
10U
ni

t

Collections: Sets
a aps

Object-oriented
programming with Java

M255 Unit 10

nd m

UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at http://
www.open.ac.uk where you can learn more about the wide range of
courses and packs offered at all levels by The Open University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008.

.2006, 2008 The Open UniversityªCopyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

9 ISBN 978 0 7492 6791

2.1

CONTENTS

Introduction 5

– 6

1.1 7

1.2 10

1.3 13

1.4 16

1.5 TreeSet – 18

– 20

1 Set a collection that allows no duplicates

Creating a set

Operations on sets

Primitive data types and collections

Iterating over a set

a set with order

2 Map a collection with keys and values

2.1 20

2.2 23

2.3 27

2.4 Map methods 30

32

3.1 32

3.2 34

37

4.1 38

4.2 43

49

Glossary 52

Index 54

The map, the key and the value

Operations on maps

Iterating over maps

A summary of some

3 Overview of the Collections Framework

The collection interfaces

The collection classes

4 A dating agency

Bulk operations on sets

A map implementation of the dating agency

5 Summary

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

Collections are indispensable in programming.

Try to imagine developing a banking system, say, in which every customer account was

represented by an individually named variable acc1, acc2, etc. There could be tens of

thousands of these! We would have no general way of locating a particular account

when we wanted it, printing out a list of accounts would require many thousands of print

statements, one per account, and every time a new customer joined the bank we would

have to recompile the program.

The previous chapter showed how to overcome this problem: use collections. A

collection is a structure which enables multiple items to be bundled as a single unit and

dealt with collectively. Once formed, a collection can be passed around as a single

object and its contents can be processed all together, by stepping through the

collection doing the same thing to each item as we go.

Different kinds of collection
The arrays we met in Unit 9 are one kind of collection, although as we shall see they are
rather different in some ways from the collections we shall be studying here. Many kinds
of collection exist, each one having a different behaviour and structure. Each kind of
collection is suitable for particular sorts of application.

When you come across a new kind of collection, the following questions are usually
worth asking.

c Fixed size versus dynamic: Is the size of the collection fixed once it has been
created, or can the size be changed as required?

c Ordering: Are the contents in any particular order or not? If there is an order, how is it
defined? Can it be changed, and if so how?

c Homogeneity: Must the contents all be the same type of data or can they be mixed?

c Indexing: Are elements in the collection given a label, index, key, or address of
some sort, which can be used to retrieve them? (For example, telephone numbers
can be found from a directory by looking up the name.)

c Duplicates: Are duplicates allowed in the collection?

Answers to these questions help to understand the nature of a collection and what sorts

of application it might be useful for.

For example, the arrays of Unit 9 are of fixed size, homogeneous, indexed using integer

keys, which may also represent a natural order, and permit duplicate elements.

Suppose we wanted to record the average temperature for each month of the year. Then an

array would be ideal. The size is known in advance to be 12; the data are all numbers; we want

to be able look up the average temperature given the month number; the month numbers have

an order; and it is possible for two or more months to have the same average temperature.

On the other hand, if we wanted to record the people present at a tutorial at any given

moment – perhaps in case of fire evacuation – an array might not be very suitable. We

will not know in advance how many people will attend, and individuals may come late

and/or leave early, so the numbers may fluctuate. Those attending are not in any special

order, so giving each person a number would be meaningless. Moreover, a person is

either present or not – they will never appear on the list twice.

In this unit you will learn about two very different kinds of collection, sets and maps,

which let us do things that an array is not suited for. You will also be introduced to the

Java Collections Framework.

6 Unit 10 Collections: Sets and maps

1 Set –
duplicates

a collection that allows no

A set is a collection in which every element is unique. A set can grow and shrink as
elements are added or removed. The contents of a set are not indexed, so we have no
way of reaching a particular item except by stepping through the elements until we
come to the one we want. The most general kind of set is unordered, although we shall
see that ordered sets also exist.

So you should think of a set as a pool of objects, none of which can appear twice, and
we can add things to the pool or remove them as we please.

Sets occur in many situations outside computing. When would we need a collection
which can grow and shrink, has no indexing and contains no duplicates? Examples of
such sets would be a glossary (like the one at the end of this unit), a word list, a mailing
list, or an invitation list. Mailing lists with duplicates are a well-known social hazard.

With collections like these there is often no way of knowing in advance exactly what size
the final list will be, and it would be most inconvenient if we had to begin by specifying a
fixed length which could not be altered later. We want the length to be flexible and the
list to grow as items are added in, or shrink again if they are removed.

Not having to index the collection is also a benefit in these applications – it saves having
to specify an index every time we add, access or remove an item. If we used an array­
like structure we would have to specify exactly what went where, even though this
information was not relevant.

Examples of sets crop up in many other practical situations. As an illustration, suppose I
am involved in a garden bird survey, which involves recording the range of different bird
species that have been spotted in my garden:

robin

collared dove

blackbird

blue tit

...

I want to write each species down only once, so if a bird comes along which is of a kind
already recorded – another blackbird, say – there is no need for a duplicate entry.

Java has several collection classes that implement the general notion of a set as
described above, but with various additional features. Because there are numerous
similar collection classes of this kind, we will not focus primarily on any one particular set
class, but rather on the common interface that they all implement – the interface Set.
This defines a set of common behaviour that allows us to perform operations such as
adding and removing elements, finding how many elements the set contains,
discovering whether it contains a particular object, and so on. All the different sets found
in Java implement this interface.

1 Set – a collection that allows no duplicates 7

1.1 Creating a set
In A.A. Milne’s Winnie the Pooh, the gloomy Eeyore is given two birthday presents – a
burst balloon from Piglet and an empty honey jar from Pooh. Far from being
disappointed by these gifts, Eeyore is delighted when he realises that the pot is a Useful
Pot, ideal for putting the burst balloon in and taking it out again. His friends soon catch
on to the possibilities. ‘It goes in!’ exclaims Pooh. ‘And it comes out!’ adds Piglet.

In the spirit of Eeyore’s useful pot, in the next few activities you will create a set, put
things in, and take them out again.

Whenever we use any kind of collection from the Java Collections Framework there
are three things we must do first.

1 Decide the interface type – what protocol do we want to use with our collection?

2 Choose an implementation class – what class will the collection belong to?

3 Declare an element type – what data type will the collection contain?

These are the three key questions that must be answered before we can create our first
set.

Deciding the interface type
We already know the interface type is going to be Set, which defines a protocol for
working with a set. But there is a little more to think about. To work with a collection, as
with any kind of object, we will generally need a variable which refers to it. This variable
will have to be declared. When it is declared, what type should it be?

When using the Collections Framework, it is best practice to declare the type of the
variable in terms of the interface (here Set) rather than the implementing class. The
reason for doing this is that it adds flexibility. If we later decide to use a different
implementation (class) of set there is no need to rewrite all the variable declarations.

So, rather than declare a variable using a specific kind of set, we would write:

Set mySet;

mySet can then be used to reference any kind of set that we please.

Choosing an implementation class
As we have just discussed, Set is an interface, not an actual class. Whenever you want
to use a set, you will also need to choose a class that implements Set. Fortunately, this is
straightforward. Unless something special is required, a good general-purpose choice
is the class HashSet.

Now that you have the HashSet class to implement the interface Set, the next step is to
think about what type of thing you intend to put in your set.

Declaring an element type
In Unit 9, when you declared an array you had to declare its component type. With the
collections in the Collections Framework (we will explain what this means later in the unit)
there is no notion of ‘components’ (contiguous blocks of memory labelled by an index).
Instead elements are simply put into, and taken out of a collection using messages –
how or where these elements are actually stored in the collection is of no concern to us.
Hence instead of declaring a component type, with the collections in the Collections
Framework, you simply declare an element type. Only items compatible with the
declared element type can then be added to the collection.

8

The way in which collections in this unit are declared is syntactically very different from
the way this is done with arrays. For example, if you wanted a set for holding strings,

Unit 10 Collections: Sets and maps

Set<String> herbSet;

variab tifierelemen pe

interface pe

then you would declare the variable like this:

le ident ty

 ty

Figure 1 Declaring a variable to reference a set of strings

Then to create an instance of a particular kind of set and assign it to the variable
herbSet, you would write the following.

herbSet = new HashSet<String>();

elemen pe

c ctor fo he HashSet

t ty

onstru r t

‘< ‘> > is
.

:

SAQ 1

(a) >

t t be
Set?

(c) t Set t
?

Figure 2 Creating an instance of a set and assigning it to a variable

Notice how the element type is put between ‘ and ‘. Note also that Set<String
usually pronounced ‘Set of String’

Of course, you could declare the variable and assign a set to it all in one line

Set<String> herbSet = new HashSet<String>();

Consider the following statement which declares and creates a new set of strings:

Set<String> herbSet = new HashSet<String>();

Answer the following questions on the basis of the discussions above.

What is the purpose of <String which occurs twice in the above statement?

(b) Given an initial decision to use HashSe , why should the instance of HashSe
referenced by a variable of type

Given an initial decision for herbSe to be of type , why should the HashSe
class be used

1 Set – a collection that allows no duplicates 9

ANSWER...

(a)	 The first occurrence of <String> in this statement is used in the declaration of the
variable herbSet. It specifies that herbSet can only be used to reference a set
whose element type is type compatible with the element type of String. The
second occurrence of <String> is on the right-hand side of an assignment
statement. It is used with the HashSet constructor and the operator new to create a
set with the element type of String.

(b) It is good practice, where possible, to declare the variable in terms of an interface
type (here Set), not the type of the implementing class (here HashSet). This
promotes flexibility and hence maintainability.

(c)	 If we require a class that implements the Set interface and have no other
information, HashSet is a good general-purpose choice.

Set creation
By this point, you should know enough to be able to make sense of the following
statement for creating a set herbSet:

Set<String> herbSet = new HashSet<String>();

This statement cannot compile successfully unless we also tell Java where to find the
definitions for both the Set interface and the HashSet class, so the class in which the
statement above appears will have to import these definitions from the Java.util
package. The simplest approach is to import the whole package with the statement:

import java.util.*;

In order to explore the behaviour of sets we have written a class called SetExamples
which contains a number of class methods. Each one is a separate self-contained
demonstration of a particular feature or features of sets, which you will be asked to run
from the OUWorkspace.

–
.

Important throughout this unit, when you run a demonstration, the method involved
will be static, so remember to invoke it on the name of the class

In this unit we will lay out the code in each of these examples, and explain what is being
demonstrated. After some discussion, and sometimes a pencil and paper exercise,
there will usually be an activity, in which you will be asked to experiment with the
demonstration method concerned by executing it from the OUWorkspace.

In a few cases you are not asked to actually run the code, but the method is still included
in the SetExamples class for completeness.

Note that these methods are not well factored, because they contain a lot of repeated
code. They have been structured a bit differently from what we would expect in a real
program, in order to keep the demonstrations as clear as possible.

10 Unit 10 Collections: Sets and maps

1.2 Operations on sets

Testing the size
One of the simplest things you can do with a set is to test its size. This can be done using
the message size(). As you might expect, the size of a newly created empty set is 0.
Our first example illustrates this:

Set<String> herbSet = new HashSet<String>();

int size = herbSet.size();

System.out.println("The size of the newly created set is: " + size);

The above code would print to the Display Pane:

The size of the newly created set is: 0.

Adding elements
Before we can do anything useful with a set, it needs to have something in it. We can
add elements to a set, one at a time, with the message add(), as demonstrated by the
following code:

Set<String> herbSet = new HashSet<String>();

herbSet.add("Parsley");

herbSet.add("Sage");

herbSet.add("Rosemary");

System.out.println("Size after adding elements is: " + herbSet.size());

Note we can only add elements that are type compatible with the declared element type
of the variable herbSet.

No duplicates allowed
A distinctive behaviour of sets is that the same element cannot appear twice. If an
attempt is made to add an element already present, the state of the set is left unaltered.
The method below demonstrates this. Although add() is used five times, there are only
three distinct elements involved and consequently the final size is 3 not 5.

Set<String> herbSet = new HashSet<String>();

herbSet.add("Parsley");

herbSet.add("Sage");

herbSet.add("Rosemary");

herbSet.add("Rosemary");

herbSet.add("Rosemary");

System.out.println("Size after attempting to add duplicates is: " + herbSet.size());

The above code would print to the Display Pane:

Size after attempting to add duplicates is: 3

ACTIVITY 1

Open Unit10_Project_1 and look at the class SetExamples to satisfy yourself that the
methods sizeDemo(), addDemo() and noDuplicatesDemo() are as given above.

Open the OUWorkspace and execute the following statements one by one. Remember
the methods are static, so we are invoking them on the class:

SetExamples.sizeDemo();

SetExamples.addDemo();

SetExamples.noDuplicatesDemo();

What happens if we attempt to add an element already present in a set?

ACTIVITY 1

0

3

– 11

DISCUSSION OF

When first created, the size of the set is , as expected. After adding three distinct
elements the size is . Attempts to add one of these items a second and a third time
have no effect, since sets cannot contain duplicated elements.

1 Set a collection that allows no duplicates

Testing methods
As you have seen, the message add() can change the contents of a set. In contrast, the
message size() always leaves a set unaltered – it simply returns information about it.
For this reason, the message size() is said to belong to the group of messages defined
by the Set interface known as the testing category. There are two other simple and
immediately useful messages in the testing category: isEmpty() and contains(). The
effect of these messages is what you might expect from their names: isEmpty()
answers with true if the receiver is empty, otherwise it answers with false. The
message contains() answers true if its argument is contained in the receiver, and
false otherwise.

The following code demonstrates the effect of sending isEmpty() to an empty set:

Set<String> herbSet = new HashSet<String>();

boolean result;

result = herbSet.isEmpty();

In the above code, the variable result would be assigned the value true.

The next code example demonstrates the effect of sending isEmpty() to a non-empty
set:

Set<String> herbSet = new HashSet<String>();

boolean result;

herbSet.add("Parsley");

herbSet.add("Sage");

herbSet.add("Rosemary");

result = herbSet.isEmpty();

In the above code, the variable result would be assigned the value false.

This next code example demonstrates how to use the message contains() to
determine whether a set includes a particular element:

Set<String> herbSet = new HashSet<String>();

boolean result;

herbSet.add("Parsley");

herbSet.add("Sage");

herbSet.add("Rosemary");

result = herbSet.contains("Sage");

In the above code, the variable result would be assigned the value true.

12 Unit 10 Collections: Sets and maps

ACTIVITY 2

s
, and

;
;

;

and

Open Unit10_Project_1 then open the SetExample class in the editor. Now take a look
at the emptyDemo1() emptyDemo2() containsDemo() class methods, paying
attention to both the method comments and the code.

In the OUWorkspace execute the following statements one by one:

SetExamples.emptyDemo1()

SetExamples.emptyDemo2()

SetExamples.containsDemo("Rosemary")

SetExamples.containsDemo("Oregano");

From the descriptions we have given of the messages contains() isEmpty(), are

Remember, each time you
invoke removeDemo() a
new set of three strings is
created.

ACTIVITY 2

" is

e
e
e

the results shown in the Display Pane as expected?

DISCUSSION OF

The set is at first empty and then populated. "Rosemary" is present but "Oregano
not. So we would expect the following:

The set is empty is: true
The set is empty is: fals
The set contains Rosemary is: tru

The set contains Oregano is: fals

Removing elements
The message remove() removes an element from a set object. The message answers
with true if its argument was found and removed, and false if it was not found.

These message replies can be very useful. For example, if an element cannot be
removed because it was not present, then for some applications it might be important to
take some action such as warning the user. This is illustrated by the following code:

Set<String> herbSet = new HashSet<String>();

herbSet.add("Parsley");

herbSet.add("Sage");

herbSet.add("Rosemary");

Boolean removed = herbSet.remove("Parsley");

if (removed)

{

OUDialog.alert("Herb removed");

}

else

{

OUDialog.alert("Herb not found");

}

ACTIVITY 3

Open Unit10_Project_1 and again open the SetExamples class in the editor. Now take a
look at the class removeDemo() method, paying attention to both the method comment
and the code.

In the OUWorkspace invoke the method removeDemo() on the class SetExamples a
number of times, giving removeDemo() different string arguments each time in order to
try removing elements from herbSet that are and are not there respectively. What
behaviour results?

– 131 Set a collection that allows no duplicates

ACTIVITY 3

;

.

DISCUSSION OF

Here is one possible answer:

SetExamples.removeDemo("Sage")

This element will be removed successfully and the size of the set will be reduced by one.

SetExamples.removeDemo("Dill");

Executing this statement will result in a warning that "Dill" is not present, and the size
of the set will be unchanged

1.3 Primitive data types and collections
So far, we have focused on sets of strings, but sets whose element type is any kind of
class behave in essentially the same way. However, sets must hold objects; the element
type cannot be int or any other primitive data type. The following is not legal:

Set<int> numSet = new HashSet<int>(); //will not compile!

Does this mean that we cannot use sets (or any other classes from the Collections
Framework) to store values which represent integers (or characters, Booleans, floating-point
numbers and so on)? That would be dreadfully inconvenient. We use integers all the time,
for example, and we very much want to store them in general collections, not just in arrays.

Fortunately there is a way round the difficulty.

Wrapper classes
Luckily for every primitive type, there is a corresponding class of objects we can use to
‘wrap’ values of that type. For example, the wrapper class for int is Integer.

Given a primitive data value, all we need to do is wrap it in an object of the appropriate wrapper
class and then we can store the wrapper object in collections exactly like any other object.

You can create an instance of Integer that wraps the primitive value 7 as follows:

Integer wrappedNum = new Integer(7);

You can extract the primitive value again like this:

int unwrappedNum = wrappedNum.intValue();

This wrapping and unwrapping is fairly straightforward, but when we use numbers we
generally want to do arithmetic with them. The arithmetic cannot be carried out on the
Integer objects directly, so we have to unwrap the primitive values first, then do the
calculation, and then wrap the answer back up again. This can involved a lot of
programming overhead. However, prior to Java 1.5 there was no other option.

You will be glad to learn that from Java 1.5 onwards, the wrapping and unwrapping is
done for us automatically. This is referred to as autoboxing. Most of the time it is
transparent and we do not have to worry about the distinction between int and
Integer, so we can write things like:

Set<Integer> myNumbers = new HashSet<Integer>();
myNumbers.add(7);

and the compiler will translate them into bytecode that takes care of everything for us. It
is as though primitive values can be added directly into the collection – although really,
behind the scenes, wrapper objects are being used.

Arrays can hold either
objects or primitive data
values but this is not true
of collections from the
Java Collections
Framework.

Other wrapper classes are
Long, Float, Double,
Short, Byte, Character,
and Boolean. The
corresponding primitive
data types will be clear
from the names.

We have used int and
Integer as an example,
but Java autoboxes any
other primitive data type in
a similar way.

14

r

;
;

int

.

n r int

;
;

called unbox :

r e

SAQ 2

;

int

t r.

In fact, if we try to do arithmetic directly with Intege objects, Java 1.5 again supports
us. The following works well:

Integer num1 = 23
Integer num2 = 47
Integer num3 = num1 + num2;

It is most important to realise what is happening here though; the values are still
being unwrapped, added, then the answer is being wrapped up. It is just that we do not
have to worry about the details ourselves.

Since autoboxing was not present in Java until 1.5, you will still see a lot of code around
where the wrapping and unwrapping of primitives has been done ‘by hand’

More about autoboxing
Suppose we have a Intege and an value as follows:

int aPrimitive
Integer anObject = 100

Integer anotherObject;

Then in the following statement the autoboxing will automatically unwrap (sometimes
) the primitive value and assign it to aPrimitive

aPrimitive = anObject; // unwrap primitive

If we now assign the primitive back to an Intege variable, it will automatically b

wrapped again:

anotherObject = aPrimitive; // wrap primitive

As we have explained above, in the case of collections the key point about autoboxing is
that, even though collections cannot literally contain primitive types, autoboxing makes it
very easy for collections to contain and work with objects that wrap up values of primitive
data types.

Consider a set declared as follows:

Set<Integer> numSet = new HashSet<Integer>()

We can add some primitive values to this set as follows:

numSet.add(5);
numSet.add(6);
numSet.add(5);

The effect of evaluating these statements will be that the primitive values will be
autoboxed as Integers automatically before they are added to the set. What will the
class of each element of numSet be after the above statements have been evaluated?

ANSWER...

The class of each element of numSe will be Intege

Unit 10 Collections: Sets and maps

Exercise 1

.

/**
d

*/

{
;

}

f t.

After

r int 4 and 5.

After

r int 4 and 5.

After

r int 2, 4 and 5.

–

You should try the following as a paper and pencil exercise without using a computer

Consider the following method:

* Demonstrates the creation of a set of Integers an
* the subsequent adding and removing of elements.

public static void integerSetDemo(int anInt)

Set<Integer> numberSet = new HashSet<Integer>()
numberSet.add(anInt);
numberSet.add(1);
numberSet.add(4);
numberSet.add(5);
numberSet.remove(6);
numberSet.remove(1);

Suppose the following lines of code are executed in turn in the OUWorkspace:

SetExamples.integerSetDemo(1);
SetExamples.integerSetDemo(6);
SetExamples.integerSetDemo(2);

In each case describe the resulting state o numberSe

Solution...

SetExamples.integerSetDemo(1);

the set contains Intege objects that wrap the values

SetExamples.integerSetDemo(6);

the set contains Intege objects that wrap the values

SetExamples.integerSetDemo(2);

the set contains Intege objects that wrap the values

1 Set a collection that allows no duplicates 15

Now that you know about autoboxing, you should be able to deal with sets having any
kind of contents you like. However, so far all we have really done is put things in and take
things out (and do various tests on the contents).

To exploit the power of sets more deeply, we need the ability to work our way through a
set, operating on each element in the set as we go. For example, we might want to print
the textual representation of each element on a separate line in the Display Pane. To do
this we must iterate through the set.

16 Unit 10 Collections: Sets and maps

1.4 Iterating over a set

Recall that the header of
the foreach statement is
pronounced as follows:

‘For each Integer
eachNum in numSet.’

.

In Unit 9 h
for

h

)
s a h

;
;

;
int

)
{

;
}

The h r t
t m l

l

SAQ 3

h each
f

a h

SAQ 4

h
r h

int

a t

(a)

– here r –
r class.

Sometimes we need to iterate through a set, processing each element in a uniform way

, in the case of arrays, you saw the easiest way of doing this was the foreac
statement (also known as the enhanced statement which allows you to do the same
thing to every element of an array. The foreac statement works in exactly the same
way with sets and the other collections in the Collections Framework.

The following code, taken from the iterationDemo(method of the class
SetExample , illustrates iteration over a set using foreac statement:

Set<Integer> numSet = new HashSet<Integer>()
numSet.add(12)

numSet.add(9);
numSet.add(88)

total = 0;
for (Integer eachNum : numSet

total = total + eachNum

foreac statement block will be executed once for each Intege element in the se
numSe and each time the variable eachNu will reference that element. So after the fina
iteration the variable tota will hold the sum of all the integers in the set.

If the foreac statement above declared its local variable with the identifier
instead o eachNum, would there would be a compilation error?

ANSWER...

No. It does not matter what identifier is used for foreac statement’s local variable
However, you might want to argue that calling the variable eachNum in this case makes it
easier for the human reader to understand what is happening.

(a) Why has the foreac statement’s local variable eachNum been declared of the
Intege class, when the code prior to the foreac statement has been adding
values of the primitive type to the set?

(b) In HashSe , can we predict with certainty in what order the elements will be
iterated over?

ANSWER...

When an attempt is made to add a primitive type to any class in the Collections
Framework autoboxing is used, that is, the primitive is automatically wrapped in an
instance of its appropriate wrapper class Intege therefore all the
elements in the set are instances of the Intege

(b) No. The order is undefined and there is no way to predict it.

Something that you cannot do using a foreach loop is remove elements. Nor is it
possible to replace elements as we go.

Just as with arrays, it is possible to iterate through a set using a hand-coded for loop
instead of a foreach loop. However, for a set this is less straightforward. With an array
we can simply use an int counter to represent the numerical index of each element in
turn and increment the index each time the loop is executed.

Exercise 2

.

–

Why will this plan, which works for an array, not work for a set?

Solution...

Sets have no index and so there is simply no way to access the elements of a set using
an integer counter. Java provides a way of getting round this by providing helper
classes that implement the Iterator interface, but this is beyond the scope of this unit

1 Set a collection that allows no duplicates 17

ACTIVITY 4

The following method creates a set of strings with each element being the name of a
herb. The last line of the method then prints to the standard output (in our case the
OUWorkspace’s Display Pane) the size of the set.

public static void herbSet()
{

Set<String> herbSet = new HashSet<String>();

herbSet.add("camomile");

herbSet.add("rosemary");

herbSet.add("basil");

herbSet.add("thyme");

herbSet.add("mint");

herbSet.add("sage");

herbSet.add("lovage");

herbSet.add("parsley");

herbSet.add("chives");

herbSet.add("marjoram");

System.out.println(herbSet.size());

}

What if, instead of printing out the size of the set, we wanted to print out the contents of
the set, string by string?

Open Unit10_Project_1 and in the SetExamples class create a modified version of this
class method, called herbIterationDemo(). Within the statement block of a foreach
statement the method should print out to the Display Pane the name of each herb.
Remember to declare your method as static.

Once you have written your method and got the SetExamples class to compile, try out
your method in the OUWorkspace and observe the results in the Display Pane.

DISCUSSION OF
ACTIVITY 4

Here is our solution:

public static void herbIterationDemo(),
{

Set<String> herbSet = new HashSet<String>();

herbSet.add("camomile");

herbSet.add("rosemary");

herbSet.add("basil");

herbSet.add("thyme");

herbSet.add("mint");

herbSet.add("sage");

herbSet.add("lovage");

18 Unit 10 Collections: Sets and maps

TreeSet actually
implements the
SortedSet interface
which is a subinterface of
Set.

herbSet.add("parsley");
herbSet.add("chives");
herbSet.add("marjoram");
for (String herb : herbSet)
{

System.out.println(herb);
}

}

1.5 TreeSet – a set with order
So far, we have emphasised the properties of sets that make them helpful, such as the
dynamic sizing and the rejection of duplicates. Up until now, the lack of ordering
provided by sets has not made much difference, for what we have been doing.

However, suppose we wanted to have the herbs printed out alphabetically. It turns out
that here is another kind of set, TreeSet, which does have order. If we change one thing
in the above code, the herbs will be sorted. All we need to do is just alter the actual set
class used from HashSet to TreeSet. The variable, which is declared as an interface
type, can stay exactly the same.

ACTIVITY 5

Open Unit10_Project_1. Double-click on the icon for the class SetExamples to open the
editor. In the class SetExamples create a modified version of herbIterationDemo(),
called sortedHerbIterationDemo(), that prints out the names of the herbs in
alphabetical order.

Test your method from the OUWorkspace.

DISCUSSION OF
ACTIVITY 5

All we need do is alter

Set<String> set = new HashSet<String>();

to

Set<String> set = new TreeSet<String>();

The herbs will now automatically be in order. This begins to illustrate some of the power
of the Java Collections Framework.

If you had any problems with Activities 4 and 5, the new methods have been added to
the class SetExamples in Unit10_Project_2.

An instance of TreeSet will correctly order not just strings but other kinds of elements
with a well-defined natural order, such as integers. We can also make TreeSet work with
elements ordered according to some rule defined by us, although we shall not explore
this.

Although TreeSet and HashSet differ in that instances of one hold the elements in a
particular order and instances of the other do not, most of their behaviour is identical –
both classes implement the Set interface.

1 Set – a collection that allows no duplicates 19

This is a useful point at which to summarise some of the abstract method definitions
defined by the Set interface whose implementation by the HashSet and TreeSet
classes we have explored.

Table 1 A summary of some useful methods specified by the Set interface

Category Description

testing

) adding
e

testing

) testing ,
e

removing

e

Method definition

public int size() Returns the number of elements in the receiver

public boolean add(ElementType obj Adds the argument to the receiver, unless it is already
there. Returns true if the argument was added, fals if it
was not

public boolean isEmpty() Returns true if the set is empty, otherwise false

public boolean contains(Object obj Returns true if the argument is an element in the receiver
fals if not

public boolean remove(Object obj) If the argument is an element in the receiver it is removed
and the method returns true. If the argument is not an
element in the receiver it remains unchanged and the
method returns fals

d) e –

SAQ 5

and
–

l
,

.

Table 1 summarises some of the most useful messages that sets can respond to. Note
that the various messages are often grouped into informal categories such as adding,
removing, and testing, etc.

The metho add(is declared to have an argument type of type ElementTyp this is
simply a placeholder for the actual element type that a particular set will have been
declared to have.

In Table 1, the arguments for the methods contains() remove() are declared as
being of type Object can you think why this might be?

ANSWER...

The reason is to do with type substitution: if a method header declares a formal
argument to be of type Object, then an instance of any class can be used for the actua
argument in a corresponding message. All classes inherit from the class Object
therefore an object of any class can be used where an instance of Object is expected.

Sets, and indeed instances of any collection class can hold instances of any class,
therefore it makes sense that these arguments are declared of type Object

Next we will look at a different interface – Map.

20 Unit 10 Collections: Sets and maps

2 Map –
values

a collection with keys and

One familiar way of structuring information is the index of a book, with entries such as
the following (but usually in alphabetical or some other order):

blueberry 42
blackcurrant 76
lemon grass 11
earl grey 3, 17
cinnamon 11
rosehip 42
raspberry 76, 32
mango and ginseng 18

This extract from a book index has entries consisting of a key (the thing you look up) and
a value (what you find there). For example, 42 is the value corresponding to the key
rosehip. This way of structuring information is the motivation behind the Java collection
known as a map. In order to be able to use maps correctly, we need to clarify the idea of
‘key’ a little more precisely.

2.1 The map, the key and the value
Imagine a computer system used by a publisher to keep track of every book edition that
they publish. Such a system might be based on some kind of collection of different
instances of a class BookEdition, with one instance of BookEdition used to represent
each book edition published by the firm.

Now, it is perfectly possible, in fact common, for a single firm to publish different editions
of a single title by a single author (for example, hardback, paperback, etc.).
Consequently, merely knowing the book title and author of a book is not always enough
to uniquely identify a specific edition. Hence, for the purpose of identifying book
editions, book title and author alone would not make a sensible key. A better way of
uniquely identifying book editions is the International Standard Book Number (ISBN). For
distinguishing between book editions, ISBN numbers make good keys.

(Note though that the ISBN would be no good as a key for distinguishing your copy of
the same edition from my copy of the same edition – as they will both have the same
ISBN. So, what makes a good key depends on your purposes. It depends on exactly
what you need to distinguish.)

Thus a key is simply something that can be used to uniquely identify any object from a
given collection, in a way that meets the needs of a particular application.

What makes a good key may not be immediately obvious. For example, in the case of a
directory of telephone extension numbers for a small firm, names alone might make
perfectly good keys, because they are all unique. But in a telephone directory for a city
the name of a person alone would not be a very good key, because there are likely to be
several people with the same name. The combination of name and address would be a
better key (good enough for most practical purposes, although there may still be two
people with the same name at the same address).

Notice that although the directory should ideally provide some way to identify each
person listed uniquely, there is nothing wrong with several people all having the same

21

,

SAQ 6

(a) .

(c)

(a)

(c)

–

telephone number (for example, this could easily happen for members of a single family

flatmates, etc.). Although we want the keys to be unique, there is no reason whatsoever
why several keys cannot correspond to the same value.

For each of the following, say whether or not it makes an acceptable key. If you think it
would, suggest what value the key might be associated with.

A works number for employees in a company

(b) The name of your Open University tutor amongst the body of OU tutors.

Your Open University student identifier amongst all OU students.

ANSWER...

This would normally be a unique key. The corresponding value might be an
employment record or personnel file, etc.

(b) This choice of key might be dangerous for some courses. There are some OU tutors
with the same name. A likely value would be a tutorial group.

This is a unique key. The value might be marks for a given course, or the student
record, etc.

2 Map a collection with keys and values

l

.
key–

,
value .

Exercise 3

.

In summary, when devising any scheme for keys for objects in some group, the vita
consideration is that each key should be unique within the collection.

Having clarified the notion of a key, we can now be a bit more precise about the idea of a map

In essence, a map is a collection of value pairs. From the above general discussion of
keys, it should be clear that within a given map instance, each key must be unique. However
as noted already there is no problem if the same appears for more than one key

The next exercise looks at two examples which are candidates for being a map.

Which of the two following telephone directories could be represented directly as a map?
Give a reason for your answer

Directory A

Directory B

Name

3666

3666

3667

Telephone number

Noggin the Nog

Queen Nooka

Nogbad the Bad

Name

6001

5204

0667

0668

Telephone number

Capt Pugwash

Tom the Cabin Boy

Pirate Jake

Pirate Jake

.

directly
.

individual

a set

22

Solution...

There is no problem with Directory A. Noggin the Nog and Queen Nooka are two keys
with the same value, but this is perfectly allowable for maps

Directory B cannot be used as a map, since Pirate Jake’s name is not unique in
this table, and so names cannot act as unique keys for extension numbers

We could get round this by changing the type of the values to be stored in the map from
extension numbers into sets of extension numbers. Thus, Pirate Jake could

still have two telephone numbers while everyone else had a single number, but now
each key would have a single value, which was of numbers, even though the
majority of sets just had one number in them. This approach is illustrated in the table

Unit 10 Collections: Sets and maps

below.

Name

6001

5204

Telephone number

Capt Pugwash

Tom the Cabin Boy

Pirate Jake 0667, 0668

Having discussed the underlying ideas, we will now investigate the practical detail of
how maps are dealt with in Java.

The Map interface: dealing with collections of keys and values
For collections of key–value pairs where values need to be looked up using keys, there is
a specially designed interface called Map, and a set of implementing classes, of which
the most generally useful is HashMap.

We saw above that a simple example of a map is a telephone directory where the names
are the keys, and the telephone numbers are the values. However, the values and the
keys in a map can be any type of object, provided that each key is unique. In line with
our usual convention, we shall often use the shorthand phrase ‘a map’ to mean ‘an
instance of a class satisfying the interface Map’.

Before creating a map
When we created a set we had to specify the type of the elements that would be stored
in it. Before creating an instance of map, it is necessary to specify two things – the type
of the keys and the type of the values to be stored.

These types could easily be different from each other. For example, to keep track of
customers’ bank accounts, you might use strings containing account numbers as keys,
and instances of Account as values.

As well as declaring the type of the elements, we must choose some specific class that
implements the map interface. As already noted, a good general-purpose choice is
HashMap.

To declare an instance of HashMap whose keys are strings, and whose values are
accounts, a statement such as the following would be used.

Map<String, Account> accounts = new HashMap<String, Account>();

2 Map – a collection with keys and values 23

SAQ 7

In the above statement, why is the declared type of the variable – Map – different from the
implementing class – HashMap?

In the above statement, what is the purpose of the text in the angle brackets?

ANSWER...

As we noted with Set, it is generally good practice to use a collection interface as the
type of the variable. This promotes flexibility and maintainability (in the same spirit as
when we earlier changed a HashSet to a TreeSet while keeping everything else exactly
the same).

The text in the angle brackets allows the compiler to check that any implementing map
assigned to the variable has keys and values of the correct types.

We will now explore the basic operations on maps using a series of class methods, in
the same way as we investigated sets. All the methods can be found in the
MapExamples class.

2.2 Operations on maps

Creating a map, and checking its size
The following statement series creates an instance of HashMap. To keep things simple,
we have used strings as both keys and values. One of the basic things to do with a
map is to test its size – the number of key–value pairs it contains – using the message
size(). The following code demonstrates this.

Map<String, String> phonebook = new HashMap<String, String>();
int size = phonebook.size();

As you might expect, the size of a newly created map is zero.

Adding entries to a map
The most significant difference between set and map objects is that a set is a collection
of single objects whereas a map is a collection of key–value pairs. A key can be used to
add, retrieve or update an associated value. The messages put() and get() enable
this to be done, as we will see below.

Our first step is to add some entries to a newly created map. The message put() is
used to add a key–value pair (also known as an entry or mapping) to a map. This is
demonstrated below:

phonebook.put("Captain Pugwash", "6001");
phonebook.put("Tom the Cabin Boy", "5204");
phonebook.put("Pirate Jake", "0667");

The key of the first new entry is "Captain Pugwash" and the value is his telephone
extension number "6001". You might have wondered why we have represented the
telephone numbers as strings, not as integers. The reason is that telephone numbers
can have leading zeros, whereas integers cannot – hence our use of strings. This is the
same reason why we used strings as account numbers in Unit 6.

24 Unit 10 Collections: Sets and maps

ACTIVITY 6

(d)	 The method should then print the string "The size of the map is:" to the
Display Pane followed by the current size of the map.

Finally test your method by executing MapExamples.myDemo(); in the OUWorkspace.
The map created by the method should have five entries.

DISCUSSION OF
ACTIVITY 6

Our solution was as follows:

public static void myDemo()
{

Map<Integer, String> poetMap = new HashMap<Integer, String>();
System.out.println("The map is empty: " + poetMap.isEmpty());
poetMap.put(205646, "Dylan Thomas");
poetMap.put(217887, "Stevie Smith");
poetMap.put(327886, "Ted Hughes");
poetMap.put(433457, "Stevie Smith");
poetMap.put(578799, "Seamus Heaney");
System.out.println("The size of the map is: " + poetMap.size());

}

Open Unit10_Project_2 and double-click on the MapExamples class to open the editor.
Now take a look at the sizeDemo() and putDemo() class methods, paying attention to
both the method comments and the code.

1 Open the OUWorkspace and execute statements which try out sizeDemo() and
putDemo(). Check that the results are as expected.

2 Now add a new class method to the MapExamples class called myDemo() according
to the following specification.

(a)	 The method should create a map referenced by a variable poetMap. The keys of
this map should be declared as Integer and the values as String.

(b)	 The method should then print the string "The map is empty: " to the Display
Pane followed by true or false. Whether the map is empty or not can be
determined by sending the message isEmpty() to the map object.

(c)	 The method should then add the following entries to poetMap.

Key

"

"

Value

205646 "Dylan Thomas"

217887 "Stevie Smith

327886 "Ted Hughes"

433457 "Stevie Smith

578799 "Seamus Heaney"

)

:

" .

–
)

;

p n y
) null .

– – n
– s

–
updated

;

–
y

1 d)
m

)

;
;

;
;

– /
map.

)
) – .

.

– 25

Retrieving a value
Once some entries are in a map, the message get(can be used to retrieve a value
associated with a particular key. For example, given the set created by the method
myDemo() that you wrote for Activity 6, the statement

String poet = poetMap.get(433457);

would return the string "Stevie Smith and assign it to the variable poet

If a key is not found
The above example is straightforward but what happens if we try to retrieve a value
from a map using get(with a key that does not exist in the map? For example:

String poet = poetMap.get(111111)

In this case, as poetMa does not contain a entry with the ke 111111, the message
get(returns , which is then assigned to poet

The converse in a sense of looking for a key that is not in a map is trying to insert a
entry (a key value pair) into a map when the key already exist in the map. This does not
cause any kind of problem far from it. Instead the value corresponding to that key is

. This is demonstrated by the code below:

poetMap.put(111111, "John Cooper Clarke")
poetMap.put(111111, "William Wordsworth");

Putting two different entries into a map with the key 111111 is allowed there is no error
or exception. However, this does not result in two different entries both with the ke
111111 being added to the map. Instead the secon put(message simply
overwrites the value of the entry with the key 111111 with the new value "Willia
Wordsworth" and the value "John Cooper Clarke" then no longer exists in the map.

Removing entries from a map
The message remove(takes a key as its argument and returns the object associated
with that key, or null if the key is not present in the map. This is demonstrated by the
following code:

Map<String, String> phonebook = new HashMap<String, String>();
phonebook.put("Captain Pugwash", "6001")
phonebook.put("Tom the Cabin Boy", "5204")
phonebook.put("Pirate Jake", "0667")

phonebook.remove("Pirate Jake")

The final line of code will remove the key value pair "Pirate Jake" "0667" from the

If you try to remove an entry from a map for which no matching key is present, the code
will execute without any problem as remove(deals with missing keys in the same way
as the message get(it simply returns null

This is a good moment to return to the method myDemo() that you created earlier and get
some hands-on experience with these new map messages

2 Map a collection with keys and values

This behaviour will only be
a problem if we update an
entry by mistake and
cannot recover the original
value.

26 Unit 10 Collections: Sets and maps

ACTIVITY 7
1 	Open Unit10_Project_2 and double-click on the MapExamples class to open the

editor. Now take a look at the getDemo(), keyNotFoundDemo(),
updateEntryDemo(), removalDemo() and failedRemovalDemo() class methods,
paying attention to both the method comments and the code. Then, in the
OUWorkspace execute statements that invoke these methods on the MapExamples
class. Check that the results shown in the Display Pane are as expected.

2 	Next extend your method myDemo() in the MapExamples class by adding the
following steps at the end of the method. Use messages from the protocol of Map as
appropriate to carry out the operations.

(a)	 Your method should first print out "The value associated with the key
578799 is: " followed by the associated value.

(b)	 Your method should then print out "The value associated with the key
123456 is: " followed by the associated value.

(c)	 Your method should then add an entry with key 578799 and value
"Brian Patten".

(d)	 Your method should then print out "The value associated with the key
578799 is: " followed by the associated value.

(e)	 The method should remove any entry whose key is 433457, and print out a
message showing what value was found associated with this key.

Try out the modified method by invoking it on the MapExamples class from the
OUWorkspace.

DISCUSSION OF
ACTIVITY 7

The code we added was as follows:

System.out.println("The value associated with key 578799 is: "
+ poetMap.get(578799));

System.out.println("The value associated with key 123456 is: "
+ poetMap.get(123456));

poetMap.put(578799, "Brian Patten");
System.out.println("The value associated with key 578799 is: "

+ poetMap.get(578799));
String value = poetMap.remove(433457);
System.out.println(value);

We will finish our introduction to maps with three more messages that can be sent to
map objects. The messages isEmpty(), containsKey() and containsValue() all
make simple tests of a map, and return a Boolean value to indicate the result.

c isEmpty() (already seen in Activity 6) tests for whether a given map is empty.

c containsKey() tests whether the map has a key that is equal to its argument.

c containsValue() tests whether the map has a value equal to its argument.

These are all fairly straightforward, and some demonstration methods can be found in
the MapExamples class in Unit10_Project_2.

– 272 Map a collection with keys and values

ACTIVITY 8

1 s

a
s

2 .

g
y or e a

Map.

" or e

Map.

s

Open Unit10_Project_2 and double-click on the MapExample class to open the
editor. Now take a look at the class method containsDemo(), paying attention to
both the method comments and the code. Then, in the OUWorkspace execute
statement that invokes this method on the MapExample class. Check that the results
shown in the Display Pane are as expected.

Extend your method myDemo() further, making the following changes

The method should first print out the strin "The map contains an entry for key
217887: " followed b true fals . This information should be obtained using
message from the protocol of

Your method should then print the string "The map contains an entry whose value
is Ted Hughes: followed by true fals . The required information should be
obtained using a message from the protocol of

Try out the modified method by invoking it on the MapExample class from the
OUWorkspace.

ACTIVITY 8

;
"

;

s

DISCUSSION OF

The additional lines of code are as follows:

System.out.println("The map contains an entry for key 217887: "
+ poetMap.containsKey(217887))

System.out.println("The map contains an entry whose value is Ted Hughes:
+ poetMap.containsValue("Ted Hughes"))

If you had any problems with Activities 6, 7 and 8, the final code for myDemo() has been
added to the class MapExample in Unit10_Project_3.

2.3 Iterating over maps
As with any kind of collection, sometimes we need to work our way through all the entries
in a map, processing each entry as we go.

Earlier you saw how to iterate over sets using a foreach loop. The way a foreach loop
works with an instance of Map is just the same in principle as iterating over a set, but is
slightly different in detail. There is more than one way to iterate over a map, but we will
focus on the simplest.

The chief difference between sets and maps for the purpose of iteration is that, in the
case of a set, each element is a single object. In the case of a map, each element will be
an entry, that is, a key–value pair.

For this reason, when iterating over a map, depending on what exactly is required for the
purposes of the program, it may be necessary to extract both the key and value for each
entry. This makes maps potentially more complicated to iterate over than simple sets.
However, you will be glad to learn there is a simple way to avoid this potential
complexity.

Classes which implement the Map interface have two very useful messages keySet()
and values() in their instance protocols. The first of these returns a Set containing all
the keys of the map, and the second returns a Collection containing all the values of
the map.

28 Unit 10 Collections: Sets and maps

Note that because sets
are unordered, there is no
way of knowing in what
order each English word
will reference the elements
of dictionary keys.

In order to access each entry (key–value pair) in a map in turn, we first get the set of
keys using keySet(), then iterate over that set of keys, as demonstrated below.

Map<String, String> dictionary = new HashMap<String, String>();
dictionary.put("one", "ichi");
dictionary.put("two", "ni");
dictionary.put("three", "san");
dictionary.put("four", "shi");
Set<String> keys = dictionary.keySet();
for (String eachEnglishWord : keys)
{

System.out.println("The Japanese for " + eachEnglishWord
+ " is " + dictionary.get(eachEnglishWord));

}

The statement Set<String> keys = dictionary.keySet(); assigns a set containing
all the keys in dictionary to the variable keys. Next, the statement block controlled by
the foreach statement is evaluated four times because there are four keys in the set
referenced by keys. Each time the statement block is evaluated, the foreach variable,
eachEnglishWord, references a successive element of the set keys.

The code in the statement block uses each successive element referenced by
eachEnglishWord as a key to access the map dictionary to retrieve the associated
value (which is then appended to a string and printed out).

Although the above foreach loop is iterating over a set of keys, the effect is that of
iterating over the map as well. In this way, iterating over a map can be made as simple
as iterating over a set. If you need to iterate over a map, all you need do is obtain the set
of keys and iterate over that. The next activity will give you some hands-on experience of
this approach.

ACTIVITY 9

Open Unit10_Project_3 and double-click on the icon for the MapExamples class to open
the editor. Scroll through the class to find the class method iterationDemo(). Read the
method comment and the code and then in the OUWorkspace invoke the
iterationDemo() method on the MapExamples class. Check that the results shown in
the Display Pane are as expected.

Now write a new class method for the MapExamples class called
averageAgeIterationDemo(). In this method create a map referenced by a variable
ageMap, whose keys are strings and whose values are integers, and then add the
following entries to ageMap:

Key

33

45

45

26

40

Value

"Jill"

"James"

"Louise"

"Peter"

"Sally"

2 Map – a collection with keys and values 29

Create an integer variable totalAge whose initial value is 0. Using the message
keySet() get the set of the map’s keys. Then iterate over that set. For each key in the set,
look up the corresponding age in ageMap and add it to the total age. When the iteration is
complete, calculate the average age by dividing the total age by the size of the map (which
corresponds to the number of entries). Print the average age to the Display Pane.

DISCUSSION OF
ACTIVITY 9

One solution is as follows (comment omitted for brevity):

public static void averageAgeIterationDemo()
{

Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Jill", 33);
ageMap.put("James", 45);
ageMap.put("Louise", 45);
ageMap.put("Peter", 26);
ageMap.put("Sally", 40);
int totalAge = 0;
for (String eachName : ageMap.keySet())
{

totalAge = totalAge + ageMap.get(eachName);

}

int averageAge = totalAge/(ageMap.size());

System.out.println("The average age is: " + averageAge);

}

The code for averageAgeIterationDemo() has been added to the class MapExamples
in Unit10_Project_4.

Sending
a

key–

–

–

SAQ 8

(a)
– any

e

d

(a)
place –

keySet() to a map does not in any way disturb the keys or values in the
original map (that is, it is non-destructive operation). However, although the set of keys
is a new collection, it is important to note that the elements in the set are the actual keys
from the original map, not copies. Consequently should you remove a key from the set,
the corresponding value pair will be removed from the map. The reverse is also
true: removing a key value pair from the map will remove the key from the set.

Similarly the collection of values returned from sending the message values() to a map
are also the actual values in the map. Therefore removing a value from the collection will
result in the corresponding key value pair being removed from the map.

The message keySet() when sent to a map will collect all the map’s keys into a set.
The nature of sets will demand that only unique elements are stored in the set
duplicate keys would be lost. How can the loss of duplicate keys be prevented?

(b) Whenever you send the messag keySet() to a map, a new set is returned.
However, the keys held in this new set are not copies of the keys in the map, they are
the actual keys. If you subsequently removed a key from the set of keys what woul
happen to the key in the original map?

ANSWER...

There is no such possible danger. The keys in a map must be unique in the first
no duplicate keys are allowed.

(b) The key and its corresponding value would be removed from the original map.

30 Unit 10 Collections: Sets and maps

This is a useful point at which to summarise some of the abstract method definitions
defined by the Map interface and whose implementation by the class HashMap we have
so far explored.

2.4 Map methodsA summary of useful
The table below summarises some of the most useful messages that maps can respond
to. Note that, as for sets, the various messages are often grouped into informal
categories such as adding, removing, testing, etc.

In some ways the protocol of Map resembles that of Set, but there are vital differences.
For a start, maps have to deal with both keys and values, whereas sets just have simple
elements. Also, because Map is an indexed collection, we have a new method category,
accessing.

Table 2 Summary of some useful methods specified by the Map interface

Category Description

testing
–

adding – –

null.

null

map.

) removing –

null.

) testing y– .
s ,

e.

testing
e

testing

e

Method definition

size() Returns the number of elements in the map (i.e. the
number of key value pairs).

put(KeyType key, ValueType value) Puts a key value pair into the map. If a key value pair
already exists with the same key, then the old value is
overwritten by the new value. The method returns the
previous value for the key, if there was one, otherwise
it returns

get(Object key) accessing If the key exists in the map, then the method returns
the associated value. Otherwise is returned.

keySet() accessing Returns the set of keys contained in the map.

values() accessing Returns a collection of the values contained in the

remove(Object key Removes the key value pair associated with the
specified key (if one exists). Returns the previous
value for the key, if there was one, otherwise

isEmpty(Tests whether the map contains any ke value pairs
The method return true if the map is empty

otherwise fals

containsKey (Object key) Tests whether a given key is present. The method
returns true if the key is present, fals otherwise.

containsValue (Object value); Tests whether a given value is present for one or more
keys. The method returns true if the value is present,
fals otherwise.

The method put() is declared to have two arguments, one of type KeyType and one of
type ValueType – these type names are simply placeholders for the actual key and
value type names given between angled brackets when a map is declared and created.

SAQ 9

(a)

.

(a)
key– .

e

Exercise 4

(a))

(b)

(c)

(d))
’

(a)

(c)

) does.

–

What is the main difference between maps and sets?

(b) A collection is needed in an Open University system to store student identifiers with
the current total of OU credits each student has studied. Would a map be an
appropriate collection interface for this task? Give a reason for your answer

ANSWER...

The elements of a set are single objects whereas the elements of a map are
value pairs

(b) Student identifiers are unique and so make good keys. Total credits make legitimat

values. So a map would be a good collection interface for this task.

Which of the following statements are true and which are false? If you think a statement is
false, give a reason.

The message put(always enters a new entry in a map.

Each entry in a map has a key and one or more values.

Duplicate keys are allowed in a map.

The message get(returns the value of some entry within a map which has a key
that matches the message s argument.

Solution...

False. It may update an exiting entry.

(b) False. An entry has only one value.

False. Keys are unique in a map.

(d) True. This is exactly what get(

2 Map a collection with keys and values 31

32 Unit 10 Collections: Sets and maps

3 Framework
Overview of the Collections

Now that you have investigated some of the collection classes that are available in Java
it is time to step back a little and look at the general structure of the Collections
Framework and how everything fits together.

So far in this unit you have investigated three collection classes: HashSet, TreeSet and
HashMap. In fact, there are many different collection classes available in Java. Indeed,
there are so many that it would take a very long time to investigate them all.

Fortunately, there is a wonderful shortcut in Java that cuts down hugely on what you
need to learn about collection classes, a shortcut which you have already come across.
The key to this is to focus, where possible, not on collection classes at all, but on
collection interfaces. There are only a relatively small number of different collection
interfaces, and it is relatively easy to learn the basics of each. Once you have done this,
you can use collections most of the time without having to worry too much about the
details of various collection classes that implement the interfaces. You already know
much about two of the most important collection interfaces, Set and Map.

3.1 The collection interfaces
The Collections Framework specifies a set of collection interfaces (those shown in
Figure 3), recommends some constructors for the classes that implement them and
provides some utility classes. These, together with collection classes meeting these
specifications are said to constitute the Collections Framework.

Collection

Set List Queue

SortedSet

Map

SortedMap

Figure 3 The principal collection interfaces

Each box in the above diagram represents one collection interface. As you may recall
from Unit 6, an interface is essentially a list of methods without any actual
implementation, in effect they are abstract methods. For any class which undertakes to
implement an interface, the list is like a specification, listing methods that need to be
implemented or inherited by that class. You have already seen some of the methods in
the interfaces for sets and maps itemised in Table 1 and Table 2 earlier. An interface
does not, and cannot, define any specific behaviour to go with any of the methods it
lists. Nevertheless, by choosing appropriate method names and by appropriate
accompanying documentation, a programmer who writes an interface can indicate what
general kinds of action are expected from the implementation.

3 Overview of the Collections Framework 33

t
Set t is a

of Set t
Set l

ones – t
, fi) and fi)

,
p Map.

t Set.

fi) and f

One of the interesting things about Figure 3 is that it is a tree diagram, that is, some
interfaces are shown as the children of other interfaces. For example, the SortedSe
interface is shown as a child of the interface. We say that SortedSe
subinterface . Simply by the fact of this relationship, we know that SortedSe
automatically inherits every abstract method specified in , and has other additiona

as you will discover in Activity 10, the SortedSe interface defines two rather
useful abstract methods rst(last(). The method rst(returns the first
element in a sorted set, while last() returns the last element in a sorted set. Similarly

as you can see from Figure 3, SortedMa is a subinterface of

SAQ 10

Name a method in SortedSe that is not in

ANSWER...

Two good answers are rst(last(). Other answers are possible as you will see i
you inspect the Java documentation.

The Collection interface is a superinterface of all of the collection interfaces dealt
with in this unit (except for the collections in the Map interface family). All of the abstract
methods in Collection are automatically part of the interfaces Set, List, Queue, etc.
The Collection interface specifies methods such as add(), size() and isEmpty()
which are common to very many kinds of collection. Table 3 summarises some of the
principal abstract methods defined in the Collection interface.

Table 3 Principal methods specified by the Collection interface

Method Category Description

s
, e

e

) removing
s

e

removing

)

)

e

e

add(ElementType obj) adding Adds the argument to the collection. Return
true if the operation was successful fals
otherwise.

addAll(Collection <ElementType> aCol) adding Adds all of the elements in the argument to the
receiver. Returns true if the operation was
successful, fals otherwise.

remove(Object obj Removes one occurrence of the argument from
the collection. Return true if the operation was
successful, fals otherwise.

clear() Removes all elements from the collection (if there
were any).

size(testing Returns the number of elements in the collection.

contains(Object obj testing Tests whether the argument is present in the
collection. Returns true if the argument is an
element in the collection, fals otherwise.

isEmpty() testing Tests whether the collection is empty. Returns
true if the set is empty, fals otherwise.

Java does not contain any concrete classes designed specifically to implement the
Collection interface. However, there are many concrete classes that implement
subinterfaces of Collection such as Set and SortedSet, and all of these concrete
classes necessarily implement the protocol of Collection, simply as a result of
implementing their respective subinterfaces.

34 Unit 10 Collections: Sets and maps

SAQ 11

s
p and p Map Map a

s

)

.

Map

Set Map

), ,) Se Map .

Set), .

Map),),), and
.

and

and e

Set, and e are
f .

Do all of the classes in the Collections Framework implement the Collection interface?

ANSWER...

Not all of the collection classes implement the Collection interface. Classes such a

HashMa TreeMa implement the interface. The interface is not
subinterface of the Collection interface, as can be seen in Figure 3. The separatenes
of keys and values in any map keeps maps slightly apart from the other collections. For
example, the message add(, which is part of the Collection interface but not in the
protocol of Maps would need to be dealt with rather differently in the case of a map

Despite this, we say that maps are part of the Collections Framework, since the
framework was designed to cover not just the Collection interface but also the
interface.

SAQ 12

Name any three methods in the interface and any three methods in the
interface. At least two should be common to both interfaces.

ANSWER...

Many correct answers are possible.

isEmpty(size() clear(), and remove(appear in both the t and interfaces

The protocol for includes add(contains() and many others

The protocol for includes get(put(containsKey(containsValue()
many others

SAQ 13

We have not yet said anything about the interfaces List Queue, but you can be sure
that any abstract methods declared in Collection must be inherited by the interfaces
Set, List Queu . Why can we be sure of this?

ANSWER...

We can be sure of this because, as Figure 3 shows, List Queu

subinterfaces o Collection

3.2 The collection classes
The Collections Framework is very good news for programmers: once you have learnt
the basics of a small number of collection interfaces, you can do much of what you need
to do with collections without having to learn all the details of every class. Although you
do not need to know very much about most of the concrete collection classes, or
memorise all of their names, it is useful to glance at a diagram of some of the most
important ones (Figure 4).

3 Overview of the Collections Framework 35

AbstractMapAbstractCollection

AbstractList

AbstractSequentialList

LinkedList ArrayList

HashSet

HashMapAbstractSet

TreeSet

TreeMap

Figure 4 Some of the principal collection classes

The five shaded classes in Figure 4 are all abstract. The abstract collection classes will
never themselves have instances, but they are an important way of factoring their
subclass’s classes to avoid present and future duplication.

When a class, for example HashSet or HashMap, declares that it will implement a given
interface (Set and Map respectively), then that class must define (or inherit) methods
with method headers to match each method header in the interface. An interface may
be seen as a way of making sure that several classes all understand and implement a
shared protocol. For example, HashSet and TreeSet both implement the Set protocol.
Each implementing class may respond slightly differently to given messages, and in
some cases may add additional behaviour. For example, you saw in Activity 5 how
changing the object referenced by a variable declared as the interface type Set from an
instance of HashSet to an instance of TreeSet gave us a set that was automatically
sorted.

ACTIVITY 10

Open Unit10_Project_3 and double-click on the SetExamples class to open the editor.
The version of the SetExamples class in this project contains the code for the method
sortedHerbIterationDemo() we asked you to write in Activity 5. Write a modified
version of this method called firstAndLast(). In this version, herbSet, the variable to
reference an instance of TreeSet, should be declared to be of type SortedSet. At the
end of your method you should print out the first and last entries of the sorted set by using
the messages first() and last().

Would your program have compiled if the variable herbSet, had remained declared as
being of type Set? Try this. Give a reason for your answer.

.

{
;

;
;

;
;

;
;
)

{

}
;

;
}

t Set to t

fi) and t. As t
t t

t

fi) and
t t

t Set, as fi) and
Set

fi) s in
Unit10_Project_4.

36

DISCUSSION OF
ACTIVITY 10

Here is one way to code this method

public static void firstAndLast()

SortedSet<String> herbSet = new TreeSet<String>()
herbSet.add("camomile")

herbSet.add("rosemary")

herbSet.add("basil");
herbSet.add("thyme");
herbSet.add("mint");
herbSet.add("sage")

herbSet.add("lovage")

herbSet.add("parsley");
herbSet.add("chives")

herbSet.add("marjoram")

for (String herb : herbSet

System.out.println(herb);

System.out.println("First herb is " + herbSet.first())
System.out.println("last herb is " + herbSet.last())

Just changing the type of the herbSe variable from SortedSe , enabled you to
send the messages rst(last() to the set referenced by herbSe herbSe

references an instance of TreeSe it should be clear to you that the TreeSe class must
implement the SortedSe interface.

Even though the TreeSet class implements the rst(last() methods and
herbSe references an instance of TreeSe , the method would not compile if the
variable herbSe was declared to be of type rst(last() are not in the
protocol specified by the interface.

The code for rstAndLast(has been added to the class SetExample

Unit 10 Collections: Sets and maps

Arrays are not part of the Collections Framework
Arrays pre-date the Collections Framework and do not implement any of its interfaces,
and consequently are not considered to be part of the Collections Framework.

This historical accident explains much that would otherwise be mysterious about
collections. For example, this explains (in part) why the notation for declaring arrays
(square brackets after the component type) is so very different to that of sets and maps
(angle brackets around the element type).

The history also affects terminology. Generally, the term ‘collection class’ – even without
initial capitals – will indicate a class which implements one of the interfaces from the
Collections Framework. Of course, an array is a collection in the normal everyday sense,
but treating arrays separately from the Collections Framework makes possible general
statements such as ‘All collection classes implement either the Collection or the Map
interface’ without the need to add ‘except for arrays’ every time.

4 A dating agency 37

4 A dating agency

In this section we are going to use sets and maps to partially implement the code for a
dating agency.

A dating or personal introduction agency usually asks its clients for their interests and
then tries to pair each client with someone of similar interests. In our agency, to keep
things easy, clients will just be asked to name their interests. (A real-life agency would
also ask for interests to be put in priority order but this is a complication we shall leave
out.) We shall also keep things simple by considering only two clients, which is all we
need to explain the principles.

A set is a suitable collection for storing a person’s interests because we just want to
record each of their interests once; there should be no duplicate entries.

For our purposes, interests will be represented as strings and there will be no restriction
on the number of interests that may be entered for a person. We shall input the interests
via dialogue boxes, adding them to the corresponding set as we go.

Our main goal is to be able to enter the interests for two clients and then determine what
interests they have in common. Here is a concrete example.

Suppose Fred has interests represented by a set with the following four elements:

"TV" "Films" "Eating" "Walking"

and Wilma has interests represented by a set with the five elements:

"Golf" "Swimming" "Eating" "TV" "Cats"

The common interests may then be represented by a set containing the two elements:

"Eating" "TV"

The set containing just the elements that two other sets have in common – the
overlapping elements – is usually called the intersection of the sets. The intersection of
the sets above is shown diagrammatically in Figure 5. (We have deliberately shuffled the
elements a bit to emphasise that the order does not matter.)

{walking{

{films{

{golf{
{cats{

{swimming{

{TV{

{eating{

Figure 5 The intersection of two sets

Before we implement our simple dating agency we need to take a look at some bulk
operations, which let us operate not on individual elements but on a set as a whole.

38 Unit 10 Collections: Sets and maps

4.1 Bulk operations on sets
The interface Set defines several useful bulk operations, that is, operations that involve
every element in one or more sets. Here are some of the most useful messages that can
be sent to instances of classes that implement the Set interface.

c set1.containsAll(set2);
Answers true if set1 contains all the elements in set2.

c set1.addAll(set2);
Alters set1 by adding all the elements in set2.

c set1.retainAll(set2);
Alters set1 to contain only those elements it has in common with set2.

c set1.removeAll(set2);
Alters set1 to remove those elements it has in common with set2.

Note the last three messages are destructive on the set to which they are sent, that is to
say, they may alter its contents. To apply them non-destructively (that is, without
altering the contents of the original sets) we must copy the original set and work with the
copy. Fortunately there is a simple way to obtain a copy. We can copy a set using the
new operator in conjunction with a constructor with the signature HashSet(Collection)
with the set we wish to copy as the argument. This constructor populates the newly­
created set with exactly the same elements as its argument.

Given two existing sets, referenced by the variables set1 and set2, the idioms shown
below are the recommended way to use the bulk operations non-destructively.

The result of the code below is called the union of set1 and set2.

Set<Type> union = new HashSet<Type>(set1);
union.addAll(set2);

The result of the code below is called the intersection of set1 and set2.

Set<Type> intersection = new HashSet<Type>(set1);
intersection.retainAll(set2);

The result of the code below is called the difference of set1 and set2.

Set<Type> difference = new HashSet<Type>(set1);
difference.removeAll(set2);

We have already seen a diagram of the intersection of two sets in Figure 5. Figures 6(a)
and (b) illustrate the union and the difference of two sets respectively.

{walking{

{films{

{golf{
{cats{

{swimming{

{TV{

{eating{

{walking{

{films{

{golf{
{cats{

{swimming{

{TV{

{eating{

(a) (b)

Figure 6 (a) The union of two sets (b) The difference of two sets

4 A dating agency 39

ACTIVITY 11

Open Unit10_Project_4 and double-click on the icon for the SetExamples class to open the editor.
Write a new class method of SetExamples called destructiveSetIntersectionDemo().

The method should:

1 Create two empty sets of strings referenced by the variables set1 and set2.

2 Using appropriate messages, initialise set1 so that it contains the elements "a", "b",
"c", "d" and initialise set2 so that it contains "f", "c", "g", "a".

3 Alter the contents of set1 to the intersection of the two sets (that is, a set containing
only the elements the two sets have in common).

4 Print out the contents of set1.

Test your method in the OUWorkspace.

DISCUSSION OF
ACTIVITY 11

One possible solution is as follows:

public static void destructiveSetIntersectionDemo()
{

Set<String> set1 = new HashSet<String>();

Set<String> set2 = new HashSet<String>();

set1.add("a");

set1.add("b");

set1.add("c");

set1.add("d");

set2.add("f");

set2.add("c");

set2.add("g");

set2.add("a");

set1.retainAll(set2);

System.out.println("The intersection is: ");

for (String element : set1)

{

System.out.println(element);

}

}

ACTIVITY 12

Again, using Unit10_Project_4, write a new class method of SetExamples called
safeSetUnionDemo(). The method should:

1 	Create two empty sets of strings referenced by the variables set1 and set2.

2 	Using appropriate messages, initialise set1 so that it contains the elements "a", "b",
"c", "d" and initialise set2 so that it contains "f", "c", "g", "a".

3 	Create a set of strings set3 which is a copy of set1 by using the constructor with the
signature HashSet(Collection) with set1 as argument.

4 	Alter the contents of set3 so that it contains the union of set3 and set2 (that is, a set
containing the elements from both set3 and set2), leaving the original set1
unaltered.

5 	Print out the contents of set3 to the Display Pane one line at a time.

Test your method in the OUWorkspace.

40 Unit 10 Collections: Sets and maps

DISCUSSION OF
ACTIVITY 12

One possible solution is as follows:

public static void safeSetUnionDemo()
{

Set<String> set1 = new HashSet<String>();

Set<String> set2 = new HashSet<String>();

set1.add("a");

set1.add("b");

set1.add("c");

set1.add("d");

set2.add("f");

set2.add("c");

set2.add("g");

set2.add("a");

Set<String> set3 = new HashSet<String>(set1);

set3.addAll(set2);

System.out.println("The union is:");

for (String element : set3)

{

System.out.println(element);

}

}

The class methods destructiveSetIntersectionDemo() and safeSetUnionDemo()
have been added to the SetExamples class in Unit10_Project_5.

In the next activity you will start to develop a new class called DatingAgency.

ACTIVITY 13

Open Unit10_Project_5, then click on the New Class button which can be found to the left
of the BlueJ window. When prompted for a class name enter DatingAgency (no spaces)
and then click Ok. An icon for the DatingAgency class will appear in the main BlueJ
window. Double-click on this icon; an editor window will now open for you to start writing
the code for this new class.

You will first need to write two import statements at the top of the file:

import java.util.*;
import ou.*;

The first import statement is needed for the Collections Framework and the second for
the package containing the OUDialog class.

As you will notice, BlueJ has automatically inserted a default constructor for objects of
this class. As no object of this type will ever be created, this constructor will never be
called, so if you like you may delete it (as we have done in the solution).

Next, we begin to address the problem of finding the common interests of two dating
agency clients by developing a class method for DatingAgency which allows a client’s
interests to be entered from the keyboard and stored in an instance of HashSet. The
method you must write should be based on the following incomplete code.

4 A dating agency 41

/**
* Creates a set referenced by the variable interestsSet and then
* repeatedly displays a dialog box (until Cancel is pressed) in
* order to gather a client's interests and add them to interestsSet.
* Finally the method returns interestsSet
*/
public static Set<String> gatherInterests(String client)
{

// Replace these comments with the code to create a
// new empty instance of HashSet<String> and assign it to
// a variable called interestsSet declared as type Set<String>

String dialogString = "Please input an interest for client "
+ client + ". Press Cancel to end.";

String input = OUDialog.request(dialogString);
while (input != null)
{

// Replace these comments with the code to add

// input to the set interestsSet

input = OUDialog.request(dialogString);

}

return interestsSet;

}

Once you have got your class to compile, test your method gatherInterests() in the
OUWorkspace by invoking it on the DatingAgency class and observe the results in the
Display Pane.

DISCUSSION OF
ACTIVITY 13

Here is one possible solution (the comments have been omitted for brevity):

import java.util.*;

import ou. *;

public class DatingAgency

{

public static Set<String> gatherInterests(String client)

{

Set<String> interestsSet = new HashSet<String>();
String dialogString = "Please input an interest for client "

+ client + ". Press Cancel to end.";
String input = OUDialog.request(dialogString);
while (input != null)
{

interestsSet.add(input);
input = OUDialog.request(dialogString);

}

return interestsSet;

}

}

The code for the class DatingAgency as developed so far has been added to
Unit10_Project_6.

42 Unit 10 Collections: Sets and maps

ACTIVITY 14

Open Unit10_Project_6; our next step is to create a second class method for the class
DatingAgency with the following header:

public static void run(String clientA, String clientB);

This method should invoke the class method gatherInterests() on the DatingAgency
class twice, first for clientA and then for clientB, and store the results in local variables
of type Set<String> called clientAInterests and clientBInterests.

Your method should then iterate through both sets, printing out the interests to the
Display Pane. Before printing each set, your code should first output a line which reads
"Interests for client ", followed by the name of the client.

Once you have got your method to compile, test it by invoking run() on the
DatingAgency class in the OUWorkspace.

DISCUSSION OF
ACTIVITY 14

Here is one possible solution:

/**

* Prints to the Display Pane the interests of a pair of clients

* whose names are represented by the arguments.

*/

public static void run(String clientA, String clientB)
{

Set<String> clientAInterests = DatingAgency.gatherInterests(clientA);
Set<String> clientBInterests = DatingAgency.gatherInterests(clientB);
System.out.println("Interests for client " + clientA);
for (String interest : clientAInterests)
{

System.out.println(interest);

}

System.out.println("Interests for client " + clientB);

for (String interest : clientBInterests)

{

System.out.println(interest);

}

}

The class method run() has been added to the DatingAgency class in
Unit10_Project_7.

ACTIVITY 15

Now we are ready to find the common interests of two clients. This will be represented by
the intersection of the two sets of client interests that have been input.

Open Unit10_Project_7 and modify the method run() so that, once it has printed out the
interests of both clients, it creates a new set referenced by the variable declared as
Set<String> commonInterests, which is a copy of the set referenced by
clientAInterests. The set referenced by commonInterests should then be altered to
form the intersection with the set referenced by clientBInterests.

Then add code to print "The common interests are ", followed by all the common interests.

Compile your code and test it by invoking run() on the DatingAgency class in the
OUWorkspace.

Index 43

*/

{

{

}

{

}

{

}
}

Unit10_Project_8.

DISCUSSION OF
ACTIVITY 15

Here is one possible solution:

/**
* Finds and prints the common interests of a pair of clients.

public static void run(String clientA, String clientB)

Set<String> clientAInterests = DatingAgency.gatherInterests(clientA);
Set<String> clientBInterests = DatingAgency.gatherInterests(clientB);
System.out.println("Interests for client " + clientA);
for (String interest : clientAInterests)

System.out.println(interest);

System.out.println("Interests for client " + clientB);
for (String interest : clientBInterests)

System.out.println(interest);

Set<String> commonInterests = new HashSet<String>(clientAInterests);
commonInterests.retainAll(clientBInterests);
System.out.println("The common interests are: ");
for (String interest : commonInterests)

System.out.println(interest);

The updated method run() has been added to the DatingAgency class in

4.2
agency
A map implementation of the dating

In the final series of activities we will look at a map implementation of the dating agency.
Rather than keeping each client’s interests in a separate collection, the entire dataset will
be housed in a single collection of type Map<String, Set<String>>. This may look a
bit intimidating but don’t panic! It simply means that the keys are strings and the
corresponding values sets of strings. The strings which are the keys represent the client
names and the associated sets of strings represent the interests of each client,
something like the following.

44 Unit 10 Collections: Sets and maps

{Jim{

{Gilly{

{Aaron{

Map<String et<String>>

{gardening{ {music{ {dance{

{sailing{ {dance{ {reading{

{music{ {football{

key value

value

value

key

key

, S

Figure 7 A map whose keys are strings and values are sets of strings

ACTIVITY 16

The method below, which can be found in the DatingAgency2 class in Unit10_Project_8,
creates a map which records the names and interests of three clients:

/**

* Stores and retrieves data about client names and interests.

*/

public static void datingDemo()

{

Map<String, Set<String>> clientMap = new HashMap<String, Set<String>>();

Set<String> interests = new HashSet<String>();

interests.add("food");

interests.add("wine");

interests.add("tandems");

clientMap.put("Hal", interests);

interests = new HashSet<String>();

interests.add("food");

interests.add("walking");

interests.add("welding");

clientMap.put("Gemma", interests);

interests = new HashSet<String>();

interests.add("food");

interests.add("cinema");

interests.add("wine");

clientMap.put("Caroline", interests);

interests = clientMap.get("Xander");

System.out.println("Xanders interests are " + interests);

if ((clientMap.remove("Xander")) == null)

{

OUDialog.alert("Xander not found");

}

for (String eachClient : clientMap.keySet())

{

interests = clientMap.get(eachClient);
System.out.println(eachClient + " is interested in: " + interests);

}
}

4 A dating agency 45

Note that in the final line of code we simply concatenated the interests set with the rest
of the string we wish to output to the Display Pane. The println() method will
automatically send a toString() message to interests to gain its textual
representation.

An alternative approach, if we wanted some control on how the individual elements of the
interests set were printed (perhaps one per line, prefixed by an arrow), would have
been to iterate through the set, printing each element. To do this we would have needed
nested foreach statements; an outer one iterating through the map and an inner one
iterating through each set. For example:

for (String eachClient : clientMap.keySet())
{

interests = clientMap.get(eachClient);

System.out.println(eachClient + " is interested in: ");

for (String eachInterest : interests)

{

System.out.println("—> " + eachInterest);

}

}

However, as we did not need such formatting, we simply relied on println() to output
the default textual representation for us and so avoided this complication.

Open Unit10_Project_8 then try out datingDemo() by invoking it on DatingAgency2 in
the OUWorkspace.

Examine the code of the method and answer the following questions.

1 	Why was it necessary to repeat the following statement:

interests = new HashSet<String>();

after putting an entry into the map?

2 	The Set interface contains a method clear() which removes all the elements from a
set. Why can we not just use clear(), instead of creating a new HashMap instance
each time?

DISCUSSION OF
ACTIVITY 16
1 	Because otherwise there would only ever be one set and each time we added an

entry into the map it would be this same set that got used.

At the end, all the clients would be associated with exactly the same HashSet
object, and all the interests that had been added would have been inserted into this
one set. The result would be that every client would appear to have an identical set
of interests, containing the pooled interests of all the clients.

2 	This would have a similar effect to the one described in item 1, except that the one
and only set involved would have been cleared for each client. Consequently at the
end all that would be retained would be the interests of the final client, and the set
containing these would be entered against the name of every single client.

46 Unit 10 Collections: Sets and maps

ACTIVITY 17

As you have already seen, the simplest way of iterating over a map is to obtain a set of
the keys and then iterate over those, accessing the corresponding values as we go.

The method matchesDemo() shown below, is an extension of the datingDemo() class
method you encountered in the DatingAgency2 class in Activity 16. It includes an
additional step to check which of Hal’s interests match those of the other clients.

First the set of Hal’s interests are retrieved from clientMap and assigned to the variable
halsInterests.

Then the key set of clientMap is obtained and iterated over using a foreach statement.
Each client name in the key set is then used to access the corresponding set of interests.
The bulk operation retainAll() is used to find the interests the client and Hal have in
common and these common interests are then printed out to the Display Pane.

/**

* Finds and outputs matching interests.

*/

public static void matchesDemo()
{

Map<String, Set<String>> clientMap = new HashMap<String, Set<String>>();
Set<String> interests = new HashSet<String>();
interests.add("food");
interests.add("wine");
interests.add("tandems");
clientMap.put("Hal", interests);

interests = new HashSet<String>();

interests.add("food");

interests.add("walking");

interests.add("welding");

clientMap.put("Gemma", interests);

interests = new HashSet<String>();

interests.add("food");

interests.add("cinema");

interests.add("wine");

clientMap.put("Caroline", interests);

Set<String> halsInterests = clientMap.get("Hal");

String outputString;

Set<String> eachClientInterests;

Set<String> intersection;

for (String eachClient : clientMap.keySet())

{

eachClientInterests = clientMap.get(eachClient);

intersection = new HashSet<String>(halsInterests);

intersection.retainAll(eachClientInterests);

outputString = "Hal and " + eachClient

+ " have common interests: "

+ intersection;

System.out.println(outputString);

}

}

4 A dating agency 47

With Unit10_Project_8 open invoke the matchesDemo() method on the DatingAgency2
class in the OUWorkspace and convince yourself that it does indeed produce the
common interests of Hal with each person in the map. In the body of the foreach loop,
why is intersection reinitialised each time with a fresh set containing Hal’s interests?

DISCUSSION OF
ACTIVITY 17

The set containing Hal’s interests is recreated as a fresh set with the same contents
before calculating common interests, because the set message retainAll() used to
calculate set intersection, is destructive – it changes the contents of the receiver. This
would disturb subsequent calculations of common interests.

The method matchesDemo() reports that Hal and Hal have common interests: "wine",
"food" and "tandems". This is rather silly because Hal should be compared only with
everyone other than himself. The next activity rectifies this.

ACTIVITY 18

Again using Unit10_Project_8 and the DatingAgency2 class, create a modified version
of the method matchesDemo() called matchesDemo2() this method should ensure that
Hal does not have his interests compared with himself.

DISCUSSION OF
ACTIVITY 18

We want the Display Pane to display the common interests only when eachClient is not
equal to "Hal". There are various ways of doing this. One approach is to iterate over a
map from which Hal’s entry has been removed. Another is to use an if statement in the
iteration.

If we use the first approach the relevant part of the code would look as follows:

Map<String, Set<String>> mapWithoutHal =
new HashMap<String, Set<String>>(clientMap);

mapWithoutHal.remove("Hal");
for (String eachClient : mapWithoutHal.keySet())
{

eachClientInterests = clientMap.get(eachClient);
intersection = new HashSet<String>(halsInterests);
intersection.retainAll(eachClientInterests);
outputString = "Hal and " + eachClient + " have common interests: "

+ intersection;

System.out.println(outputString);

}

The code below shows how we would implement the second idea:

for (String eachClient : clientMap.keySet())
{

if (eachClient != "Hal")
{

eachClientInterests = clientMap.get(eachClient);
intersection = new HashSet<String>(halsInterests);
intersection.retainAll(eachClientInterests);
outputString = "Hal and " + eachClient + " have common interests: "

+ intersection;
System.out.println(outputString);

}
}

You can find for the complete code for each of these solutions in the DatingAgency2
class that can be found in Unit10_Project_9. The two methods are named
matchesDemo2() and matchesDemo3() respectively.

48 Unit 10 Collections: Sets and maps

Summary 49

5 Summary

After studying this unit, you should understand the following ideas.

c Different kinds of collection can be distinguished according to the following
properties.

c Fixed size versus dynamically resizable.

c Ordered versus unordered.

c Homogeneous versus non-homogeneous.

c Indexed versus unindexed.

c Whether duplicates are allowed or not.

c From Java 1.5 onwards all collections in Java are homogeneous, and the element
type generally needs to be declared.

c Sets are dynamically sized. No element in a set can be duplicated. A set is not
indexed but some kinds of set are ordered.

c It is best practice to declare variables as being of an interface type, such as Set or
Map, rather than of some implementation class, such as HashSet or HashMap.

c HashSet and TreeSet are classes which are both implementations of the Set
interface. HashSet implements the Set interface. TreeSet implements the
SortedSet interface. Therefore, as SortedSet is a subinterface of Set, then
TreeSet must also implement the Set interface.

c Instances of TreeSet are ordered; Instances of HashSet are not.

c Collections cannot contain primitive data values in the literal sense. However, from
Java 1.5 onwards, values of primitive data types are automatically wrapped in their
corresponding wrapper classes when added to a collection and unwrapped when
extracted from a collection. This process is known as autoboxing. Prior to 1.5,
programmers had to code the boxing and unboxing operations explicitly.

c The foreach loop (also known as the enhanced for loop) can be used to iterate
over any collection.

c The protocol defined by the Set interface includes size(), isEmpty(),
contains(), add() and remove(). These operations can be divided into the
informal categories of testing, adding and removing.

c Maps have key–value pairs, also known as entries, as their elements. The same key
is not allowed more than once in a map, although the same value may occur any
number of times.

c Maps are dynamically sized, indexed by keys and do not allow duplicate keys.

c The HashMap class is an implementation of the Map interface.

c A key is something that can be used to identify uniquely an object within a collection.

c The protocol defined by the Map interface includes size(), isEmpty(),
containsKey(), containsValue(), put(), get() and remove().

c If the same key is put into a map twice with different values, the second value will
overwrite the first.

c If get() or remove() are used with a key which is not present in the map, null is
returned.

c The Collections Framework unifies the collection classes. It contains two root
interfaces, Collection and Map. Set is a subinterface of Collection.

c Arrays are not part of the Collections Framework, as they do not implement either
the Collection or Map interfaces.

c A simple way to iterate over a map is to extract its key set and iterate over the key set
using each key to access the associated value.

c The bulk operation messages retainAll(), addAll() and removeAll()
correspond to the set operations known as intersection, union and set difference.
These messages are destructive – they alter the receiver – so it is normally best to
work with a copy.

c The message containsAll() is non-destructive.

c A HashSet can be copied by using the constructor HashSet(aCollection) in
conjunction with the operator new.

Unit 10 Collections: Sets and maps 50

Summary 51

SLEARNING OUTCOME

After studying this unit you should be able to:

c understand why collections are essential in any programming language;

c classify collections on the basis of whether they are fixed-size or dynamically
resizable, ordered or unordered, homogeneous or non-homogeneous, indexed or
not, and whether duplicates are allowed;

c understand that all collections in Java are homogeneous and that when declaring
variables or creating collection objects we must specify the element type of the
collection between angle brackets <>;

c understand that a set is a variable-size collection which allows no duplicates;

c understand that is good practice to declare variables as being of an interface type
rather than an implementation class type, because this aids maintainability;

c send messages to set objects corresponding to the abstract methods defined in the
Set and SortedSet interfaces;

c use the set implementation classes HashSet and TreeSet and know that the main
difference is that instances of TreeSet are ordered;

c understand that collections can only contain objects but that we can use collections
with primitive data types because Java will automatically box a primitive data value
in a wrapper object which can be then be stored in a collection, a process called
autoboxing;

c iterate through sets using foreach loops;

c explain that a map is a variable-sized collection whose elements are entries
consisting of a key–value pair;

c understand that a map cannot have duplicate keys – all keys in a map must be
unique;

c create instances of the class HashMap which implements the Map interface;

c send messages to HashMap objects corresponding to the abstract methods defined
in the Map interface;

c iterate through a map, by obtaining the key set for the map and iterating through the
key set with a foreach loop, using each key to access the corresponding value in
the map;

c have an overview of the Collections Framework;

c understand that arrays are rather different from other types of collection in Java.
They involve a different syntax and they can hold primitive data values without using
wrapper objects. Arrays do not form part of the Collections Framework because
they do not implement either Set or Map;

c use bulk operation messages to find the intersection, union, and difference of sets;

c create copies of sets in order to use destructive bulk operation messages without
affecting the original sets;

c work with simple examples of collections whose elements are themselves
collections.

Glossary

52 Unit 10 Collections: Sets and maps

n
objects –

d

.

–

– which arrays.

.
– a

n

a) and
()

entry key– – key

a
) and

)

(

(e.g. t and p

s

not

autoboxing Collections that are part of the Collections Framework can only contai
not primitives types. Before Java 1.5, this meant that the programmer had to

manually wrap each primitive value in an instance of its corresponding wrapper class
before it could be added to a collection. Conversely, on removal from a collection, each
primitive value had to be removed from its wrapper before use. This process was
laborious, tedious and error-prone, and is still widespread in older code. However, since
the advent of Java 1.5, primitive values may now in effect be added to and accesse
from collection classes, since the compiler now ensures that the above process takes
place automatically. This automatic process of wrapping and unwrapping primitive
values when needed is called autoboxing.

bulk operation Iteration offers the programmer the opportunity to access or process
each element of a collection in turn and deal with each as they think fit. By contrast, bulk
operations are operations that act on an entire collection without requiring the
programmer to focus on individual elements.

Collections Framework Shorthand for the Java Collections Framework

collection classes/Collection Classes When capitalised, this phrase usually refers to
collection classes that are part of the Collections Framework by this fact excluding
arrays. When used in lower case, the same phrase generally means any class that
implements a collection (in the looser English language sense) includes

destructive operation An operation on a collection (i.e. a message-send) that
changes the contents in some way is said to be destructive It is not always obvious
whether a message is destructive or non-destructive for example, bulk operation
that might be expected to change the contents may leave it unaffected but return a

altered copy, or vice versa.

difference Difference is a mathematical operation on two sets, that in Java is
implemented by removeAll(message. Given two sets, set1 set2, the
message-send set1.removeAll set2 would remove from set1 all the elements
contained by set2. The term ‘difference’ is used to refer to both the result and the
operation.

An entry in a map means a value pair not just the or the value.

intersection Intersection is a mathematical operation on two or more sets that results
in a set containing only all common elements. In Java, intersection is implemented by
retainAll(message. Given two sets, set1 set2, the message-send
set1.retainAll(set2 would remove from set1 any elements that were not also
contained by set2. The term intersection is used to refer both to the result and to the
operation.

Java Collections Framework The Collection Framework includes a set of collection
interfaces Collection, Set, List, Map and others), a set of collection classes

HashSe HashMa) that implement them, and some supporting utility
classes (e.g. Collection). The framework also includes a set of associated
recommendations about constructors and about expected behaviours in common.
Arrays are part of the Collections Framework.

5 Glossary 53

key
–

key–

key y– Map
–

.

map y–

–

set

removed).

union

and

See y

int is r.

Some collections of information are set up for quick convenient access using
some pre-chosen part of the information stored e.g. looking up telephone numbers
using names. In such a situation, a key is something that can be used to uniquely
identify any object from a given collection. What constitutes a good key may depend on
the purpose of the collection.

value pair Where a collection is organised for looking up values using a single
kind of , the collection can be viewed as a set of ke value pairs. Each entry in a
is a key value pair. For example, a key might be a person’s name, and its associated
value their telephone number

An unordered collection of ke value pairs. Duplicate keys are not allowed as
they are used to look up their associated values. A map has a dynamic size (i.e. it can
grow and shrink as key value pairs are added and removed).

non-destructive operation An operation on a collection that does not change the
contents in any way is said to be non-destructive.

An unordered collection which has no indexing, that contains no duplicates and
which has a dynamic size (i.e. it can grow and shrink as elements are added and

subinterface A subinterface is an interface that contains all the signatures of some
parent interface (called its superinterface), and which typically contains additional
signatures.

superinterface A superinterface is an interface viewed from the perspective of
another interface (called its subinterface). The subinterface contains all the signatures
of the superinterface and typically contains additional signatures.

Union is a mathematical operation on two or more sets that results in a set
containing all the elements of all the sets. In Java, union is implemented by an addAll()
message. Given two sets, set1 set2, the message-send set1.addAll(set2)
would add to set1 all the elements contained by set2. The term intersection is used to
refer both to the result and to the operation.

wrapper class autoboxing to understand why these classes need to exist. Ever
primitive type has a corresponding wrapper class whose purpose is to hold a primitive
value in a place where a primitive value is intuitively what is needed, but where the type
checking requires an object. For example, the wrapper class of Intege

C

54

Index

A

autoboxing 13

collection classes 6

terminology 36

D

destructive 38

difference 38

E

element type 7

entry 23

H

HashMap 22

HashSet 7

Unit 10 Collections: Sets and maps

I

interface type 9

intersection 38

J
Java Collections Framework 7

Java.util 9

K

key 20

key–value pair 21

M

map 20

mapping 23

N

non-destructive 38

S

set 6

size() 10

subinterface 33

superinterface 33

U

union 38

W

wrapper class 13

