of the collection.

8 Unit 11 Ordered and sorted collections

Adding an element to a list
To do anything interesting with a list we need to add some elements to it. Elements can

be added one at a time to a list using an add()message. When we add an element it is

always put at the end of the list unless we specify a position.

The code below demonstrates the use of add(). It adds three string elements to an

initially empty set, making the size 3. The elements are stored in the order they are

added, beginning with index 0.

List<String> herbList = new ArrayList<String>();
herbList.add("Parsley");
herbList.add("Sage");
herbList.add("Rosemary");

Lists may contain duplicate elements
Unlike a set, a list can contain duplicate elements, as the code below demonstrates.

Five elements are added to the list, but three of those elements are duplicates. The size

of the list is nevertheless 5.

List<String> herbList = new ArrayList<String>();
herbList.add("Parsley");
herbList.add("Sage");
herbList.add("Rosemary");
herbList.add("Rosemary");
herbList.add("Rosemary");

Inserting elements into a list
An element can be inserted at any index we please by using an add()message, which

takes two arguments (the first being the index into the list, the second being the object to

add at that index). This is demonstrated in the next code example, which places the

filling between the slices of bread. When the filling is placed at index 1, the top slice is
moved up to position 2.

List<String> sandwich = new ArrayList<String>();
sandwich.add("Bottom slice");
sandwich.add("Top slice");
sandwich.add(1, "Filling");

ACTIVITY 1

Open Unit11_Project_1. Open the editor on the class ListExamples, where you will find
the methods sizeDemo(), addDemo(), duplicatesDemo() and insertDemo(), which
demonstrate what you have learnt about lists so far.

Study the comments and code of these methods and then with pencil and paper jot down

what output you would expect if each of the following statements were executed. As in

Unit 10 the methods are static and are therefore invoked on the class.

ListExamples.sizeDemo();
ListExamples.addDemo();
ListExamples.duplicatesDemo();
ListExamples.insertDemo();

Now open the OUWorkspace. Enter the statements into the Code Pane and execute

them one by one. Compare the results shown in the Display Pane with your predictions.

1 List – an ordered and indexed collection 9

DISCUSSION OF
ACTIVITY 1

The following results should be displayed in the Display Pane:

From sizeDemo():

Size of newly created list is: 0

From addDemo():

Size after adding elements: 3
Parsley
Sage
Rosemary

From duplicatesDemo():

Size after attempting to add duplicates: 5
Parsley
Sage
Rosemary
Rosemary
Rosemary

From insertDemo():

Bottom slice
Filling
Top slice

Notice that when we iterate through a list we start from index 0, which we would consider

to be at the bottom of the list, and so when printed out the sandwich seems to be upside

down!

ACTIVITY 2

When trying out the behaviour of a class it is often useful to investigate what happens at

the boundaries. For example, what is the range of index values for which we are allowed

to insert elements into a list?

Open Unit11_Project_1 and open the editor on the ListExamples class. Scroll down
until you find the class method called rangeDemo(), which takes a single argument of

type int.

If you examine this method, you will see that it creates an instance of ArrayList and
populates it with four elements, which will have indexes 0, 1, 2 and 3 respectively. It then
tries to insert a further element at the position specified by the argument. If the insertion is

successful, a confirmation message is printed, followed by the elements in order.

In the OUWorkspace, invoke the method five times on ListExamples, with successive
arguments 0, 2, 4, 5 and -1.

Observe the results in the Display Pane.

DISCUSSION OF
ACTIVITY 2

Adding the new element at position 0, 2 or 4 succeeds. If the element goes in at 0 or 2
existing elements are moved up one to accommodate it. If the element goes in at 4, the
next unused index, it is added to the end of the list.

10 Unit 11 Ordered and sorted collections

However, an attempt to add an element at position 5, which is two steps beyond the end
of the current list, will fail. An exception occurs:

java.lang.IndexOutOfBoundsException: Index: 5, Size: 4

Attempting to add an element at -1 also generates an exception; a negative index is
illegal.

ACTIVITY 3

Open Unit11_Project_1.

In the class ListExamples you will find an outline version of a method called myDemo1().
(If you have trouble locating it use the Find button on the toolbar to do a search.) The

intention is that the method will store six string elements in an instance of ArrayList and
then print them out to produce the well-known phrase ‘To be or not to be’. The code that

inserts the elements is missing at present and you are invited to supply it. However, there

is a catch! To make the task more challenging you are required to add the strings to the

list in the following sequence:

"be" first

"To" second

"or" third

"be" fourth

"not" fifth

"to" sixth

Therefore you cannot perform the task simply by adding elements to the end of the list. To

get the strings into the necessary order, some the elements will have to be inserted at

specific indexes.

When you have written your method, recompile the class and invoke the method on

ListExamples from the OUWorkspace to check that it works as specified.

DISCUSSION OF
ACTIVITY 3

Here is our solution; other solutions are possible.

public static void myDemo1()
{

List<String> phrase = new ArrayList<String>();
phrase.add("be");
phrase.add(0, "To");
phrase.add("or");
phrase.add("be");
phrase.add(3, "not");
phrase.add(4, "to");
for (String eachElement : phrase)
{

// Prints elements all on one line, separated by spaces
System.out.print(eachElement + " ");

}

}

The completed code for the myDemo1()method has been added to the ListExamples
class in Unit11_Project_2.

1 List – an ordered and indexed collection 11

Accessing the element at a given position
Accessing the element at a specified position in a list is straightforward. You simply use

the message get(), as demonstrated in the following code:

List<String> herbList = new ArrayList<String>();
herbList.add("Sorrel");
herbList.add("Tansy");
herbList.add("Parsley");
herbList.add("Rosemary");
String selected = herbList.get(2);

In the above code, herbList.get(2) would return "Parsley".

Removing the element at a given position
The element at a specific index can be removed using the message remove().

Removing a specified element from a list is a little different from removing a specified

element from a set, because a list can have duplicate elements. So it is possible to

remove an element from a list, reducing the size of the list by one, while other instances

of the element remain.

Removing an element does not leave an empty space; instead the elements beyond the

one removed shuffle down one position to close the gap.

These points are demonstrated in the following code. Note that the string "Rosemary" is
duplicated in the list, so we can demonstrate the removal of one occurrence while

leaving the other in place.

List<String> herbList = new ArrayList<String>();
herbList.add("Sorrel");
herbList.add("Tansy");
herbList.add("Parsley");
herbList.add("Rosemary");
herbList.add("Rosemary");
String removed = herbList.remove(3);

In the above code, the message-send herbList.remove(3) would remove

"Rosemary" from the list at index 3, and the list would then contain the following
elements, in the following order:

"Sorrel" , "Tansy" , "Parsley" , "Rosemary" .

Finding the index of a specified element, if it is present
If an element is present in a list we can use a message to find its index. Of course the

element may be duplicated in the list!

The message indexOf() returns the integer position of the first occurrence of its

argument in the list. The message lastIndexOf() returns the integer position of the last

occurrence of its argument in the list. Either message returns -1 if its argument is not an

element in the list. These messages are explored in the following code.

12 Unit 11 Ordered and sorted collections

Remember, from Unit 9,
that foreach refers to a
code construct not a
keyword.

List<String> herbList = new ArrayList<String>();

herbList.add("Oregano");

herbList.add("Oregano");

herbList.add("Basil");

herbList.add("Rosemary");

herbList.add("Rosemary");

herbList.add("Rosemary");

int position1 = herbList.indexOf("Oregano");

int position2 = herbList.indexOf("Sorrel");

int position3 = herbList.lastIndexOf("Rosemary");

int position4 = herbList.lastIndexOf("Parsley");

In the above code, position1 is assigned the value 0, position2 is assigned the value
-1, position3 is assigned the value 5 and finally position4 is assigned the value -1.

Replacing the element at a given index
The element at a given position can be replaced by a new one. This is not the same as

inserting an element, which increases the size of the list. Here the size stays the same

and one of the original elements is overwritten by the new one. This is demonstrated by

the following code, which shows all the original contents of a list being overwritten:

List<String> herbList = new ArrayList<String>();

herbList.add("Parsley");

herbList.add("Sage");

herbList.add("Rosemary");

herbList.add("and");

herbList.add("Thyme");

herbList.set(0, "Are");

herbList.set(1, "you");

herbList.set(2, "going");

herbList.set(3, "to");

herbList.set(4, "Scarborough Fair");

In the above code, herbList ends up holding the following elements, in the following order:

"Are" , "you" , "going" , "to" , "Scarborough Fair" .

Iterating through a list
Of course, we have already been doing this in most of our demonstration methods!

A foreach loop will iterate through a list, in index order. For example:

for (String herb : herbList)

{

System.out.println(herb);

}

Note that this gives access to the elements but not to the index. If there were some

reason why we needed access to the index we could use an ordinary for loop and
iterate over the index itself, for example:

for (int herbIndex = 0; herbIndex < herbList.size(); herbIndex++)

{

System.out.println(herbList.get(herbIndex) + " is at index "

+ herbIndex);

}

This second type of iteration is only possible because lists have an integer index; it

cannot be used with sets and maps.

1 List – an ordered and indexed collection 13

ACTIVITY 4

Open Unit11_Project_2 and then open the editor on the class ListExamples, where you
will find the class methods getDemo(), removeDemo(), indexOfDemo()and setDemo().

Study the code of these methods and then with pencil and paper jot down what output

you would expect if each of the following statements were executed.

ListExamples.getDemo(1);
ListExamples.getDemo(3);
ListExamples.getDemo(5);
ListExamples.removeDemo(2);
ListExamples.indexOfDemo("Basil");
ListExamples.indexOfDemo("Rosemary");
ListExamples.indexOfDemo("Wormwood");
ListExamples.setDemo();

Now enter the statements into the OUWorkspace and execute them one by one.

Compare the results shown in the Display Pane with your predictions.

DISCUSSION OF
ACTIVITY 4

The results should be as follows. We have broken them down by method and provided

some commentary.

1 getDemo()

Executing the following two statements is straightforward:

ListExamples.getDemo(1);
ListExamples.getDemo(3);

And the Display Pane shows:

Element in position 1 is Tansy
Element in position 3 is Rosemary

Executing the statement

ListExamples.getDemo(5);

results in an exception:

Exception: java.lang.IndexOutOfBoundsException: Index: 5, Size: 4

Because index 5 is beyond the end of the list.

2 removeDemo()

Executing the statement

ListExamples.removeDemo(2);

results in the following being printed to the Display Pane:

Parsley has been removed. List is now:
Sorrel
Tansy
Rosemary
Rosemary

14 Unit 11 Ordered and sorted collections

3	 indexOfDemo()

Executing the statements

ListExamples.indexOfDemo("Basil");

ListExamples.indexOfDemo("Rosemary");

ListExamples.indexOfDemo("Wormwood");

results in the following being printed to the Display Pane:

Index of Basil is 2

Last index of Basil is 2

Index of Rosemary is 3

Last index of Rosemary is 5

Index of Wormwood is -1

Last index of Wormwood is -1

Basil was found first at index 2 and that was the only place in which it was found, so
the last index is also 2.

Rosemary appears more than once, the first place being 3 and the last 5.

Wormwood does not appear anywhere, so the first index and last index are both -1.

4 setDemo()

Executing the statement

ListExamples.setDemo();

results in the following being printed to the Display Pane:

Original contents:

Parsley

Sage

Rosemary

and

Thyme

Contents after replacement:

Are

you

going

to

Scarborough Fair

The method has overwritten all five original elements in the list.

ACTIVITY 5

This activity is about programming the riddle below. What word is this?

Can you guess what I am at first and what I become?

Remove my second and I am like smoke.

Change my first and I become something you could put on the fire.

Change my middle and I am a delay

Change my end and I am a boy.

With an extra letter I become heavy.

Change my first and I am an amphibian.

Try it before you read the solution!

1 List – an ordered and indexed collection 15

I was a FROG, then a FOG. Next a LOG and then a LAG. I was a LAD, then a LOAD. In

the end I was a TOAD.

Your task is to write a method which stores the separate letters of FROG in a list and

changes, removes or inserts letters as required at each step, ending up with a list which

stores the letters of TOAD. At each step the current list should be printed out.

Open Unit11_Project_2 and then open the editor on the class ListExamples, where you
will find an incomplete method myDemo2(). Complete the code where indicated. Then

recompile the class and invoke the method from the OUWorkspace to check your riddle is

working correctly!

DISCUSSION OF
ACTIVITY 5

Your completed method should be similar to this.

public static void myDemo2()
{

List<String> word = new ArrayList<String>();

word.add("F");

word.add("R");

word.add("O");

word.add("G");

System.out.println(word);

word.remove(1);

System.out.println(word);

word.set(0, "L");

System.out.println(word);

word.set(1, "A");

System.out.println(word);

word.set(2, "D");

System.out.println(word);

word.add(1, "O");

System.out.println(word);

word.set(0, "T");

System.out.println(word);

}

The completed code for the myDemo2()method has been added to the ListExamples
class in Unit11_Project_3.

16 Unit 11 Ordered and sorted collections

1.3 A summary of some List methods

This is a useful point at which to summarise the abstract method definitions defined by

the List interface whose implementation by the ArrayList class we have explored so
far. Table 2 lists these and also includes the useful testing methods contains() and

isEmpty().

Table 2 Some methods of the List interface

Category DescriptionMethod definition

add(ElementType element) adding Adds the argument to the list. The ArrayList
implementation always returns true.

add(int index, ElementType element) adding Adds the second argument to the list at the index

specified by the first argument.

remove(int index) removing Removes and returns the element at the index specified

by the argument.

remove(Object obj) removing If the argument is an element in the list its first

occurrence is removed and the method returns true.
If the argument is not an element in the list it remains

unchanged and the method returns false.

set(int index, ElementType element) replacing Replaces the element at the index specified by the first

argument with the second argument and returns the

original element.

get(int index) accessing Returns the element at the index specified by the

argument.

indexOf(Object obj) searching Returns the index in the list of the first occurrence of the

argument, or -1 if the list does not contain the argument.

lastIndexOf(Object obj) searching Returns the index in the list of the last occurrence of the

argument, or -1 if the list does not contain this argument.

size() testing Returns the number of elements in the list.

contains(Object obj) testing Returns true if the argument is an element in the list,

false otherwise.

isEmpty() testing Returns true if the list is empty, false otherwise.

This point of similarity may
have had something to do
with the name of the class
ArrayList.

1.4 Lists and arrays compared

You will probably have noticed that lists are somewhat like arrays. Both structures

resemble a series of numbered storage locations, and we can access and change the

item stored at a given position.

However, lists are far more flexible. They grow and shrink dynamically, and when

elements are inserted or removed all the indexes are automatically adjusted, to make

space or close up the gaps. Of course, similar effects are possible using arrays – we

can shuffle all the items in an array along, and if we run out of space everything can be

copied into a new, bigger array – but we would have to do all the work for ourselves.

Lists also offer test methods, such as contains() and indexOf(). Again, similar

effects are perfectly possible with an array, but we have to write our own code to search

through the array for the item we are seeking. This is hard work, and moreover there is a

1 List – an ordered and indexed collection 17

possibility of error. Reusing the list methods, which have been exhaustively tested,

saves effort and makes our code more reliable and easier to follow.

Another very strong advantage of lists is that because they are part of the Java

Collections Framework they work harmoniously with the other collection classes.

Arrays are not part of the Collections Framework and so are awkward to integrate with

other sorts of collection.

In view of this, why would anyone want to work with arrays? One reason is that arrays,

although not so flexible as lists, are very simple and can be very efficient. For certain

straightforward tasks, an array may be perfectly adequate and there may simply be no

need for the more powerful facilities of the Java Collections Framework. An array is then

a better choice. There are also some occasions when only an array will do; for example,

some methods require an argument which is an array.

It’s possible to start with a list and create an equivalent array – containing the same You met the utility class

elements in the same order – by sending it the message toArray(). It’s also possible to Arrays in Unit 9.

start with an array and produce a list, using a static method of the utility class Arrays.
Here is how it’s done:

String []stringArray = {"The", "cat", "sat", "on", "the", "mat" };
List<String> stringList = Arrays.asList(stringArray);

The method arrayToListDemo() in the class ListExamples demonstrates this conversion.

Exercise 1

Now that you have met a range of collection classes and the interfaces they implement,

as well as fixed-size arrays, and have been introduced to their particular properties, try to

decide what sort of structure might be best to model the following practical problems. For

each problem, would it be best to use a collection class? If so what interface would that

class implement? Or would an array be all that is required? In each case try to give the

element or component type as well as a description.

(a) A programmer wants to store the names of the days of the week as strings and
access them by day number, starting with Sunday as day zero.

(b) A secretary wants to store the telephone numbers of the members of a focus group
and retrieve a person’s number given their name.

(c) A doctor wants to keep a record of the names of patients visited out of hours.

(d) A geographer wants to record the heights of mountains in metres and find the height
of a mountain given its name.

(e) A classical scholar wants to record all the distinct Latin words that occur in the
surviving works of Horace.

(f)	 A restaurant manager wants to store a menu of the currently available dishes. The list
is to be numbered for the convenience of customers ordering food for home delivery.
The particular offerings on the menu may alter from time to time, as the restaurant
tries out new dishes, or discontinues ones which have not proved popular enough.

(g) A travel agent wants to be able to record the names of winter holiday resorts and the
names of the hotels at each resort, and look up the hotels at a given resort.

Solution ...

(a)	 This is a cast-iron case for an array! The requirements are very simple. The size is

known in advance to be 7 and will never change. The contents, once set, will never
need to be altered. All we will ever need to do is access the items by day number,

handily starting from 0, so the obvious thing to do is make the day number the array

index. The component type would be String.

18 Unit 11 Ordered and sorted collections

(b) We must be able to find the number given the name, so a collection class that

implements the Map interface is needed here, with the name as the key and the

number as the value. The element type would be <String, String>, i.e. both the
keys and the values would be strings. (Telephone numbers cannot conveniently be

stored as integers, because a leading zero is significant.)

(c)	 This looks like a list of names, since a particular patient may have been visited

several times and we want to record all the visits, so some names will be repeated.

A collection class that implements the List interface is needed here. The element

type would be String.

(d) Again it looks as though we need a collection class that implements the Map
interface, with the name of the mountain as the key and the height as the value.

A suitable element type would be <String, Integer>, i.e. the keys would be
strings and the values would be integers.

(e)	 The scholar does not want to know how many times each word appears or anything

like that; she simply wants to list the vocabulary used, and each word should appear

only once. So a collection class that implements the Set interface would be suitable,
because it does not allow duplicates. In fact, since the word list will need to be

sorted, we could use the TreeSet class that we met briefly in Unit 10. The element

type would be String.

(f)	 The menu items are numbered. Dishes may be added, or taken off, so the size of the

menu can vary. New dishes will probably get inserted amongst existing ones, and,

when dishes are removed, that section of the menu will contract. From the

description it sounds as though a collection class that implements the List
interface would be best, with the type of the elements being String.

(g) This is more complicated! To record the names of the hotels at any particular resort a

set would be suitable. The number of hotels at that resort can vary from year to year,

they are probably not recorded in any special order, and no hotel ought to appear

more than once – if it did, that would be a mistake. All these considerations suggest

using a class that implements the Set interface.

We also note that the travel agent needs to be able to find the names of the hotels

given the name of a resort. This suggests we also need a collection class that

implements the Map interface, with the resort names as keys, and the values being

the sets of hotel names. So the element type would be <String, Set<String>>.

2 Can a list be sorted? 19

Can a list be sorted? 2
As you have seen, lists are ordered collections. The elements are stored in the order

given by their indexes, and if we iterate through a list this is the order that is followed.

However, the order does not have to reflect anything to do with the elements themselves.

It is simply determined by where each element has been placed in the list. There is no

general reason to expect that the elements in a list will automatically be in alphabetical

or numerical order. For example, the elements in a list of herbs might have been added

just in the order they occurred to us!

parsley, basil, thyme, camomile, fennel, ...

This leads to the question: can lists be sorted? For example, can we put our list of herbs

into alphabetical order?

basil, camomile, fennel, parsley, thyme, ...

Yes we can!

In Unit 9 we saw that an array can be sorted using a static method of the utility class

Arrays. This will not work for lists, but there is another utility class that will do what we
want. Collections (not to be confused with Collection – note the final ‘s’) is an
important part of the Collections Framework and has many static methods for working

with collections.

2.1 Collections – a utility class

Many of the class (static) methods provided by the Collections class are designed to
work with lists, and perform sorting and other related services. Here are a few of the

most useful and interesting ones. We will first describe them, and then give you a

chance to try them out in an activity.

Reversing
To reverse a list, pass it as an argument to the reverse() method. For example,

Collections.reverse(herbList);

will reverse the order of the elements in herbList.

Note that this and several of the methods below are destructive – they modify the

original collection. If you do not want this to happen you will need to create a copy of the

collection and work with that instead.

Sorting
If the elements in a list have a natural ordering (e.g. alphabetical order for strings or

numerical order for numbers) they can be sorted according to this ordering by passing

the list as an argument to the sort() method. For example,

Collections.sort(herbList);

will sort the contents of herbList alphabetically. If we sort a list of numbers, they will be

put into ascending numerical order.

This method is destructive.

One way of creating a
copy of a collection was
discussed in Unit 10 :
construct a new collection
with the same elements.
We will look at this
technique again shortly.

20 Unit 11 Ordered and sorted collections

Swapping
Two elements can be swapped by passing the list and the positions of the items

concerned to the swap()method. For example,

Collections.swap(herbList, 2, 4);

will exchange the element of herbList at index 2 with the element at index 4.

If the method is called with either index out of range an exception will be thrown.

This method is destructive.

Shuffling
The elements in a list can be put into random order by passing the list as an argument to

the shuffle()method. For example,

Collections.shuffle(cardList);

would put a deck of cards into a random sequence.

This method is destructive.

Locating sublists
Consider two lists, one longer than the other named longerList and shorterList. The
list shorterlist may represent a sublist of longerlist. To test if this is indeed the
case the Collections method indexOfSubList() can be used.

The message indexOfSubList() searches for occurrences of a given sublist and

returns the first starting position at which it is found, or -1 if it is not present.

For example if longerList references

["chives", "basil", "thyme", "chervil", "sage", "bay", "thyme", "chervil", "coriander"]

and shorterList references

["thyme", "chervil"]

then

Collections.indexOfSubList(longerList, shorterList);

will return the index 2; the index at which the sublist starts in the longer list.

This method is non-destructive.

Finding the maximum and minimum
The maximum or minimum element of a list can be found using the max() and min()
methods respectively. These methods return the actual maximum and minimum values,

not their positions. Also as with sorting, the elements must have a defined ordering, such

as alphabetical or numerical.

For example,

String minScore = Collections.min(scoreList);
String maxScore = Collections.max(scoreList);

will make minScore and maxScore reference the smallest and largest values in

scoreList.

These methods are non-destructive.

2 Can a list be sorted? 21

ACTIVITY 6

This activity uses a class called CollectionsExamples, which is designed to
demonstrate the class methods of the utility Collections class described above. Open

Unit11_Project_3 and then open the editor on the class CollectionsExamples, where
you will find the following class methods:

c	 reverseDemo()

c	 sortDemo()

c	 swapDemo()

c	 shuffleDemo()

c	 indexOfSubListDemo()

c	 maxMinDemo()

Read through the methods to get an idea of what they do. Then, in the OUWorkspace,

invoke each of the methods on the CollectionsExamples class and observe the
results shown in the Display Pane. When you type the name of the class

CollectionsExamples, take care not to miss out the ‘s’ – it’s easy to type
CollectionExample by mistake!

DISCUSSION OF
ACTIVITY 6

If all has gone according to plan you should have seen all the utility methods in action

and understood how you might use them in your own code!

ACTIVITY 7

Open Unit11_Project_3 and then open the editor on the class CollectionsExamples,
where you will find a skeleton method called myDemo3(). Complete this method

according to the following specification.

The overall purpose of the method is to allow a user to enter a series of numbers via

request dialogue boxes, until Cancel is pressed, and then to present some statistics

calculated from the batch of user data. For simplicity we will assume that all the numbers

entered are integers.

1	 The method should first declare a variable userData of type List and assign to it a
new instance of ArrayList.

2	 Next the user should be repeatedly prompted, with request dialogue boxes, to enter a
series of integers one at a time, until the user signals the end of the series by pressing
Cancel. Note that anything typed into a dialogue box will be interpreted as a string. So
each entry should be parsed to an integer and added to the list userData.

3	 The list userData should then be sorted.

4	 Next an int variable total should be initialised to 0. The method should then iterate
through the list adding each element to total.

Once the numbers in the list have been totalled, the result should be cast to a float	 If we want to cast x to a
float, divide it by y andand divided by the size of the list to obtain an average, which should be assigned to a

float variable avg. We need to do the calculation this way because the average will
assign the result to z, it
can be done like this:

not usually be a whole number.	 float z = ((float) x)/y;

5	 The next statistic to be calculated is the median, defined as follows.

If the number of elements is odd, the median is the middle one in the sorted list.

If the number of elements is even, the median is the average of the middle two
elements.

For example, the median of 1, 2, 2, 3, 5 is 2, the middle value. The median of 1, 2,
2, 3, 4, 5 is 2.5, the average of the two middle values, 2 and 3.

22 Unit 11 Ordered and sorted collections

Once you have calculated the median you should assign it to a float variable med.
The code for this calculation is somewhat tricky, and if you get stuck you can find out
how it’s done by looking in the project’s README.TXT file.

6	 Now the maximum and minimum should be assigned to int variables maxVal and
minVal. Since the list was sorted in step 3 above, the maximum and minimum will be
the last and first elements of the list.

7	 Finally the statistics should be output in a form such as:

There were 10 numbers.

The average was 4.2

The median was 3.5

The maximum was 7 and the minimum was 1

When you have written your method, compile it and test it from the OUWorkspace. If
you input the numbers 3, 4, 6, 6, 2, 1, 7, 3, 3 and 7 you should obtain the results
above. You should also try it with an odd number of data, to make sure the median is
calculated correctly in that case.

DISCUSSION OF
ACTIVITY 7

Our version of the method is as follows. We have indicated the steps given in the

specification.

public static void myDemo3()
{

// Step 1 – create empty list
List<Integer> userData = new ArrayList<Integer>();

// Step 2 – data entry
String dialogString = "Please input an integer. Press Cancel to end.";

String input = OUDialog.request(dialogString);

while (input != null)

{

userData.add(Integer.parseInt(input));

input = OUDialog.request(dialogString);

}

// Step 3 – sort data
Collections.sort(userData);

// Step 4 – total data and calculate average
int total = 0;

for (int eachElement : userData)

{

total = total + eachElement;

}

float avg = ((float)total) / userData.size();

// Step 5 – find median
float med;

int size = userData.size();

if (size % 2 == 1) // Odd number of data

2 Can a list be sorted? 23

{

// Middle item

int mid = (size - 1) / 2;

med = userData.get(mid);

}

else // Even number of data

{

// Average of two middle items

int mid1 = (size / 2) - 1;

int mid2 = size / 2;

med = ((float)(userData.get(mid1) + userData.get(mid2))) / 2;

}

// Step 6 – find maximum and minimum
int maxVal = userData.get(size - 1);

int minVal = userData.get(0);

// Step 7 – output results
System.out.println("There were " + size + " numbers.");

System.out.println("The average was " + avg);

System.out.println("The median was " + med);

System.out.println("The maximum was " + maxVal + " and the minimum was " + minVal);

}

The completed code for the myDemo3() method has been added to the

CollectionsExamples class in Unit11_Project_4.

2.2 New collections for old

Classes that implement the Collection interface – including all classes that implement

the Set and List interfaces – are expected to have two constructors: one that takes no
argument, and creates an empty collection; and one that takes any type of collection as

an argument, and creates a new collection with the same elements.

It’s easy to see why the first is needed, but what is the purpose of the second? We saw

one use in Unit 10, when we were looking at bulk operations. If an operation modifies a

collection, we may want to create a copy and work with that, so that the original is not

destroyed. A copy can be obtained by passing the original as an argument to the

constructor. In this case both the collections, the old and the new, are of the same kind.

There is another reason why we might use the second constructor: to create a collection

of a different kind but with the same elements.

Why would we want to do this? Imagine we have a mailing list, stored as an instance of

ArrayList perhaps, and we discover that it contains duplicates which should not be
there. (This is a common problem in real-life mailing lists!) Do we have to go through and

weed them out manually somehow?

There is a better way. We use the list to create a set. A set cannot contain duplicates, so

they are all eliminated! Each name will now appear only once.

But maybe there was a good reason why we used a list in the first place and a set is not

what we want. No problem – we simply use the set to create a list! Now we are back

where we started, but with all the duplicates automatically eliminated – and all in a single

line of code. This is a good illustration of the extraordinary power and flexibility of the

collection classes.

24 Unit 11 Ordered and sorted collections

2.3 Bulk operations on lists

In Unit 10 we looked at bulk operations on sets and you will probably not be surprised to

learn that there are similar bulk operations on lists as well. Much of the power of the

Collections Framework – the way it enhances our productivity as programmers – comes

from these bulk operations, which let us manipulate entire collections as individual

objects, without even needing to iterate through the elements.

Bulk operations on lists include addAll(), containsAll(), removeAll() and

retainAll(). Their effect on lists is broadly similar to their effect on sets, except of

course that lists allow duplicates whereas sets do not. The difference this makes will be

demonstrated in the next activity.

ACTIVITY 8

Open Unit11_Project_4 and open the BulkExamples class in the editor. You will find it
contains a single static method myDemo4(), which is incomplete. If you read the method

you will find that so far all it does is set up two lists of Character objects, assigned to
list1 and list2 respectively, and displays them. Your task is to create and display

some new lists obtained using bulk operations.

Since the operations are destructive you will need to create a new copy of list1 for each
bulk operation.

1	 Add to myDemo4() code that will:

c	 make a copy of list1 and assign it to list3;

c	 send list3 the message addAll(list2);

c	 print out the resulting list.

Compile the class and execute the method from the OUWorkspace. Observe the
results in the Display Pane.

2	 Add and execute code to try out removeAll() in a similar way.

3	 Do the same for retainAll().

4	 Finally add and execute the code to create a new instance of TreeSet<Character>,
passing list1 as the argument to the constructor, and print out the result.

DISCUSSION OF
ACTIVITY 8

The method myDemo4() first prints to the Display Pane the textual representations of

list1 and list2:

This is list 1: [a, b, r, a, c, a, d, a, b, r, a]
This is list 2: [d, a, b, c, h, i, c, k]

1	 Here is the code we added to demonstrate the effects of addAll():

List<Character> list3 = new ArrayList<Character>(list1);
list3.addAll(list2);
System.out.println("This is list 3: " + list3);

This produces the following in the Display Pane:

This is list 3: [a, b, r, a, c, a, d, a, b, r, a, d, a, b, c, h, i, c, k]

The effect of addAll() was to add the elements of list2 to the end of list1.

2 Can a list be sorted? 25

2 Here is the code we added to demonstrate the effects of removeAll():

List<Character> list4 = new ArrayList<Character>(list1);

list4.removeAll(list2);

System.out.println("This is list 4: " + list4);

This produces the following in the Display Pane:

This is list 4: [r, r]

We can see that the effect of removeAll() is to remove from list4 any element that

also appears in list2.

3 Here is the code we added to demonstrate the effects of retainAll():

List<Character> list5 = new ArrayList<Character>(list1);

list5.retainAll(list2);

System.out.println("This is list 5: " + list5);

This produces the following in the Display Pane:

This is list 5: [a, b, a, c, a, d, a, b, a]

The effect of retainAll() is to retain in list5 only those elements that also appear

in list2.

4 Finally, here is the code we added to create a TreeSet version of list1:

Set<Character> set1 = new TreeSet<Character>(list1);

System.out.println("This is set 1: " + set1);

This produces the following in the Display Pane:

This is set 1: [a, b, c, d, r]

By creating a TreeSet with list1 as the argument to the TreeSet constructor we
eliminate all duplicates and the elements are sorted alphabetically.

The completed code for the myDemo4()method has been added to the BulkExamples
class in Unit11_Project_5.

26 Unit 11 Ordered and sorted collections

How to keep frogs in order 3

We have seen that we can sort a list, provided the elements have a well-defined

ordering, so we can speak of one element coming before another in the ordering.

Numbers have an obvious natural order of size, and strings and characters can be

arranged alphabetically.

But what if we tried to sort frogs? Here is a method which tries to do just that; it creates a

list of Frog, then creates three frogs, moves each one to a separate stone, and adds

them to the list. Then it calls on Collections to sort the list.

public static void sortFrogs()
{

List<Frog> frogList = new ArrayList<Frog>();

Frog algy = new Frog();

algy.setPosition(3);

Frog prudence = new Frog();

prudence.setPosition(1);

Frog lena = new Frog();

lena.setPosition(2);

frogList.add(algy);

frogList.add(prudence);

frogList.add(lena);

Collections.sort(frogList); // Will not compile!

}

Unfortunately this will not compile. We get a semantic error:

cannot find symbol – method sort(java.util.List<Frog>)

This is not terribly helpful, but what the error message is trying to tell us is that

Collections has no method sort() that can take a list of Frog as its argument. The

reason for this is quite simple really: the argument passed to the method must be a list of

things that can be sorted, and so far no ordering has been defined for frogs. So how can

they be sorted into ‘order’? Our request did not really make sense.

3.1 The Comparable interface

Fortunately, it is easy to specify an ordering for a class. All we need to do is to make the

class implement the interface Comparable. Since this interface contains only a single
method compareTo() this is not too hard.

The idea is that if Java wants to check the ordering of two objects a and b it uses the
result of evaluating the message expression

a.compareTo(b);

If the result is:

c a negative number, Java will consider that a comes before b in the ordering;

c a positive number, Java will consider that a comes after b in the ordering;

c zero, Java will consider that a comes neither before nor after b – they occupy an
equal position in the ordering.

3 How to keep frogs in order 27

We can try this out in the OUWorkspace;

"chalk".compareTo("cheese");

returns -4, showing "chalk" is before "cheese", alphabetically speaking.

(Do not worry about why we get -4 rather than any other negative number; -4 just
happens to be the result of a particular calculation involving the characters making up

the two strings.)

The expression

"cheese".compareTo("chalk");

returns 4, showing "cheese" is after "chalk", and the expression

"cheese".compareTo("cheese");

returns 0, since "cheese" has an equal position to "cheese".

ComparableFrog
To be able to sort frogs we introduce a new amphibian species, the ComparableFrog.
As we have seen, this class must implement the Comparable interface, and so it must

have a compareTo()method, which will return a negative, zero or positive value as

described above. But what does it mean to say that one frog comes before another?

The answer is that it means whatever we want it to mean! It’s entirely up to us and we can

make it mean whatever we find useful. As it happens, there is a fairly obvious choice in

the case of frogs – we can order them according to their position, and say one frog

comes before another if it comes first as we look from left to right.

To make the compareTo()method return a negative, zero or positive number as

required is easy – we just subtract the position of one frog from the position of the other.

public int compareTo(ComparableFrog anotherFrog)
{

return (this.getPosition() - anotherFrog.getPosition());
}

For example, if the position of the receiver is 3 and the position of the argument is 5, the
comparison yields 3 - 5, which evaluates to -2, which is negative, indicating that the
receiver should come before the argument.

ACTIVITY 9

This is a short activity designed to show that a list of ComparableFrog objects really does
get sorted from left to right as planned!

Open Unit11_Project_5 and open the editor on the Froggery class, which includes a The dictionary defines a

class method sortFrogs() which puts three instances of ComparableFrog into a list,
then uses Collections.sort() to sort the list.

froggery as a collection of
frogs. Honest!

Read through the method to see what it does, then in the OUWorkspace invoke

sortFrogs() on the Froggery class.

28 Unit 11 Ordered and sorted collections

DISCUSSION OF
ACTIVITY 9

You should find that instances of ComparableFrog are indeed sorted according to
position.

In the next series of activities you are going to write a new class called ClubMember,
which will implement the Comparable interface. Instances of ClubMember are very
simple: they just have a firstName, a secondName and an age. The idea of this new class
is to give you some experience of defining and using a class with a natural ordering.

ACTIVITY 10

We begin by creating a basic class. At this stage it does not have to implement

Comparable; we will attend to that later.

1	 Open Unit11_Project_5 and create a new class by clicking on BlueJ’s New Class
button. When prompted by the dialogue box, give this new class the name
ClubMember. Declare two instances of type String called firstName and lastName
respectively. Then declare an instance variable of type int called age. Then write the
accessor methods for these instance variables.

2	 Write a constructor for ClubMember that takes three arguments – two strings and an
integer – and uses them to set firstName, lastName and age respectively.

DISCUSSION OF
ACTIVITY 10

This is our version of the class so far:

/**
* Instances of ClubMember simulate members of a club
* and have the attributes firstName, lastName and age
*/

public class ClubMember

{

private int age;

private String firstName;

private String lastName;

public ClubMember(String first, String last, int years)
{

this.firstName = first;

this.lastName = last;

this.age = years;

}

public void setAge(int memberAge)

{

this.age = memberAge;

}

public int getAge()

{

return this.age;

}

3 How to keep frogs in order 29

public void setFirstName(String memberFirstName)

{

this.firstName = memberFirstName;

}

public String getFirstName()

{

return this.firstName;

}

public void setLastName(String memberLastName)

{

this.lastName = LastName;

}

public String getLastName()

{

return this.lastName;

}

}

The code for the ClubMember class, as defined so far, has been added to
Unit11_Project_6.

ACTIVITY 11

Two possible ways in which instances of ClubMember might reasonably want to order

themselves for different purposes are by age and by lastName.

Recall that a compareTo() method should return a value which is negative, positive or

zero, to give its verdict on the relative ordering of receiver and argument. If the receiver

comes before the argument, the value should be negative. If the receiver comes after the

argument, the value should be positive. And if they occupy the same position the return

value should be zero.

Open Unit11_Project_6 and then open the editor on the class ClubMember.

1 Alter ClubMember so that the class is declared as implementing
Comparable<ClubMember>. Make sure you include the type <ClubMember> that the
comparison will involve.

2 Write a compareTo() instance method for ClubMember which defines an ordering
based on age.

3 Compile your class and test your method in the OUWorkspace by executing the
following statements one by one.

ClubMember x = new ClubMember("Joe", "Green", 27);

ClubMember y = new ClubMember("Maria", "Brown", 21);

x.compareTo(y);

y.compareTo(x);

x.compareTo(x);

4	 Unit11_Project_6 contains a class called Club, which has a static method called
showMembers() which creates and populates a list of ClubMember, then sorts it and
prints out a description of its contents. Before you can use this class you will need to
compile it – it cannot be compiled until the ClubMember class is written and compiled.

Once you have compiled the Club class, in the OUWorkspace, invoke the
showMembers() method on the class. If all has gone according to plan – and if the
compareTo() method functions correctly – you should see in the Display Pane
information about some instances of ClubMember displayed in order of age.

30 Unit 11 Ordered and sorted collections

DISCUSSION OF
ACTIVITY 11

1 The first line of code in the class should now be:

public class ClubMember implements Comparable<ClubMember>

2 The method that compares instances of ClubMember by age is as follows:

public int compareTo(ClubMember anotherMember)

{

return (this.getAge() - anotherMember.getAge());

}

3 The results in the workspace should be

6

-6

0

4 The output should be:

Club member: Gaius Albus, age 21

Club member: Aemilia Rubra, age 27

Club member: Decimus Flammeus, age 30

Club member: Claudia Fusca, age 35

Club member: Brutus Albus, age 48

Club member: Felicia Prasina, age 61

The updated code for the ClubMember class, as defined so far, has been added to
Unit11_Project_7.

ACTIVITY 12

In this activity you will modify the compareTo()method in the ClubMember class so it
now compares instances of ClubMember according to lastName.

The method will need to return a negative, zero or positive result, depending on which

object’s lastName comes first alphabetically. Luckily there is a method in the String
class which will produce exactly the result we need to return. This method is called ...

compareTo()! The expression

aString.compareTo(bString)

will evaluate to a negative, zero or positive result depending on whether aString is
alphabetically before, the same as, or after bString. So all we need do is compare the

last names using this method and return the result.

Open Unit11_Project_7 and then open the editor on the class ClubMember.

1 Modify the compareTo()method in ClubMember so it performs a comparison based
on the lastName instance variable.

2 Once you have recompiled the ClubMember class, in the OUWorkspace invoke the
class method showMembers() on the Club class. This time you should see the club
members displayed in order of lastName.

3 How to keep frogs in order 31

DISCUSSION OF
ACTIVITY 12

1 Our method was as follows.

public int compareTo(ClubMember anotherMember)
{

return this.getLastName().compareTo(anotherMember.getLastName());
}

2 The output from invoking the class method showMembers() on the Club class
should now be:

Club member: Gaius Albus, age 21

Club member: Brutus Albus, age 48

Club member: Decimus Flammeus, age 30

Club member: Claudia Fusca, age 35

Club member: Felicia Prasina, age 61

Club member: Aemilia Rubra, age 27

Notice that two members share the last name Albus, so they occupy the same position in

the ordering. In these circumstances the sort does not reorder the two but leaves them in

the original order, with Gaius before Brutus. A sort that behaves like this – not reordering

equal elements – is known as a stable sort.

If we were sorting the names manually we would have reordered them, because when

last names tie the usual practice is to arrange them according to the alphabetical order

of the first names. So we would have placed Brutus before Gaius. This is called a

secondary sort, the sort according to last name in this case being the primary sort.

How can we arrange for secondary sorting? The solution is to make our compareTo()
method return the result of comparing the last names unless they are equal, in which

case the result of comparing the first names is returned instead.

To demonstrate this idea in action we have written the classes ClubMember2 and Club2,
which exactly parallel the original ClubMember and Club, except that the compareTo()
method in Club2 uses the idea above to do a primary and then a secondary sort. If you

invoke Club2.showMembers() you should find that Brutus is now in his rightful position!

The updated code for compareTo() in the ClubMember class has been added to
Unit11_Project_8.

32 Unit 11 Ordered and sorted collections

Sorted collections 4
As we have seen, lists are ordered. If the element type of a list has a natural ordering – in

other words, if it implements Comparable and so has a compareTo()method – we can

call on the services of Collections to sort the elements. After sorting, the elements will

be arranged in the list according to their natural ordering. Numbers will follow size order,

strings will be in alphabetical order, instances of comparableFrog will be in order of
position, and so on.

But what if we add a new element? If we just tag it on at the end, the chances are it will

not be in the right place as far as the ordering goes, so we will have to sort the list all over

again. Alternatively we might write code to work out where the new element should fit in

and insert it into the list at the right point. This can certainly be done but it’s fiddly.

Wouldn’t it be nice if we had a kind of collection which automatically kept all its elements

sorted, and whenever we added a new element to it put the element in the right position

according to its natural ordering without us having to do anything? Ready-sorted

collections, you might say.

As you will have guessed, such a kind of collection does exist, and it’s called a sorted

collection. You have already met one kind of sorted collection briefly in Unit 10 : the

TreeSet. You may recall that when we stored our herbs in a TreeSet rather than a
HashSet they magically became sorted into alphabetical order.

Sorted collections implement one of two interfaces: SortedSet, which is a subinterface
of Set; and SortedMap, which is a subinterface of Map.

TreeSet implements SortedSet and is like HashSet except that its elements are always

arranged in their natural order. Similarly there is a collection class TreeMap, which
implements SortedMap and is like a HashMap except that its entries are always arranged

according to the natural order of the keys.

Exercise 2

(a) Which of the following types of ordered set do you think are legal?

c TreeSet<HoverFrog>

c TreeSet<ComparableFrog>

c TreeSet<Integer>

c TreeSet<String>

c TreeSet<int>

(b) Why is there no interface SortedList?

Solution ...

(a)	 The contents of a TreeSet are kept sorted by natural order, so the elements must

have a natural order defined on them. This rules out TreeSet<HoverFrog>,
because HoverFrog does not implement Comparable and so instances of
HoverFrog cannot be sorted.

TreeSet<ComparableFrog> is fine, since ComparableFrog implements

Comparable.

Integer and String likewise have a natural order, so TreeSet<Integer> and

TreeSet<String> are also fine.

4 Sorted collections 33

TreeSet<int> is illegal because collections can contain only objects, not primitive

data types. Of course we could use a TreeSet of Integer, in which case
autoboxing would make it seem as though int values could be added to it.

(b) It would be a contradiction in terms!

If it is a sorted collection, the implication is that its elements will at all times be

arranged in their natural order. But a list is an indexed collection: implying that an

element can be stored at a chosen index. These are contradictory requirements. If

we tried to insert at new element at a particular index, 12 say, it would instantly be
whisked away to whatever position it should occupy according to the natural

ordering.

The price of using sorted collections
However the convenience of using a sorted collection comes at a price. As you know,

sets cannot contain duplicate elements, and maps cannot contain duplicate keys. What

does duplicate mean precisely? For a sorted collection it means equal according to the

natural ordering – in other words if a.compareTo(b) returns zero, a and b are
duplicates! Of course they might actually be different objects – two distinct instances of

ComparableFrog that just happen to be on the same stone for instance – but

nevertheless to a sorted collection they appear to be one and the same. So if we want to

sort a collection but retain duplicate elements, we will just have to use a list and sort it as

required using Collections.

The next activity demonstrates the behaviour of a sorted set.

ACTIVITY 13

Open Unit11_Project_8 and open the OUWorkspace.

1	 In the class Froggery there is a method treeFrogs(), which creates three
instances of ComparableFrog. To make sure there is no doubt they are different
frogs, we set their colours so the first is coloured red, the second green and the third
blue. However the position of the frogs is not changed, so they are all at home
position 1.

They are then added to a TreeSet object, frogSet, and the contents of the set are
printed to the Display Pane.

Execute the method from the OUWorkspace and observe the output in the Display
Pane. What do you find?

2	 Open Froggery and try the effect of editing the method treeFrogs() to include the
statements

greenFrog.right();

blueFrog.left();

before the frogs are added to frogSet. Recompile and execute

Froggery.treeFrogs() again.

DISCUSSION OF
ACTIVITY 13

1	 There is only one ComparableFrog in frogSet. Although the frogs have different
colours, the compareTo()method only takes account of their position. Since all

three have their position instance variable set to 1, the TreeSet object considers
them to be the same, and so the green and blue frogs are considered duplicates

and do not get added.

2

34 Unit 11 Ordered and sorted collections

There are now three ComparableFrogs in frogSet. This is because we changed the
green frog’s position to 2 (with the right() message) and the position of the blue

frog to 0 (with the left()message), so now all three frogs have different positions

and so are different in the eyes of the TreeSet object. As they are added to
frogSet they are automatically inserted in sorted order, so the blue frog is at

position 0, the red frog is at position 1 and the green frog is at position 2.

4.1 Are some objects more equal than
others?

So sorted sets treat two objects as the same if the result of compareTo() is zero. But

what happens in unsorted sets, such as HashSet? More generally, what does it mean to

say that two objects are equal ?

You know that we can compare two objects using ==. You also know that there is an
equals() method. This method is defined in Object and since all classes inherit
directly or indirectly from Object, all objects in the Java universe understand the
message equals(anotherObject).

SAQ 1

What is the difference between == and equals()?

ANSWER ...

For object references a and b, a == b is true only if they both reference exactly the same

object, i.e. they both point to the same address in memory.

a.equals(b)may be testing a weaker condition – not whether they are the same object,

but rather whether they are the same for our purposes. This usually means that they are

indistinguishable in terms of state. For example, aString.equals(bString) will be

true if both strings contain the same characters in the same order, even if they are

actually different objects.

It makes sense for String equals() to work in this way. Imagine if we wanted to

compare a password string with a stored password when a user logged in. The two

strings would be different objects but we would want them to be considered equal if the

user had typed in the right sequence of characters. If the user had to supply the

identical object they would be unable to log in!

In the class Object, however, == and equals() do precisely the same thing as one

another. In fact the definition of Object equals() is as follows:

public boolean equals(Object obj)

{

return (this == obj);

}

So how did String equals() come to be different from ==? Well, the designers of the

String class decided that for strings, ‘equals’ ought to mean having the same

characters in the same order, which was obviously a sensible decision. So they overrode

the equals() method inherited from Object in favour of one which compared the

content of two strings.

The designer of any class can do the same, and equals() can mean whatever we like.

We simply override the inherited equals() with a version that does what we want.

4 Sorted collections 35

You may be wondering what all this has to do with collections. The importance lies in the

fact that unsorted collections, such as sets and maps, use equals() as the basis for

deciding whether two elements duplicate one another. So if we try to add a new element

to an instance of HashSet, or a new key/value pair to an instance of HashMap, it will be
equals() that is used to detect whether the element or the key is already present.

equals() is also used in testing methods, such as contains().

Writing an equals() method
To demonstrate the writing of an equals() method, we introduce a simple class,

RowOfStars. Objects of this class represent a row of asterisks like ****** and have a single
integer attribute, length, which denotes the number of stars in the row. Two instances of

RowOfStars are reckoned as equal if they consist of the same number of stars.

To make this method work with collection classes that decide whether elements are

duplicates by using equals(), we must make sure that we are overriding the equals()
method inherited from Object. We looked at the method inherited from Object earlier,
but here it is again:

public boolean equals(Object obj)

{

return (this == obj);

}

Note the signature, equals(Object obj). To override this method we must use the

same signature. If we used equals(RowOfStars obj)it would have a different
signature, and would merely overload the method, not override it.

So we know the method we are trying to write must have the form

public boolean equals(Object obj)

{

// Method body - our code

}

Filling in the method body is not too hard. Two RowOfStars instances are deemed equal

if their lengths are the same, so we could write this:

public boolean equals(Object obj)

{

return (this.getLength() == obj.getLength());

}

But this will not work! Can you see why?

The reason is that the argument obj is declared as Object obj in the method header.

Therefore we can only send it messages from the protocol of object, and this does not

include any such message as getLength()!

We can get round this with a cast. We declare a RowOfStars variable row and then cast

the argument obj to an instance of RowOfStars, like this:

RowOfStars row = (RowOfStars) obj;

This works because the object concerned actually is a RowOfStars, so Java can cast it
back to that type.

Using the cast, we rewrite the equals() method as follows

public boolean equals(Object obj)
{

RowOfStars row = (RowOfStars) obj;
return (this.getLength() == row.getLength());

}

36 Unit 11 Ordered and sorted collections

A better equals()method This now works fine, since getLength() is in the protocol of RowOfStars. There is a
would check that the cast danger though – what if, when the program runs, obj does not actually refer to an
is safe before attempting
it, and would also test instance of RowOfStars? The answer is that an exception will occur and the method will
whether the argument is fail. However, we plan to use the method only in circumstances where we know that the
null. But we have not object will be an instance of RowOfStars, so the issue will not crop up for us.
bothered about these
checks, because we want
to keep the method as

ACTIVITY 14 simple as possible.

1	 Open Unit11_Project_8, and then open the editor on the class RowOfStars and verify
that the equals() method is as given above.

2	 In the OUWorkspace execute the following statements:

RowOfStars rs1 = new RowOfStars(7);
RowOfStars rs2 = new RowOfStars(7);
RowOfStars rs3 = new RowOfStars(11);
rs1.equals(rs2);
rs1.equals(rs3);

You should find that as expected rs1.equals(rs2) returns true (the states of the
two objects are the same) but rs1.equals(rs3) returns false (the states are
different). Our equals() method is working as it is supposed to.

3	 Next open the class Galaxy and read the single static method showStars(), which
creates a HashSet of RowOfStars, adds some instances of RowOfStars to it, and
displays the result.

Note that several of the instances added to the set have the same state, so they are
all equal, and would be duplicates in the set. We expect only one of them to be added,
since a set cannot contain duplicates.

4	 Now execute Galaxy.showStars() in the OUWorkspace and observe what actually
happens! Do not spend any time puzzling over it but come straight back here to the
activity discussion where all will be explained!

DISCUSSION OF

ACTIVITY 14

After executing Galaxy.showStars()we saw the following printed in the Display Pane:

**

*

You will probably have got a different pattern, since the elements in the set are not

guaranteed to be in any particular order. However, the important point is that the set

contains duplicates – *** shows up four times – and it should not. We went to all that

trouble to write an equals() method, but the duplicates have not been recognised.

What has gone wrong?

Do not worry. This behaviour of sets is a classic trap, which has baffled many a

programmer! It arises from the way the elements of a set are stored in memory. Once we

understand the storage mechanism, the problem is very easily fixed.

4 Sorted collections 37

What puts the hash in HashSet?
To understand what has happened we need to examine how objects are stored in a set

and retrieved again later.

One of the benefits of using a set is that searching for a particular element is extremely

fast, even if the set contains many thousands of elements. This very high efficiency is

achieved by storing the elements in a series of compartments called buckets (Figure 2).

Each bucket can hold more than one element, although we try to arrange for the number

to be kept as small as possible (we will see why shortly).

buckets

element

element, element

element, element, element

element

Figure 2 Hash buckets

If Java wants to add an object to a set, it sends the object the message hashCode(),
which all objects understand, because it is inherited from Object. The object returns an
int value called the hash code and from this Java is able to work out which bucket the

object should be put in. It checks the contents of the bucket to make sure the new object

will not duplicate anything already there, and provided this is the case the object is

added to the bucket.

If Java needs to know if an object is present in the set, it gets the hash code for the

object, which tells it which bucket to look in, then checks the contents of the bucket to

see if any of them match.

Using this scheme means that it’s extremely quick to find whether or not a particular

object is contained in the set, because we can go immediately to the bucket where the

object ought to be, and provided the bucket holds only a few elements, checking them

all can be done very rapidly.

However, there is a potential problem. Two objects could be equal in terms of state but

have different hash codes. If so, when Java comes to add the second object, it will go to

a different bucket, and so it will not recognise that the second object is a duplicate of an

object in another bucket. This is precisely what has happened in our example, because

our class still uses the hashCode()method inherited from Object, which returns a hash
code totally unrelated to an object’s state. Figure 3 illustrates the problem.

38 Unit 11 Ordered and sorted collections

There is too little space to
explore the details here,
but when a class has
several attributes, finding
a suitable formula for
calculating the hash code
will generally be a little
more complex. We need
to make sure the hash
codes are well spread out,
because we want the
objects to be distributed as
evenly as possible
amongst the buckets.

equals(***) ?

*

**

Figure 3 Duplicates in other buckets are not detected

The same difficulty could happen when we search the set for a given object. It might be

there, but if Java is looking in a different bucket it will not be found.

Once we understand what is going on, the problem it is fairly easily dealt with. All we

need do is make sure that whenever two objects are equal they also have the same hash

code, so Java will look in the same bucket for both objects.

In other words, if a.equals(b) is true, then a.hashCode() should return the same

number as b.hashCode(). As class designers, all we need to do is override the
inherited hashCode() method so that this is the case.

In our particular example the class RowOfStars should override the inherited hashCode()
so that two rows of equal length will answer with the same hash code. No fancy calculation

is required – we simply give the hash code the same value as the length!

public int hashCode()

{

return this.getLength();

}

ACTIVITY 15

Open Unit11_Project_8. Open the editor on the class RowOfStars and enter the
hashCode() method given above. Once you have recompiled the class, execute

Galaxy.showStars() in the OUWorkspace.

DISCUSSION OF
ACTIVITY 15

Hurray! No duplicates!

The code for the hashCode() method has been added to the RowOfStars class in
Unit11_Project_9.

Three kinds of equals
Equality seems such a basic idea – surely two things are either the same or not? But now

we have uncovered three different forms of equality in Java:

1	 Object identity, tested with ==. If a and b are references and a == b is true, this
means both a and b reference exactly the same area in memory. This is always the

case: we cannot redefine ==.

2	 Equality of state or content. The version of equals() inherited from Object is no
different in its effect from ==. But class designers can override equals() to suit their

own purposes. Usually, if a.equals(b) is true, this means a and b have the same

state, although we have the freedom to make it mean whatever we like.

3

4 Sorted collections 39

However – as we have seen – whenever we override equals() we had better

override hashCode() as well! Otherwise we will get the version of hashCode() from

Object, which yields a different hash code for every object, and then our class will
not work properly with some collections. If a.equals(b) is true, a and b should
return the same hash-code value.

Equality in a natural ordering. If a.compareTo(b) is zero, a and b will be treated as
equal in sorted collections. If we want, we can define compareTo() and equals()
completely separately, but it is not a very good idea, because then two objects

could be treated as the same in one kind of collection yet different in another. So we

ought to make sure that if we define a compareTo() method for a class it is

consistent with our equals() method.

Instances of RowOfStars cannot be stored in a sorted collection, because the
RowOfStars class does not implement the Comparable interface.

If we wanted to give RowOfStars a compareTo()method, we should base it on the

length:

public int compareTo(RowOfStars anotherRow)

{

return (this.getLength() - anotherRow.getLength());

}

This would give a class in which equals(), hashCode() and compareTo() were all

consistent with one another. This approach is taken in the compareTo()method of the

ComparableRowOfStars class, which you can find in Unit11_Project_10. Objects of this

class will be stored correctly in any type of Java collection.

ACTIVITY 16

Open Unit11_Project_10 and open the editor on the class ComparableRowOfStars.
Confirm that the class has implemented the Comparable interface and that it has defined
the compareTo()method in terms of the length instance variable. Next open the editor
on the class Galaxy2 and note that this class creates a TreeSet and adds a number of

instances of ComparableRowOfStars to the sorted set before printing the textual
representation of the elements to the Display Pane.

In the OUWorkspace execute Galaxy2.showStars() and observe the results in the

Display Pane.

DISCUSSION OF
ACTIVITY 16

Double hurrah! There are no duplicates and the elements are sorted!

40 Unit 11 Ordered and sorted collections

Summary5
After studying this unit, you should understand the following ideas:

c A list is a variable-sized collection that is ordered, has an integer index and permits

duplicate elements.

c List is a subinterface of Collection, and so it implements the protocol of

Collection, as well as some additional behaviour.

c The protocol of List includes methods for adding elements, inserting elements,

accessing elements by index, removing elements and overwriting elements already

present. It also includes methods for testing the list and searching for a given object.

c If elements are inserted in or removed from a list, other items are moved up or down

to make room or close the gap as necessary.

c ArrayList is a good general-purpose implementation of List.

c We may iterate through a list using a foreach loop, which will access the elements

in index order. We can also iterate by using a for loop to access each element in

turn by its index.

c Lists are more versatile than arrays, but for some applications where this versatility is

not needed arrays may provide a simpler solution.

c In addition to having an index order, the element type of a list may have a natural

order, such as alphabetical or numerical order. Rearranging the elements so that the

index order follows the natural ordering is called sorting the list.

c The utility class Collections provides a wide range of static methods for working

with collections, including ones to do tasks such as reversing, sorting and shuffling

lists, swapping elements in a list, locating maximum and minimum elements, and

searching for substrings. Many of these methods are destructive.

c A collection may be passed as the argument for the constructor of a different type of

collection. Creating a set from a list in this way is a useful idiom for eliminating

duplicates.

c Classes that implement the List interface (for example, ArrayList) support a
number of bulk operations similar to those for sets.

c There are sorted collections whose elements or entries are automatically kept

sorted, so they are always in their natural order. Sorted collections implement the

SortedSet and SortedMap interfaces. Only objects which implement the

Comparable interface may be stored in such collections. Sorted collections cannot

contain two elements which have equal order.

c The class TreeSet implements the SortedSet interface, and TreeMap implements

the SortedMap interface.

c We can define a natural order of our own for a class by implementing the

Comparable interface.

c Lists are not sorted collections, but they can be sorted by the sort()method of the

Collections class, so long as the elements in the list implement the Comparable
interface.

c As well as object identity, tested with ==, there is another from of equality, which is

tested using equals(Object). In Object the two forms have exactly the same

effect. However a class designer can redefine the equals() inherited from Object
so that it tests for equal state, or some other similarity.

Summary 41

c	 Whenever equals() is overridden, hashCode() must also be overridden so that

equal objects return the same hash code. Otherwise, objects will not be stored

properly in collections that implement the Set and Map interfaces (or subinterfaces).

c	 If a class implements Comparable its equals(), hashCode() and compareTo()
methods should be consistent with one another, so that objects that have equal state

also occupy the same point in the natural ordering. Objects of such a class can be

stored in any kind of Java collection.

42 Unit 11 Ordered and sorted collections

LEARNING OUTCOMES

After studying this unit you should be able to:

c explain the properties of a list;

c use messages that are defined by the List interface, including ones to add, insert,
access, remove, overwrite and search for elements, and test the list;

c use the class ArrayList, which implements the List interface;

c understand where collection classes should be used and where arrays would be

adequate;

c use the class methods of the utility class Collections to perform a range of

operations on lists;

c copy a list before invoking a destructive operation;

c use bulk operations with lists;

c use the idiom of creating a set with the same elements as a given collection as a way

of removing duplicates;

c explain with reasons what sort of collection might be most suitable for a given

application;

c understand what is meant by a natural ordering;

c define a natural ordering for a class by making it implement the Comparable
interface;

c understand that a sorted collection maintains its elements in natural order and

explain how it decides whether elements are duplicates;

c override the equals()method inherited from Object to make it test for equality of

state;

c understand that if equals() is overridden then hashCode()must also be

overidden, so that objects for which equals() returns true produce the same hash

codes, and that if this is not done, objects will not be stored correctly in collections

that implement the Set and Map interfaces;

c understand that compareTo() should be consistent with equals();

c understand how to write a simple class that overrides equals(), hashCode() and

compareTo() so that they are all consistent, in order that instances of the class can

be stored in any kind of Java collection.

Glossary 43

Glossary

Comparable An interface that defines the header for a single method: compareTo().
Classes which implement this interface enable their instances to have a natural order

and can therefore be added as elements to sorted collections.

compareTo() The sole method of the Comparable interface. Allows classes of
objects implementing this interface to be sorted (i.e. gives them a natural ordering).

equals() A method inherited by all classes from Object. In the Object class the
method simply compares the receiver with the argument using the == operator and so
will return true if they both reference exactly the same object – in other words, they both

point to the same address in memory. However, the method is frequently overridden to

define versions of equality appropriate to particular classes and particular purposes. For

many classes, such as String, the method equals() is defined effectively to mean ‘has

the same state as’. More generally, equals() is coded to mean ‘should be regarded as

equal for our purposes’.

hash bucket A hash bucket is a ‘compartment’ used in the internal implementation of

a set. The set uses the hash code of each incoming element to decide which hash

bucket to store it in.

hash code In Java, a hash code is an integer that can be calculated for any object, by

sending it the message hashCode(). This method is inherited from Object, but in
general must be overridden if equals() has been overridden. Hash codes are used by

sets and related collections to allow them to store elements efficiently and to check

rapidly for duplicates. If a class redefines equals(), then the hashCode() method for

that class must take the definition into account; otherwise the type will not behave

properly in collections.

index In some collections (e.g. lists, but not sets), any element can be accessed by

using a place number. Such collections in effect allow you to say ‘Give me the first

element’, ‘Give me the second element’ etc. An index is just a place number.

Additionally, the word ‘index’ is used in several closely related ways, either to refer to a

particular place number or set of place numbers or, in everyday English, to refer to a

complete table of place numbers and the elements they refer to. In computing, the term

‘index’ can cover not only place numbers, but also non-numeric keys used to much the

same effect. Sometime the phrase integer index is used to narrow down an index to the

place-number kind.

list A list is an ordered collection of variable size that permits duplicate elements.

natural ordering In Java, an element type is said to have a natural ordering if it

implements the interface Comparable and consequently has a compareTo()method.

For numbers and strings, the natural ordering corresponds simply to everyday

numerical order and alphabetical order.

ordered collection An ordered collection is a type of collection where each element in

the collection has a well-defined place, as indicated by its index number. Thus, an

ordered collection allows us to access and find the first, second or last element etc.

However, the order does not have to reflect anything to do with the elements themselves.

It is simply determined by where each element has been placed in the list. This contrasts

with a sorted collection.

44 Unit 11 Ordered and sorted collections

primary versus secondary sort Sometimes a collection should be sorted primarily

according to a particular key, but in the case of elements that tie according to this

criterion, the elements should be further sorted by some secondary key. These two

levels of sorting are referred to as the primary and secondary sort respectively. Both

sorts can be accomplished at once by an appropriately designed compareTo()
method.

sorted collection A sorted collection is a collection that always keeps its elements in

their natural ordering. This contrasts with an ordered collection, where the ordering

may just be an accident of where elements happen to have been placed in the

collection.

stable sort A sort that does not reorder equal elements is known as a stable sort.

sublist A list, together with any two positions in the list may be seen as defining a new

list containing just those elements between the two positions, retaining the same order.

The new list is known as a sublist.

Index 45

Index

A

add() 8

ArrayList 7

C

collection classes 5, 7, 23

Collections 19

Comparable 26

compareTo() 26

D

destructive 19

E

equals() 34

H	
hash bucket 37

hash code 37

hashCode() 37

I

iteration 12

J

Java Collections Framework 5, 17

L

list

duplicates 6

dynamic 6

fixed size 6

homogeneity 6

indexing 6

sublists 20

maximum 20

minimum 20

ordering 6

reversing 19

shuffling 20

sorting 19

swapping 20

N

natural ordering 5, 19

O

ordered collection 19

P

primary sort 31

S

secondary sort 31

size() 7

stable sort 31

sublist 20

T

TreeMap 32

TreeSet 18, 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

