
M255 Unit 9
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Collections: Arrays,
strings and
StringBuilders

U

ni
t9

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008. Third edition 2009.

Copyright ª 2006, 2008, 2009 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University

Typeset by The Open University

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield

ISBN 978 1 8487 3137 0

3.1

mailto:general-enquiries@open.ac.uk
http://www.open.ac.uk
http://www.ouw.co.uk
mailto:ouwenq@open.ac.uk

CONTENTS

Introduction
 5

1 The array
 7

1.1	 The structure of an array
 7

1.2	 Declaring array variables and creating array

objects 9

1.3	 Putting elements into an array 12

1.4 Accessing the components of an array 19

2 Processing arrays 25

2.1	 Iterating through an array 25

2.2	 Sub-array processing 31

2.3	 Inserting an element into a sorted array 33

2.4	 Two-dimensional arrays 38

2.5 java.util.Arrays 45

3 The main() method 49

3.1	 Developing programs outside the BlueJ

environment 49

3.2	 Arguments to the main() method 51

3.3	 A complete program that uses arrays 53

3.4 Programs that involve more than one class 56

4 Strings 57

4.1	 Creating and manipulating String objects 57

4.2	 Equality and identity 59

4.3 String objects are immutable 62

5 The StringBuilder class 63

5.1	 Creating StringBuilder objects 63

5.2	 The protocol of StringBuilder 65

5.3 Revisiting the concatenation operator, + 66

6 Summary
 68

Glossary	 70

Index	 72

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

So far you have mainly been concerned with individual objects or individual primitive
values. In many real-life applications we have collections of related data, either objects
or primitive values, which we want to group together. For example:

A meteorological office may want to store monthly rainfalls for a particular location.

A hospital ward may want to keep a list of all of its patients.

We are familiar with different ways of structuring data in real life. For example we often
use lists or tables to structure large amounts of data. There are structures that have rules
about the ordering and accessing of the data. For example, a printer queue, where new
jobs are added to the end of the queue, and the first job in the queue is the next to be
sent to the printer. Or a tree structure, such as the kind used to store folders and files on
a computer.

������ ������

������ ������

Figure 1 Different ways of structuring data

Java provides many different ways of structuring data. In this unit we will look at two
kinds of object: array and string objects, which are common to most programming
languages.

An array can be imagined as a series of numbered pigeonholes, each of which contains
a value or a reference to an object, where the number of pigeonholes is fixed in
advance.

A string is a sequence of characters that cannot be changed once the string has been
created.

We will also look at the StringBuilder class, whose instances are like strings, but ones
in which characters can be changed and added.

In addition, in Unit 10 and Unit 11 you will learn about a whole family of classes called
the Collection classes, which provide many other ways of structuring and accessing
data.

6 Unit 9 Collections: Arrays, strings and StringBuilders

Some activities in this unit are accompanied by a text file. Such files may be opened
within the OUWorkspace (so you will not need to type in large amounts of code). You
may also wish to save your answers in this file. Where appropriate, a text file has also
been included with the answers to the activity (so you can run the correct code without
typing it in).

1 The array 7

1 The array

An array is an object, and we will refer to arrays as objects in this unit to reinforce this,
but in fact there is no single array class, instead, the class of an array object is
automatically generated at compile time as we shall show later. As you might guess from
this, arrays are a fundamental, built-in part of Java, and as such are designed to be a
very efficient way of storing and accessing data. Because array data structures were
developed early on in the history of programming languages, a well-established syntax
for dealing with them had long been developed, well before Java was on the scene.
Because a large community was familiar with this traditional syntax, Java has adopted it,
even though it is not consistent with the rest of the language syntax. In most of this
section we will use the traditional array syntax, but in Section 2.5 we will visit the class
java.util.Arrays, which contains various methods for manipulating arrays using a
more Java-like syntax.

1.1 The structure of an array

The distinctive features of an array are:

c it is a fixed-size structure;

c it can store either objects or primitive values (unlike the collection classes you will
see in later units, which can store only objects);

c it is a homogeneous structure, which means that each reference or primitive value
held by an array is of the same type;

c it is an indexable structure; every item in an array is accessed by an integer index.

Here is an example of an array that is being used to store double primitive values:

� � � � � � �

������� ���� ���� ���� ���� ���� ��������

index

elementcomponent

Figure 2 The parts of an array

The array is represented as a row of boxes labelled 0, 1, 2, 3, 4, 5, 6. The correct term for
one of these integer labels is ‘index’, and a box is referred to as a component. You can
think of each component as being similar to a variable – it is simply a memory location
that can hold either a primitive value or a reference to an object. Unlike the variables you
have come across so far there is not an identifier associated with the memory location,
rather the programmer can identify a component using the name of the array and the
index of the component (we will see how this is done in Section 1.3). Each component

Note that the index is not
part of the item being
stored in the component,
but rather it is a means of
identifying a component.

8 Unit 9 Collections: Arrays, strings and StringBuilders

holds an element; in this example the elements are values of type double. The variable
weights is referencing the whole array object.

In Java the first
component of an array
always has an index of 0.
This is called zero-based
indexing.

When we want to identify an element of an array we say ‘60.1 is the element held by the
component labelled by index 0’ or in shorthand ‘60.1 is at index 0’.

SAQ 1

In Figure 2,

(a) What is the index of the component holding the element 57.5?

(b) What element is held by the component at index 5?

ANSWER...

(a) The index of the component holding the element 57.5 is 3.

(b) 59.6 is at index 5.

We mentioned that an array is always of fixed size. By fixed size we mean that the
number of components in an array must be specified when the array object is created.
Thereafter the array will always have that number of components, never more, never
less. This means that you should only use an array when you know that the number of
elements you want it to hold will not change after it has been created; you will come
across flexible size collections in Unit 10 that may be more appropriate if this is not the
case.

SAQ 2

(a) A business wants to store its revenue for a year, broken down in weekly sales
figures. Is an array a suitable collection structure for this task?

(b) A school wants to store records for each of its pupils. Is an array structure a suitable
collection in which to store the records?

ANSWER...

(a) Yes. There are a fixed number of weeks in a year, and this will not change.

(b) No. It is likely that pupils will leave the school, or join the school, and so the number
of student records is not fixed.

Arrays that contain references to objects
If an array is used to store objects, then each component is a reference to an object
which is the element ‘stored’ in that component. Here is a representation of an array
called roster, of length 3, whose components reference Strong objects:

1 The array 9

���

���

������

� � �

���

���

���

���

���

���

��� ���

Figure 3 An array containing references to String objects

A reference to the string "Jay" is held in the component at index 0; a reference to the
string "Bob" is held in the component indexed by 1, etc.

1.2 Declaring array variables and creating
array objects

Declaring an array variable
Suppose we want to declare an array variable, roster, which can reference an array of
String objects. Here is the statement that we would use:

String []roster;

The square brackets are a
distinctive feature of array
syntax.

Like the declarations you have previously seen, this one comes in two parts. There is a
type, String [], and the name of the variable, roster. However, notice the use of the
square brackets, [], as a part of the type String []. It is these square brackets that
indicate that this statement declares an array variable. Whenever we declare an array
variable we have to include details of the type of data that will be stored in the array (in
this case String). This is referred to as the component type of the array. The type of
every element stored in an array must be the same as the component type of the array or
a subtype of the component type.

The identifier roster, gives the name of the array variable. The variable roster can be
used to reference any array object that contains references to String objects. However
a declaration such as this does not itself create an array object; one way of creating a
new array object is to use the new operator which you have used for creating other types
of objects.

SAQ 3

(a) Write a declaration for an array variable, quizAnswer, which can reference an array
object whose elements are boolean values.

(b) Write a declaration for an array variable, bank, which can reference an array object
whose elements are Account objects.

10 Unit 9 Collections: Arrays, strings and StringBuilders

ANSWER...

(a) boolean []quizAnswer;

(b) Account []bank;

SAQ 4

In your own words explain the terms: component, component type and element.

ANSWER...

Component – An array object consists of a fixed number of components. Each
component is like a variable that can hold a primitive value or a reference to an object
depending on the array‘s component type.

Component type – The declared type of an array’s components. Each component of an
array object must have the same (variable) type. The actual elements of the array may,
as always with variables, be subtypes of this type.

Element – Either the primitive value held by a component or the object referenced by a
component.

Creating an array
Once an array variable has been declared, a new array object can be created and
assigned to it. Here is the code that will associate the array variable, roster that we
previously declared, with a newly created array, with seven components that can hold
references to seven String objects (elements):

�����������������������

component type length

Figure 4 Creating an array and assigning it to a variable

This statement creates an array object that has 7 components each of which can
reference any String object, and causes the previously declared array variable,
roster, to reference this new array. When a newly created array is assigned to a
variable, its component type must be the same as the component type that has been
indicated in the declaration of that variable (or a subtype of that variable’s component
type).

Because of zero-based
indexing the length of an
array is always one more
than the last index.

Notice that in order to create the array object we need to indicate the fixed number of
elements it can store. This integer, which appears inside the square brackets, is referred
to as the length of the array. On creation of a new array object, its length is automatically
stored in a public instance variable which can be accessed using the usual dot notation:
roster.length. Note that length in this expression is not a message, it is an attribute
(an instance variable) of the array object, so it is length and not length(). When
creating an array object, the length (the number of components we want) can be any
expression that evaluates to an int. For example, these are valid statements:

int noOfElements = 7;
roster = new String [noOfElements];

1 The array 11

or

int num = 6;
roster = new String [num + 1];

It is important to realise that the creation of the array referenced by roster does not
actually create seven strings or even allocate memory to hold seven strings (as they are
at present of unknown size). However, enough space to store references to seven
strings has been allocated in memory. Although the components of the newly created
array do not yet contain references to any strings they are automatically initialised on
creation. If the component type of the array is an object, each component is initialised to
null; if the component type is one of the numerical primitive types (double, or int, for
example), then each component is initialised to 0.0 or 0 as appropriate. If the
component type is a boolean, the components are initialised to false, and if it is a
char, the components are initialised to the null character. These are the same default
values that are used to initialise instance variables that are not otherwise initialised in a
constuctor.

The null character is a
character with a Unicode
or ASCII value of 0. It is
essentially a character
that does nothing at all. If
sent to a printer it is often
output as ut.

When an array object is created, the array components allocated in memory consist of
contiguous memory locations – in other words each of the memory locations after the
first comes immediately after the previous one. It is this property of arrays that makes
them efficient, as it makes it easy to determine quickly the memory location identified by
a particular index.

Combined declaration and creation
Often the declaration of an array variable, and the assignment of a newly created array
object to it, are combined into a single statement:

String []roster = new String [7];

SAQ 5

(a) Write a single statement that both declares a variable bankBalances, and assigns
to it an array object that can hold 52 numbers of type double.

(b) Write a single statement that both declares a variable frogPond, and assigns to it an
array object that can hold references to three Frog objects.

ANSWER...

(a) double[]bankBalances = new double[52];

(b) Frog []frogPond = new Frog [3];

A shortcut for creating and initialising arrays
There is a useful shortcut for creating a new array that assigns values to each
component using literal array syntax. Here is an example:

String []roster = {"Jay", "Bob", "John", "Anne", "Ali", "Agi", "Jill" };

On the left of the assignment statement an array variable roster is declared. The
expression on the right creates an array of length 7, and populates it with the String
objects referenced by the string literals separated by commas within the braces.

Here is another example where each component is initialised with a reference to a
different newly initialised Frog object:

Frog []frogPond = {new Frog(), new Frog(), new Frog()};

12 Unit 9 Collections: Arrays, strings and StringBuilders

Note that this syntax can only be used if the literal array is assigned to an array variable
in the same statement as the array variable is declared. Thus the following will not
compile:

Frog []frogPond;
frogPond = {new Frog(), new Frog(), new Frog()};

as the second line is not valid.

However the following variation is valid.

Frog []frogPond;
frogPond = new Frog []{new Frog(), new Frog(), newFrog()};

allowing us to use the literal array syntax and to separate the declaration of the array
variable from the creation and initialisation of the array object. This is important to us in
the case of array instance variables as it allows us to treat an array instance variable in
the same way as other instance variables with the declaration being separated from the
initialisation which takes place in the constructor.

SAQ 6

In a single statement, declare an array variable, hours, with a component type of int,
and assign to it an array that has each of its 5 components initialised to 40.

ANSWER...

int[]hours = {40, 40, 40, 40, 40};

We stated in the Introduction to this unit that array classes are automatically generated
at compile time. This is what occurs.

When the Java compiler comes across the declaration of an array such as:

String []roster;

it generates an array class whose instances can hold elements of the declared
component type – in this case String objects. This new class will be a direct subclass
of Object and is given the name (for internal use) of [Ljava.lang.String; which is
the name that the Java compiler always gives to a class whose instances are arrays that
can hold strings. This can all be shown by executing the following code in the
OUWorkspace:

String []roster = new String [3];
roster.getClass().getName();
roster.getClass().getSuperclass().getName();

which will print in the Display Pane:

"[Ljava.lang.String;"
"java.lang.Object".

Similarly, the class of an array that holds Frog objects is named [LFrog; by the
compiler. For array classes whose instances will hold values of some primitive type the
compiler uses a slightly different naming convention; for arrays of int values, the class
name is [I and for arrays of double values the class name is [D. You do not need to
remember these implementation details or the names of these array classes, but you will
see these names used in the titles of Inspector windows if you inspect a variable
declared as some array type before it has been assigned an actual array object.

1 The array 13

1.3 Putting elements into an array

Suppose the following code is executed:

double[]weights = new double[7];

to create an array of length 7 referenced by the variable weights. Because the
component type is a numerical primitive type, specifically type double, the elements are
initialised to 0.0:

� � � � � � �

������� ��� ��� ��� ��� ��� ��� ���

Figure 5 The newly created array, referenced by the variable weights

Each component of an array is really just like a variable, but instead of using an identifier
to access it we use the name of the array, for example the variable weights, followed by
the appropriate index in square brackets. For example, this expression: weights [0]
refers to the component at index 0:

� � � � � � �

������� ��� ��� ��� ��� ��� ������

����������

Figure 6 Referencing the first component

We can use an expression like this wherever we might use a variable. If, for example, we
want to assign a value to this component we can write:

weights [0]= 60.1;

Just as with any other assignment expression, the value of the expression on the right is
assigned to the component indicated on the left. In this case the double value 60.1, is
assigned to the component at index 0:

� � � � � � �

������� ���� ��� ��� ��� ��� ��� ���

Figure 7 The array after the first component has been assigned a value

Similarly, the statement

weights [1]= 59.2;

puts the value 59.2 at index 1:

14 Unit 9 Collections: Arrays, strings and StringBuilders

� � � � � � �

������� ���� ���� ��� ��� ��� ��� ���

Figure 8 The array after the first two components have been assigned values

If an item is assigned to a component that already contains an element, the new item
overwrites the original element. For example, if weights is in the state shown above and
we executed:

weights [0]= 62.8;

the value 60.1 at index 0 would be replaced by 62.8.

When we are accessing array components the index can be a literal int, but it can also
be an expression that evaluates to an int within the valid range of index values. For
example, given:

int num = 2;

The following statements are both valid:

weights[num]= 58.3;

weights[num + 1]= 57.5;

and together would have the following effect:

� � � � � � �

������� ���� ���� ���� ���� ��� ��� ���

Figure 9 The array after the first four components have been assigned values

SAQ 7

Write three assignment statements to assign values of type double to the remaining
three components of the array referenced by weights (as it is shown in Figure 9) so that
it matches Figure 2.

ANSWER...

weights [4]= 58.5;

weights[5]= 59.6;

weights [6]= 58.4;

SAQ 8

Write the code to generate a dialogue box to request the user to enter their name (the
initial answer should be “anonymous”), and assign the response to the first component
of an array referenced by roster. Assume that roster has already been declared as an
array of strings.

ANSWER...

roster [0]= OUDialog.request("Please enter your name", "anonymous");

Note that ‘first component’ always means the component with index 0.

1 The array 15

Although it is possible to assign elements to any random component of an array, most
often an array is filled sequentially, in the order in which the user inputs elements
(starting with index 0, then 1, etc.). If there are fewer values than the length of the array
this can lead to partially filled arrays, such as the following:

� � � � � � �

������� ���� ���� ���� ���� ���� ��� ���

Figure 10 A partially filled array

Under these circumstances not all of the components contain real data, some still contain
their initialisation values (here 0.0), so the length of the array is greater than the number
of meaningful elements in the array. We often want to know how many meaningful
elements there are in an array, and one way to do this is to keep a count in some variable
as the elements are stored in the array. Such a count is sometimes called the effective
length of the array. For the array in Figure 10 the effective length would be 5.

Storing values given by non-literal expressions in arrays
Suppose that we declared a variable and created an array to hold Frog objects, as
follows:

Frog []frogPond = new Frog [3];

Here is one way we could assign a newly initialised Frog object to the component of the
array at index 0:

frogPond [0]= new Frog();

Alternatively we could also use a temporary variable to reference the new Frog object
before assigning it to an array component. For example, if we wanted to put a reference
to a frog with position 2 and colour RED into the component at index 1 we could write
the following code:

Frog temp;
temp = new Frog();
temp.setPosition(2);
temp.setColour(OUColour.RED);
frogPond [1]= temp;

The component at index 1 now references a Frog object but that same Frog object is
also still referenced by the variable temp as shown in Figure 11 overleaf:

Note that instead of writing ‘the component at index 1 of frogPond references the Frog
object’ we can simply write ‘the element at index 1 of frogPond is the Frog object’. The
element at an index of an array object is simply the value stored in that component (if the
element is a primitive value) or the object referenced by that component.

16 Unit 9 Collections: Arrays, strings and StringBuilders

Technically the figure
should have the form of
Unit 3 Figure 14, where
the instances of OUColour
objects are drawn
explicitly. Here, to simplify
the diagrams, OUColour
objects are represented by
a box with the name of a
colour in it.

� � �

������������

������������

������

�����

� ��������

������

���

���� ����

�

Figure 11 An array containing references to Frog objects

If the following statements are executed:

temp.right(); temp.brown();

the state of the Frog object referenced by temp will change, which means that the
component at index 1 of the array will also reference this changed object:

� � �

������������

������������

������

�����

� ��������

������

�����

���� ����

�

Figure 12 An array containing references to Frog objects

Substitutability
In Unit 6 you discovered the property of substitutability – that is, it is legal to assign an
object to a variable declared to be of the type of one of its superclasses. For example,
the following is a legitimate assignment to the variable kermit:

Frog kermit = new HoverFrog();

The same applies to array components: it is possible to assign an object to an array
component that has been declared to be the type of one of that object’s superclasses.
This means that the following is legal:

Frog []frogPond = new Frog [3];
frogPond [2]= new HoverFrog();

The component type of the array is of type Frog and so only messages that are in the
protocol of Frog can be sent to the components of frogpond. However, the reference
held in the array at index 2 is to an object of type HoverFrog, so if HoverFrog has
overridden any of the Frog methods, it is the HoverFrog versions that are invoked.

1

1 The array 17

SAQ 9

Is the following a valid declaration and initialisation of an array?

Object[]anArray = {new HoverFrog(), new HoverFrog()};

ANSWER...

Yes, anArray has been declared with component type Object, which is a superclass of
HoverFrog.

ACTIVITY 1

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select
OUWorkspace.

Make sure that the Show results checkbox is checked and then write code to do the
following. Note what is returned in each case, and inspect the variables to check that your
code works as expected.

1 Create a new array object, referenced by nameArray, that can hold references to six
String objects. Then inspect nameArray.

2 Write a statement that will return the length of nameArray.
3 Assign the following strings to the components of nameArray (in the given order,

starting at index 0). "Ann" "Rob" "Kin" "Sue" "Fethi" "Jo".

4 Replace the string element "Sue", that is stored in nameArray, with "Lin".
5 Replace the name at index 2 of nameArray with a name entered by the user using a

dialogue box.

6 Create an array referenced by intArray that contains the integers 10, 5, 7, 2, 9, 8, 1
and 12 (in this order).

7 Create an array, frogPond that can hold references to three Frog objects, and assign
a new Frog object to each component (the Frog objects should be in their initial state).

If you wish, after finishing this Activity, you could save the contents of the Code Pane for
later retrieval, by choosing Save As from the OUWorkspace’s file menu and saving the
contents with a suitable file name.

DISCUSSION OF
ACTIVITY 1

String []nameArray = new String [6];

You should see the following when you inspect nameArray:

Figure 13 An Inspector window showing the state of the array referenced by nameArray

18 Unit 9 Collections: Arrays, strings and StringBuilders

2	 Executing

nameArray.length;

will return the length of the array.

3 You should have executed the following series of statements:

nameArray [0]= "Ann";

nameArray [1]= "Rob";

nameArray [2]= "Kin";

nameArray [3]= "Sue";

nameArray [4]= "Fethi";

nameArray [5]= "Jo";

You should see the following when you inspect nameArray.

Figure 14 An Inspector window showing the state of the array referenced by nameArray

4	 nameArray [3]= "Lin";

You should see the following when you inspect nameArray.

Figure 15 An Inspector window showing the state of the array referenced by nameArray

5	 nameArray [2]= OUDialog.request("Please enter your name", "anonymous");

When you inspect nameArray you should find that the element at index 2 has been
replaced by the string returned by the dialogue box.

6 int[]intArray = {10, 5, 7, 2, 9, 8, 1, 12};

7 Frog []frogPond = new Frog [3];

frogPond [0]= new Frog();

frogPond [1]= new Frog();

frogPond [2]= new Frog();

1 The array 19

Alternatively:

Frog []frogPond = {new Frog(), new Frog(), new Frog()};

In either case when you inspect frogPond you should see the following.

Figure 16 An Inspector window showing the state of the array referenced by frogpond

1.4 Accessing the components of an array

An indexed component of an array, can be used anywhere that a variable of the same
type can be used (except if the element references null, in which case a
NullPointerException may be thrown).

So, given the array, roster, created as follows:

String []roster = {"Jay", "Bob", "John", "Anne", "Ali", "Agi", "Jill" };

The following are all valid:

1 OUDialog.alert(roster [2]);

Effect: displays the string at index 2 of roster, "John", in a dialogue box.

2 String weekendWorkers = roster [0]+ " and " + roster [6];

Effect: assigns to the variable weekendWorkers the string formed by concatenating
the string referenced by the component at index 0 of roster with the string " and "
followed by the string at index 6 of roster (so weekendWorkers references "Jay
and Jill").

3 roster [5].equals(roster [6]);

Effect: returns true if the string at index 5 of roster has the same state as the string
at index 6 of roster, and false otherwise (so false would be returned in this
case).

SAQ 10

Given the array, roster, created as follows:

String []roster = {"Jay", "Bob", "John", "Anne", "Ali", "Agi", "Jill" };

Write down what would result from executing the following statements/expressions.

(a) System.out.println(roster [2]);

(b) String name = roster [6].toUpperCase();

(c) OUDialog.alert(roster [roster.length – 2]);

20 Unit 9 Collections: Arrays, strings and StringBuilders

ANSWER...

(a) Outputs the string "John" to the default output device. (So, if executed in the
OUWorkspace this would be the Display Pane.)

(b) The message toUpperCase() is sent to the String object at index 6, and the
message answer "JILL" is assigned to name.

(c) A dialogue box displays the string "Agi". (roster.length returns 7, 2 is
subtracted from this to give 5, so the string referenced by the element held in the
component at index 5 is returned as the argument to the alert() method.)

Similarly, if an array contains numerical values, an indexed component can be used
directly in mathematical expressions, just like a variable name.

For example, given the following declaration:

int[]intArray = {7, 9, 3};

The following are all valid.

1 intArray [1]+ intArray [2];

Effect: 9 + 3 is evaluated and the result 12 is returned.

2 int num = (intArray [1] – intArray [0]) / 2;

Effect: the right-hand side is evaluated as (9 – 7) / 2 so the int result, 1, is
assigned to num.

3 intArray [0]= intArray [0]+ 1;

Effect: the right-hand side is evaluated as 7 + 1, and the result, 8, is assigned to the
component at index 0.

The component type of the
array is int, and so
integer division is
performed here.

SAQ 11

Given the following code:

double[]doubleArray = {2.5, 3.5, 2.0, 2.0};

Describe the effect of each of these expressions (assume that the array is initialised as
above before each expression is evaluated):

(a) (doubleArray [1]+ doubleArray [0]) / doubleArray [3]

(b)	 doubleArray [3]= doubleArray [0]+ doubleArray [1]+ doubleArray [2]

(c) (int) doubleArray [0] > (int) doubleArray [3]

You came across type
casting in Unit 3.

ANSWER...

(a) (3.5 + 2.5) / 2 is evaluated and the result is 3.0.

(b)	(2.5 + 3.5 + 2.0) is evaluated and the result is 8.0. This is assigned to the
component at index 3 of doubleArray.

(c) The value of doubleArray [0] is cast to an int, which gives the result 2. The value
of doubleArray [3] is cast to an int, which gives the result 2. Finally 2 > 2 is
evaluated, and the result is false.

1 The array 21

Accessing objects in arrays
Consider the array referenced by frogPond, which contains references to three Frog
objects:

� � �

��������

��������

������

�����

� ��������

������

�����

���� ����

� ��������

������

����

�

Figure 17 An array containing Frog objects

The expression frogPond [1] references the Frog object at index 1. We can then use
the familiar dot notation to send a message to this Frog object. Of course, the message
we send must be in the protocol of Frog objects.

So, to change the colour of the Frog object at index 1 to RED, and its position to 2, we
would write the following code:

frogPond [1].setColour(OUColour.RED);
frogPond [1].setPosition(2);

The array can now be represented like this:

� � �

��������

��������

������

�����

� ��������

������

�����

���� ����

� ��������

������

����

�

���

Figure 18 An array containing Frog objects

SAQ 12

Given an array, frogPond, containing references to three Frog objects, write code that
does the following.

(a) Gets the colour of the Frog object at index 2.

(b) Displays the position of the Frog object at index 0 in a dialogue box.

22 Unit 9 Collections: Arrays, strings and StringBuilders

(c) Changes the colour of the Frog object at index 1 to be the same as the colour of the
Frog object at index 2.

(d) Evaluates true if the two Frog objects at index 1 and index 2 have the same
position, and false otherwise.

ANSWER...

(a) frogPond [2].getColour();

(b)	 OUDialog.alert(String.valueOf(frogPond [0].getPosition()));

(Recall that you must convert an int value to a string before it can be used as an
argument to the alert method.)

(c) frogPond [1].sameColourAs(frogPond [2]);

(d) frogPond [1].getPosition() == frogPond [2].getPosition();

ACTIVITY 2

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select
OUWorkspace. Open the file called CodeForActivity2. This will save you some typing by
loading into the Code Pane some of the code needed for this activity. Select and execute
the following statements, and then inspect each variable. For frogPond you should also
inspect each component of the array:

String []nameArray = {"Ann", "Rob", "Kin", "Sue", "Fethi", "Jo"};

int[]intArray = {10, 5, 7, 2, 9, 8, 1, 12};

Frog []frogPond = {new Frog(), new Frog(), new Frog()};

Make sure that the Show results checkbox is checked and then enter, select and execute
statements to do each of the following, noting what is returned in each case, and
inspecting the variables to ensure that your code worked as expected.

1 Display the name referenced by the component at index 4 of nameArray in a dialogue
box.

2 Return true if the strings referenced by the components at index 0 and index 1 of
nameArray are equal and false otherwise.

3	 Declare a variable, tempString, to be of the same type as the component type of
nameArray, and assign to it the name referenced by the component at index 1 of
nameArray.

4	 Swap the positions of the strings at index 1 and index 4 in nameArray. Inspect
nameArray.

(Hint: you have already got a reference to the name at index 1 of the array in

tempString (from part 3) so you can overwrite this in the array without losing it.)

Consider each of the following expressions and predict what they will return. Make sure
that the Show results checkbox is checked and then enter, select and execute each of
them, noting what is returned in each case.

5 intArray [0]+ intArray [6];

6 intArray [7]/ intArray [2];

7 intArray [0]+ intArray [4] * intArray [3];

8 intArray [4]/ 2.0;

Enter, select and execute statements to do each of the following and inspect the variables
to ensure that your code worked as expected.

9	 Replace the element at index 7 of intArray with a value twice its current value.

1 The array 23

10	 Replace the element at index 3 of intArray with the sum of the values at indexes 1
and 2.

Enter, select and execute statements to do each of the following, and inspect frogPond
(and the relevant components of frogPond) to ensure that your code worked as
expected.

11 Change the colour of the Frog object at index 2 of frogPond to red.

12 Cause the Frog object at index 0 of frogPond to move right.

13 Change the colour of the Frog object at index 0 of frogPond to be the same as the
colour of the Frog object at index 2 of frogPond.

14 Add 3 to the current position of the Frog object at index 2 of frogPond.

15 Swap the Frog object at index 1 with the Frog object at index 0 of frogPond. (You
will need to declare a temporary variable to do this.)

DISCUSSION OF
ACTIVITY 2
1 OUDialog.alert(nameArray [4]);

2 nameArray [0].equals(nameArray [1]);

Recall that the message equals() (and not ==) should be used when checking if
two strings represent the same sequence of characters.

3 String tempString = nameArray [1];

4 nameArray [1]= nameArray [4];
nameArray [4]= tempString;

In part 3 you assigned the string at index 1 to the variable tempString. Here (in part
4) the first line assigns the element at index 4 to the component at index 1
(overwriting it). The second line assigns the String object referenced by
tempString to the component at index 4.

You should see the following when you inspect nameArray.

Figure 19 An Inspector window showing the state of the array referenced by nameArray

24 Unit 9 Collections: Arrays, strings and StringBuilders

5 11 (10 + 1)

6 1 (12 / 7) integer division.

7 28 (10 + 9 * 2) multiplication is done first, then the addition.

8 4.5 (9 / 2.0) the operand 2.0 of type double forces this to be floating-point division.

9 intArray [7]= intArray [7] * 2;

10 intArray [3]= intArray [1]+ intArray [2];

11 frogPond [2].setColour(OUColour.RED);

frogPond [2] references the Frog at index 2, and it is sent the message
setColour(OUColour.RED).

12 frogPond [0].right();

frogPond [0]references the Frog at index 0, and it is sent the message right().

13	 frogPond [0].sameColourAs(frogPond [2]);

frogPond [0] references the Frog at index 0, and it is sent the message
sameColourAs() with the argument being the Frog object at index 2.

14 frogPond [2].setPosition(frogPond [2].getPosition() + 3);

The expression in parentheses (the argument of the message setPosition()) gets
the position of the Frog object at index 2 and adds 3 to it. This value is returned and
becomes the argument for the message setPosition() which is sent to the Frog
object at index 2.

15 Frog tempFrog = frogPond [1];

frogPond [1]= frogPond [0];

frogPond [0]= tempFrog;

This code is similar to the code in part 4 but notice that the variable tempFrog must

be declared to be of the same type as the component type of the array (which here
is Frog).

2 Processing arrays 25

2 Processing arrays

2.1 Iterating through an array

When dealing with arrays we often want to process each component in the same way.
For example, we may want to initialise each component to the same value, or print out
each component’s element in turn. Because we always know (or can at least find out) the
number of components in an array we can use a for loop for this kind of iteration.

For example, consider this array:

int[]myArray = new int[2000];

which we can depict as follows.

� � � � �

��

� ����

������� ��� ��

Figure 20 An array of length 2000

Recall that the expression
myArray.length will
evaluate to the length of
the array, which here is
2000.

We can initialise each component to 10 using the following for loop:

for (int i = 0; i < myArray.length; i++)

{

myArray [i]= 10;

}

In the first iteration, i is 0, and so 10 gets assigned to myArray [0]. The loop variable i
then gets incremented to 1, which is still less than myArray.length, and so the loop
body is entered again, and 10 gets assigned to myArray [1]. The iterations continue
until after myArray [1999]= 10 is evaluated, at which point i is incremented to 2000,
and the condition i < myArray.length becomes false, ending the for loop.

In the following example a for loop is being used to increment each element in an array
of integers called intArray.

for (int i = 0; i < intArray.length; i++)

{

intArray [i]= intArray [i]+ 1;

}

26 Unit 9 Collections: Arrays, strings and StringBuilders

SAQ 13

Using paper and pencil, write the code to declare and create an array called
hoursWorked that can hold 52 double values, and initialise each component to 40.0.

ANSWER...

double[]hoursWorked = new double[52];

for (int i = 0; i < hoursWorked.length; i++)

{

hoursWorked [i]= 40.0;

}

SAQ 14

What effect does the following code have?

Frog []frogPond = new Frog [10];

for (int i = 0; i < frogPond.length; i++)

{

frogPond [i]= new Frog();

}

ANSWER...
The first line of the code declares and creates an array variable frogPond that can hold
references to 10 Frog objects. The for loop then assigns a new Frog object (using the
Frog constructor) to the component at each index.

Although foreach is not
actually a Java keyword, it
is an accepted computing
term referring to a specific
code construct hence the
use of code styling.

The foreach statement
If we want to access each element in an array in turn, we can use a foreach statement,

which is a variant of the for statement.

For example, here is a segment of code that would print out, in turn, each of the strings

in the array, referenced by herbs:

String []herbs = {"basil", "rosemary", "thyme"};
for (String herbName : herbs)
{

System.out.println(herbName);
}

Here is a template for the foreach statement:

for (declaration : expression)
{

statement block;
}

In the header of the for statement there is a declaration of a variable (local to the for loop)
of the same type as the component type of the array to be processed (this variable exists
only for the lifetime of the foreach statement), and an expression which is a reference to the
array to be processed. On each execution of the statement block, the variable (for example
herbName) is assigned each element of the array (for example the array herbs) in turn.

To illustrate, consider this array:

� � � � �

� � � � �� �

� ����

������� �

Figure 21 An array where every component is holding an integer element

2 Processing arrays 27

Here a foreach statement is used to print out each element of myArray:

for (int anElement : myArray)

{

System.out.println(anElement);

}

Within the header there are two statements separated by a colon. The first is a
declaration of a variable (of the same type as the component type of the array to be
processed) and the second is the name of the array to be processed. In this example
anElement is declared as being of type int, and the array to be processed is myArray.

When the foreach heading is first encountered during execution, the element at index 0
of myArray is assigned to the variable called anElement. After the loop body has been
executed there is a check to see if there are still components to be processed; if there
are, the element in the next component of myArray is assigned to anElement, if not the
loop terminates.

So when the foreach heading is first executed, this is the situation:

� � � � �

� � � � �� �

� ����

������� �

��������� �

anElement is just an
identifier we have chosen
– it could be any other
legal Java identifier.

Figure 22 Entering the foreach loop body for the first time

The loop body is now executed, and 8 is displayed; a check is now made to see if there
are still components to be processed. If there are, the element in the next component is
assigned to anElement ready for the loop body to be executed again.

� � � � �

� � � � �� �

� ����

������� �

��������� �

Figure 23 After the first iteration of the foreach loop body

The loop body is now executed, and 6 is displayed; a check is now made to see if there
are still components to be processed, if there are, the element in the next component is
assigned to anElement and the loop body is executed again, and so on.

Once the last element has been processed, the foreach statement terminates, and
each element will have been displayed.

28 Unit 9 Collections: Arrays, strings and StringBuilders

In chapter 10 you will
come across other types
of collections that cannot
be iterated over using
while or for loops.

It is the case that a while statement or a for statement can always be used in place of a
foreach statement when iterating over arrays. For example, we could have processed
myArray in exactly the same way using the code:

for (int i = 0; i < myArray.length; i++)

{

System.out.println(myArray [i]);

}

However, the foreach loop has the practical advantage that it ensures that every
component is processed, and there can be no attempt to process beyond the end of the
array.

SAQ 15

Write the code to find the running total of the int values in an array called intArray.

ANSWER...

int runningTotal = 0;

for (int eachInt : intArray)

{

runningTotal = runningTotal + eachInt;

}

eachInt is assigned each element in intArray, one at a time. The loop body maintains a
running total in the variable runningTotal, which was initialised to 0 on declaration.

SAQ 16

A novice programmer tries to print every element of an array using the following for
loop. What is wrong with his code?

for (int i = 1; i <= myArray.length; i++)

{

System.out.println(myArray [i]);

}

ANSWER...

The code has two problems.

1. The loop variable i is initialised to 1 instead of 0, and so the element at index 0 will
not be printed.

2. The Boolean condition controlling the loop (i <= myArray.length) will allow the loop
body to be executed when i is 2000. But myArray does not have an index 2000 so
this will cause an ArrayIndexOutOfBounds exception.

A foreach statement cannot be used to assign different values to the components of an
array. For example, we cannot use a foreach statement to initialise an array – the
following code does compile but does not work as intended because assigning a value
to anInt is not the same as assigning a value to a component of the array:

for (int anInt : myArray)

{

anInt = 10;

}

anInt is a variable that is local to the foreach statement. Each time the statement block
executres anInt is automatically assigned the value of a component of myArray. If we

2 Processing arrays 29

then assign another value to anInt, for example 10, this will have no effect on the
component of myArray.

However, when an array’s components holds references to objects, on each execution of
a foreach’s statement block, its local variable is automatically assigned each object in
the array in turn. Therefore you can send a message to each object by using the
foreach loop’s local variable as the receiver. For example, consider this array, whose
components are references to Frog objects:

� � �

��������

��������

������

�����

� ��������

������

�����

���� ����

� ��������

������

����

�

���

Figure 24 An array whose components hold references to Frog objects

We can use a foreach statement to change the colour of each Frog object to blue:

for (Frog eachFrog : frogPond)

{

eachFrog.setColour(OUColour.BLUE);

}

On the first iteration the variable eachFrog is assigned the object at index 0, and so the
situation can be depicted as follows.

� � �

��������

��������

������

�����

� ��������

������

�����

���� ����

� ��������

������

����

�

���

��������

Figure 25 Entering the foreach loop body for the first time

Now when the loop body is entered eachFrog.setColour(OUColour.BLUE) is
executed and causes the Frog object referenced by eachFrog to have its colour set to
blue. The situation as the loop is entered a second time is as follows.

30 Unit 9 Collections: Arrays, strings and StringBuilders

� � �

��������

��������

������

�����

� ��������

������

����

���� ����

� ��������

������

����

�

���

��������

Figure 26 Entering the foreach loop body for the second time

The iteration then continues in the same fashion until eachFrog has been assigned each
Frog object in the array in turn.

SAQ 17

An array called bank contains Account objects. The balance of each Account object in
the array is to be increased by £50.

(a) Can you do this processing using a foreach statement? Justify your answer.

(b) Write the code to process the array in this way.

ANSWER...

(a) Yes. The foreach statement will leave the same objects in the array, but the state of
the objects in the array can be changed by the foreach statement.

(b) for (Account anAccount : bank)
{

anAccount.credit(50);

}

Exercise 1

Using paper and pencil write the code that finds the average balance of Account objects
referenced by the components of an array, bank, and reports it in a dialogue box. You can
assume that the array is full so that there are no null elements in the array.

2 Processing arrays 31

Solution...

double total = 0;
double average = 0;
for (Account eachAccount : bank)
{

total = total + eachAccount.getBalance();
}
average = (total / bank.length);
OUDialog.alert("The average balance is " + average);

It is important to initialise total to 0 before the foreach loop as it is used in the
calculation within the loop. The variable average has also been initialised as a matter of
good practice (it is best never to rely on default initialisations). The foreach statement
assigns each Account object in the array to the variable eachAccount in turn, and the
loop body uses eachAccount as a receiver for a getBalance() message. The value
returned by getBalance() is added to a running total. In the calculation for average the
answer is a double because although bank.length is an int, total has been
declared as a double, so the result of the division is a value of type double. In the final
line the concatenation operator, +, converts the value of average to a string and the
result is displayed in a dialogue box, as required.

2.2 Sub-array processing

Sub-array processing means that only part of the array (a contiguous set of
components) needs to be processed. If a sub-array needs to be processed, a foreach
statement cannot be used because it always processes every component, so instead
we have to use either a for or a while loop.

For example, suppose that an array called weeklyTakings contains 52 double values
to reflect the weekly takings of a shop, and you wanted to know the total takings for the
first half of the year. This would involve processing only the first 26 components of the
array. A for loop could be used as follows:

double total = 0;

for (int i = 0; i < 26; i++)

{

total = total + weeklyTakings [i];

}

The last value of i should
be 25, as this is the index
at which the 26th element
of the array is located.

SAQ 18

Write a loop fragment to calculate the total takings for the second half of the year, given
the array weeklyTakings.

ANSWER...

double total = 0;

for (int i = 26; i < 52; i++)

{

total = total + weeklyTakings [i];

}

32 Unit 9 Collections: Arrays, strings and StringBuilders

Processing arrays that are not full
Another example where sub-array processing may be necessary is if an array is not
totally filled with meaningful data. In these circumstances we use the effective length of
the array (which must have been calculated by the programmer as the array was being
populated) as a count control variable to process the meaningful components using a
for loop:

int effectiveLength;
String []roster = new String [6];
effectiveLength = 0;
roster [0]= "Sid";
effectiveLength = effectiveLength + 1;
roster [1]= "Jill";
effectiveLength = effectiveLength + 1;
for (int i = 0; i < effectiveLength; i++)
{

System.out.println(roster [i]);
}

Although this situation does occur in practice, you should note that arrays are fixed-size
collections. If the exact number of elements needed to be stored in the array is not
known in advance there may be more appropriate collection classes that can be used.
Some of these will be explored in Unit 10 and Unit 11.

Searching for a value in an array
If we want to know if a particular value exists in an array we could search for it by
iterating over every element in the array. However, it would be more efficient to stop as
soon as we had found it. In a case like this we do not know ahead of time how many
iterations we will need in our loop, and so it is necessary to use a while statement. We
need to continue searching while:

1 we have not found the value we are looking for, and

2 there are still array components left to search.

These two conditions lead to a while statement heading that might look like this:

while ((i < anArray.length) && (!found))

where i is an int index counter that has been initialised to 0 and found is a boolean
flag that has been initialised to false.

Within the body of the loop we need to look at the element at each index in turn and
compare it with what we are looking for. If the value is found, true is assigned to the
variable found, if it is not, the index counter i is incremented. If found becomes true,
or if the last component of the array is processed, the loop condition will evaluate to
false, stopping the search.

2 Processing arrays 33

Here is the complete code assuming that the array anArray contains primitive values,
and the value being searched for is held in searchValue:

int i = 0;

boolean found = false;

while ((i < anArray.length) && (!found))

{

if (anArray [i]== searchValue)

{

found = true;

}

else

{

i++;

}

}

We would use the
message equals() rather
than == if we were
comparing the state of two
objects.

SAQ 19

Suppose that searchValue is found in the array. Does the programmer know where in
the array it was found once the loop has exited?

ANSWER...

Yes! The variable i will hold the last index processed (the one where the value was
found). Note, though, that this code will find only the first occurrence of the value in the
array, there may be others.

2.3 Inserting an element into a sorted array

If the elements in an array have been added in a particular order you may want to insert
an element at a specific index (rather than at the next available unfilled component). For
example, given the following sorted array,

� � � � �

� � �� �� ��

� �

�������� �

Figure 27 A sorted array

you may wish to insert a new element in such a way as to keep the elements in
ascending order. To do this, first the correct index for the insertion needs to be found,
which means that we need to compare the new element with the other meaningful
integers in the array, one at a time. Either we will eventually find an integer that is bigger,
in which case we know that the new element needs to be inserted there and the
elements from this index onwards need to be moved up by one to make space for it, or
we will not find a bigger integer, and we know that our new element has to be stored at
the very end of the array, after the current last element.

34 Unit 9 Collections: Arrays, strings and StringBuilders

There are many variations on this code, but in this version we assume that the calculated
effective length of the array contains the number of meaningful elements (so for
Figure 27, this is 5), which is less than the length of the array (there must be room to
insert a new element):

boolean found = false;

int findIndex = 0;

while ((findIndex < effectiveLength) && (!found))

{

if (newElement > numArray [findIndex])
{

findIndex++;
}
else
{

found = true;
}

}

There are two possibilities after the execution of this code.

1 found could hold true, which means that findIndex holds the index where the new
element needs to be inserted. In this case all of the elements of the array from
findIndex upwards need to be shifted one place to the right (in order to make room
for the new element to be inserted at findIndex). This shift to the right has to be
done starting from the end of the meaningful array and working back to findIndex
because otherwise elements will be overwritten in the process of the shift.

2 found could hold false, which means that findIndex holds a number one more
than the index of last meaningful element. In this case the new element is larger than
any element currently in the array, and so it should simply be inserted at findIndex.

Here is one version of code that will insert the new element in the right place in either
case:

if (found)
{

for (int i = effectiveLength – 1; i >= findIndex; i--)
{

numArray [i + 1]= numArray [i];
}

}
numArray [findIndex]= newElement;
effectiveLength = effectiveLength + 1;

If you have a very large array, finding the correct place for a new element, and then
moving other elements to accommodate it, is costly in terms of processor and
programming time. If you need a collection to be sorted it might be better to consider
using one of the purpose built classes for sorted collections that you will see in Unit 11.

ACTIVITY 3

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select the
OUWorkspace. Open the file called CodeForActivity3.txt.

In the following activities intArray is an array that holds integers. You may want to
create the array {10, 5, 7, 2, 9, 8, 1, 12 }to test your code, but your code should work
on any full array of integers.

2 Processing arrays 35

Make sure that the Show results checkbox is checked and then enter, select and execute
statements to do each of the following (inspect the variables when appropriate to check
your code works as expected).

1 Print the textual representation of each element in intArray, one to a line, to the
Display Pane.

2 Display the total of all the elements of intArray in a dialogue box.

3 Find all the elements in intArray that are greater than 8 and replace each of them
by 0.

4 Create a second array, intArrayCopy, that is an exact copy of intArray.

Make sure that the Show results checkbox is checked and then enter, select and execute
statements to do each of the following (you should inspect variables where appropriate):

5	 Prompt the user to enter the desired length of an array (with a default option of 10),
and then create an int array called myArray of this length. The user should then be
repeatedly invited to enter a value (with a default option of 0) to be stored in the array.
The user should be prompted to enter exactly enough values to fill the components of
the array.

6	 Check if two int arrays, anArray and anotherArray, are identical arrays (that is
they contain exactly the same elements in the same order). Your code should use a
variable named identical that should hold either true if they are identical or false
otherwise. You should test your code on each of the following pairs of arrays.

int[]anArray = {7, 6, 9, 2, 6, 10, 8};
int[]anotherArray = {7, 6, 9, 2, 6, 10, 8};

int[]anArray = {7, 6, 9, 2, 6, 10, 8};
int[]anotherArray = {7, 6, 9, 1, 6, 10, 8};

int[]anArray = {7, 6, 9, 2, 6 };
int[]anotherArray = {7, 6, 9, 2, 6, 10, 8};

int[]anArray = {};
int[]anotherArray = {};

7	 Find the first occurrence of a red frog in an array of Frog objects called frogPond.
Display a dialogue box that either gives the index at which the first red frog is found, or
announces that no red frogs exist in the pond.

You should test your code on ponds that contain:

c no red frogs;

c exactly one red frog;

c more than one red frog.

Hint: First create the frogPond array with the components holding references to
newly initialised frogs (so none of them are red). You can do this by evaluating the
code:

Frog []frogPond = {new Frog(), new Frog(), new Frog()};

Once you have tested this, send a message to change the colour of one of the frogs
to red, and test again. Finally change the colour of another frog to red and test again.

36 Unit 9 Collections: Arrays, strings and StringBuilders

DISCUSSION OF
ACTIVITY 3
1 for (int anInt : intArray)

{
System.out.println(anInt);

}

Here anInt is assigned, one at a time, the value of each element of intArray.

2 int sum = 0;

for (int anInt : intArray)
{

sum = sum + anInt;
}
OUDialog.alert("sum is " + sum);

The variable sum must be initialised to 0 before the foreach statement. A running
total is calculated within the loop body. Using the suggested test data, sum should
hold the value 54.

3 for (int i = 0; i < intArray.length; i++)

{
if (intArray [i] > 8)
{

intArray [i]= 0;
}

}

Here a for loop is needed (rather than a foreach loop) because the processing
requires the primitive values held in the array components to be changed. Each
array element in turn is compared to 8. If it is greater than 8 the array element is
overwritten by 0, i.e. the component at the current index is assigned 0.

4 int[]intArrayCopy = new int[intArray.length];

for (int i = 0; i < intArray.length; i++)

{

intArrayCopy [i]= intArray [i];

}

The first line creates a new array, intArrayCopy, which is the same length as the
existing intArray. Within the loop body each element of intArray is assigned to
the corresponding component of intArrayCopy.

Notice that here we have to use a for loop (rather than a foreach statement)
because we need to change the existing elements of intArrayCopy (which have
been initialised to the default value of 0).

You might have tried intArrayCopy = intArray but this does not create a new
array, rather it provides a second reference, intArrayCopy, for the array referenced
by intArray. You can verify this by evaluating intArrayCopy == intArray which
will return true, showing that they reference the same object.

5 String desiredLength;

String input; desiredLength =
OUDialog.request("How many integers do you wish to store?", "10");

int[]myArray = new int[Integer.parseInt(desiredLength)];
for (int i = 0; i < myArray.length; i++)
{

input = OUDialog.request("Please enter an integer", "0");

myArray [i]= Integer.parseInt(input);

}

2 Processing arrays 37

Did you remember that the results from the dialogue box needed to be converted

from a String to an int? In our solution we used a temporary variable, but the

conversion and assignment could have been done in one statement as follows

(assuming that input is declared as an int):

input = Integer.parseInt(OUDialog.request("Please enter an integer", "0"));

6	 Here is one possible solution. Notice that checking that the two arrays have the
same length is a sensible first step (because there is no need to proceed if they do
not). The while loop exits if two elements with the same index are not identical (the
boolean flag becomes false), or when the last component has been processed
(i exceeds the length of the array).

boolean identical = true;

int i = 0;

if (anArray.length == anotherArray.length)

{

while ((i < anArray.length) && (identical))

{

if (anArray [i]!= anotherArray [i])

{

identical = false;

}

i++;

}

}

else

{

identical = false;
}

When you inspect identical after each run of the given test data it should hold

true, false, false and true, respectively.

7	 Again we use a while loop to iterate through the array until either a red frog is found,
or there are no more components.

int i = 0;

boolean found = false;

while ((!found) && (i < frogPond.length))

{

if (frogPond [i].getColour().equals(OUColour.RED))

{

found = true;

}

else

{

i++;
}

}

if (found)

{

OUDialog.alert("Red frog found at index " + i);

}

else

{

OUDialog.alert("No red frogs found in this pond");

}

�

�

�

38 Unit 9 Collections: Arrays, strings and StringBuilders

2.4 Two-dimensional arrays

The arrays we have used so far have been one-dimensional – they represent items in a
list or a single sequence. A two-dimensional array can be used to represent a two­
dimensional table of values, like this one:

� � � � �

� � � � �

� � � � �

� � � � �

Figure 28 A two-dimensional array Of course, we could just
as well have thought of
this as being an array of
length 5, each component
of which references an
array object of length 3.

The above table is an array of length 3, each component of which references an array of
length 5:

�

�

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Figure 29 A two-dimensional array

Here is the code to declare a variable to reference a two-dimensional array to hold int
elements, and assign a newly created two dimensional array to that variable.

���������������������������������

number of rows number of columns

Figure 30 Creating a two-dimensional array of integers

�

�

�

� � � � �

��������

� � � � �

� � � � �

� � � � �

�

�

�

� � � � �

��������

� � � � �

� � � � �

� � � � �

2 Processing arrays 39

To put an integer in a particular component we can think of giving a kind of ‘grid
reference’, so,

intTable[1][4]= 8;

places an 8 in row 1 of column 4.

Figure 31 The component intTable [1][4]

Suppose that we now wanted to put 6 in every column in row 2. We could use a for loop
to do this:

for (int i = 0; i < 5; i++)

{

intTable[2][i]= 6;

}

In this code we have ‘fixed’ the row index to 2, and allowed the column counter, i, to go
from 0 to 4, assigning 6 to each of the 5 elements in row 2.

SAQ 20

Consider the situation where all the elements in intTable are 0, as they would be when
the array is first created.

Figure 32 The array intTable when it is first created

�

�

�

� � � � �

��������

� � � � �

� � � � �

� � � � �

�

�

�
 �

� � � � �

��������

� � � � �

� � � � �

� � � �

40 Unit 9 Collections: Arrays, strings and StringBuilders

(a) What will intTable contain after the following for loop has been executed?

for (int i = 0; i < 5; i++)

{

intTable[2][i]= 7;

}

(b) Again, with all the elements being 0, what will intTable contain after the following
for loop has been executed?

for (int i = 0; i < 3; i++)

{

intTable[i][1]= 7;

}

ANSWER...

(a) In the code, the row number is fixed at 2, and the column count goes from 0 to 4, so 7
is placed in each column of row 2.

Figure 33 intArray after 7 has been placed in each column of row 2

(b) In the code, the column number is fixed at 1, and the row number iterates from 0 to 2,
so 7 is placed in each row of column 1.

Figure 34 intArray after 7 has been placed in each row of column 1

2 Processing arrays 41

Processing a complete table
The following code creates a table with 3 rows and 2 columns:

int[][]aTable = new int[3][2];

� �

�

�

�

������

� �

� �

� �

Figure 35 A newly created two-dimensional array

Now consider this code;

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 2; j++)

{

aTable[i][j]= 10;

}

}

We can see that the outer for loop, with a loop control variable i is controlling the rows.
The inner for loop, with a loop control variable j is controlling the columns.

When the outer loop is first encountered, i is set to 0, and the outer loop body is entered.
The inner for loop then iterates twice, for j = 0 and j = 1. Since i remains as 0, the
effect is that each component in row 0 is initialised to 10. Once j has been incremented
to 2, the inner loop condition is false, and control is returned to the outer loop. The outer
loop control variable, i, is incremented to 1, and as the outer loop condition is still true,
the loop body is entered, and the inner loop again iterates twice for j= 0 and j= 1. This
time because i remains as 1, it is each component in row 1 that is initialised to 10. When
j reaches 2 the inner loop exits, and control returns to the outer loop, where i is
incremented to 2. The inner loop then iterates twice, initialising each component of row 2
to 10. When control returns to the outer loop i is incremented to 3, causing the outer
loop to exit because the outer loop condition becomes false.

Tracing through a nested loop like this is difficult, but the way the code works should
be apparent. The outer loop controls which row is being processed, and the inner
loop processes each column in the current row. At the end of the looping process we
have processed each column within each row, and the whole two-dimensional array
has been processed.

42 Unit 9 Collections: Arrays, strings and StringBuilders

SAQ 21

With paper and pencil write code to find the total of all the elements in a two-dimensional
array named numTable, which is defined as follows.

double[][]numTable = new double[9][4];

ANSWER...

double total = 0;

for (int i = 0; i < 9; i++)

{

for (int j = 0; j < 4 ; j++)

{

total = total + numTable[i][j];

}

}

For each row in turn (controlled by the outer loop), the inner loop processes each
column.

Declaring and creating a two-dimensional array using literals
Because Java treats a two-dimensional array as an array that has components that are
also arrays, we can create a ready initialised two-dimensional array using the syntax for
a literal array we saw earlier for one-dimensional arrays:

int[][]aTable = {{1, 3, 5}, {7, 9, 11}};

which represents a table with 2 rows and 3 columns, as shown in the next figure. Note
that:

int [][]aTable;
aTable = new int [][]{{1, 3, 5 }, {7, 9, 11 }};

will also work.

� � �

�

�

� � �

� � ��

Figure 36 A two-dimensional array

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

2 Processing arrays 43

ACTIVITY 4

Launch BlueJ and open project Unit9_Project_1.

Look at this table (Figure 37), which is known as Dürer’s magic square because it
appears in an engraving called Melancholia that Dürer made in 1514 (notice the 15 and
14 in the middle of the last row).

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Figure 37 A magic square

The rows and columns of Dürer’s magic square each add up to 34, as do the diagonals.
Each corner quadrant, and the middle square also add up to 34.

Figure 38 The quadrants and centre square of the magic square

Make sure that the Show results checkbox is checked and then enter, select and execute
statements to do each of the following.

1 Using the literal array syntax create a new array referenced by a variable called
intTable to represent Dürer’s magic square.

2 Report in a dialogue box the sum of all the elements in intTable.

3 Report in separate dialogue boxes the sum of each row of intTable (giving the
appropriate row number each time).

4 Report in separate dialogue boxes the sum each column of intTable (giving the
appropriate column number each time).

If you have time you may also want to check the two diagonals, and the five individual
squares.

44 Unit 9 Collections: Arrays, strings and StringBuilders

DISCUSSION OF
ACTIVITY 4
1 int[][]intTable = {{16,3,2,13}, {5,10,11,8}, {9,6,7,12}, {4,15,14,1}};

2 int sum = 0;

for (int i = 0; i < 4; i++)

{

for (int j = 0; j < 4; j++)

{

sum = sum + intTable [i][j];

}

}

OUDialog.alert("The sum of all elements is " + sum);

Here the outer loop, controlled by i, processes each row in turn. For each row in turn
the inner loop, controlled by j, processes each column. Hence the sum is
calculated for each column in turn and for each row in turn, giving a total that is
reported outside the nested loop.

3 int sum = 0;

for (int i = 0; i < 4; i++)
{

for (int j = 0; j < 4; j++)
{

sum = sum + intTable [i][j];
}
OUDialog.alert("Row " + i + " has a total of " + sum);
sum = 0;

}

Here the outer loop, controlled by i, processes each row in turn. For each row in
turn, the inner loop, controlled by j, processes each column. However, we want the
sum to be displayed at the end of each row processed, and so sum needs to be
reset to 0 before the next row is processed. Therefore, statements to perform these
tasks are placed before the end of the outer loop body.

4 int sum = 0;

for (int j = 0; j < 4; j++)

{

for (int i = 0; i < 4; i++)

{

sum = sum + intTable [i][j];

}

OUDialog.alert("Column " + j + " has a total of " + sum);

sum = 0;

}

This is similar code to the previous answer, but here the outer loop, controlled by j,
processes each column in turn. For each column in turn, the inner loop, controlled
by i processes each row. However, we want the sum to be displayed at the end of
each column processed, so sum needs to be reset to 0 before the next column is
processed. Therefore statements to perform these tasks are placed before the end
of the outer loop body.

For your interest, the code to check the sum of the diagonals and for the top left­
hand quadrant is shown below.

2 Processing arrays 45

Diagonal down (from left to right):

int sum = 0;

for (int k = 0; k < 4; k++)

{

sum = sum + intTable [k][k];
}
OUDialog.alert("The sum of the diagonal down elements is " + sum);

Diagonal down (from right to left):

int sum = 0;

for (int k = 0; k < 4; k++)

{

sum = sum + intTable [k][3 - k];
}
OUDialog.alert("The sum of the diagonal up elements is " + sum);

Top left-hand quadrant:

int sum = 0;

for (int i = 0; i < 2; i++)

{

for (int j = 0; j < 2; j++)

{

sum = sum + intTable[i][j];

}

}
OUDialog.alert("The sum of the top left quadrant is " + sum);

Multi-dimensional arrays
Although we have talked only about two-dimensional arrays, Java allows three- or four­
(or more) dimensional arrays. In each case the array is considered to be an array of
arrays. For example, a three-dimensional array is considered to be an array whose
components reference two-dimensional arrays.

2.5 java.util.Arrays

Now you have worked through lots of exercises using arrays we have a confession to
make. Java has a built-in library class called java.util.Arrays that does some of the
routine tasks that we often need to do when working with arrays. In the activity that
follows you will explore some of the static methods within this utility class. These
methods are all overloaded so that there are methods with the same name for handling
arrays of primitive values or objects.

46 Unit 9 Collections: Arrays, strings and StringBuilders

ACTIVITY 5

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu open the
OUWorkspace. Open the file called CodeForActivity5.txt, select and execute the code:

int[]firstIntArray = {9, 3, 7, 2, 8, 4, 10, 1, 5, 6 };
int[]secondIntArray = {9, 3, 7, 2, 8, 4, 10, 1, 5, 6 };
String []firstStringArray = {"Bob" , "Anne", "Alan" , "Mani"};
String []secondStringArray = {"Mani" , "Alan" , "Bob" , "Anne"};
int[][]firstTable = {{1, 3, 2}, {5, 9, 4}, {3, 7, 10}, {8, 1, 6 }};
int[][]secondTable = {{1, 3, 2}, {5, 9, 4}, {3, 7, 10}, {8, 1, 6 }};
int[][]thirdTable = {{3, 1, 2}, {5, 9, 4}, {3, 7, 10}, {8, 1, 6 }};

Select and execute each of the following statements, one at a time. Describe the effect of
each statement. If you are not sure of the effect, create additional arrays to experiment
further.

1	 Arrays.toString(firstIntArray);

Arrays.toString(firstStringArray);

2	 Arrays.deepToString(secondTable);

3	 Arrays.equals(firstIntArray, secondIntArray);

Arrays.equals(firstStringArray, secondStringArray);

4	 Arrays.deepEquals(firstTable, secondTable);

5	 Arrays.sort(firstIntArray);

Arrays.sort(firstStringArray);

6	 Arrays.fill(firstIntArray, 0);

7	 Arrays.fill(secondIntArray, 2, 8, 100);

8 	From BlueJ’s Help menu choose Java Class Libraries. When the browser opens,
select, from the left-hand frame, the Arrays class. Find a static method of Arrays
that can be used to determine whether a particular integer is in a sorted array. Read
the description of this method carefully. Write the statements you would execute to
first sort secondIntArray, and then determine whether the integer 9 is present in the
sorted array. Predict what will be returned. Test your code.

9	 Next, still using the Javadoc, find a static method of Arrays that can be used to
determine whether a particular object is in a sorted array. Write the statement you
would execute to determine whether "Anne" is present in firstStringArray, and
predict what will be returned. Finally, write the statement you would execute to
determine whether "Bill" is in firstStringArray, and predict what will be returned.
(Note that firstStringArray should already be sorted from part 5 above.) Test your
code.

DISCUSSION OF
ACTIVITY 5
1	 The following is displayed in the Dialogue Pane when the first statement is executed:

"[9, 3, 7, 2, 8, 4, 10, 1, 5, 6]"

and the second statement displays the following.

" [Bob, Anne, Alan, Mani]"

The effect of Arrays.toString() is to return a string representation of the contents
of the array ‘topped’ and ‘tailed’ with square brackets.

2 Processing arrays 47

2 The following is displayed.

"[[1, 3, 2], [5, 9, 4] [3, 7, 10], [8, 1, 6]]"

The effect of Arrays.deepToString() is to return a string representation of the
contents of the array given as the method’s argument, including the contents of any
of the arrays within the argument array.

3 The first expression returns true and the second returns false. The effect of
Arrays.equals() is to return true if the two arrays given as the method’s argument
are equal (they contain exactly the same elements in the same order) and false
otherwise. If the component type of the arrays is some primitive type, then
corresponding pairs of elements in the two arrays are compared by value using ==.
If the component type of the arrays is some class type, then corresponding pairs of
elements in the two arrays are compared using equals(). This means that, unless
the equals() method inherited from Object has been overridden by that class (or
one of its superclasses), the elements in the arrays will be compared for identity
rather than state.

4 The statement returns true. The effect of Arrays.deepEquals() is to return true if
the two arrays given as the method’s arguments are deeply equal and false
otherwise. Deeply equal means that if the arrays themselves contain arrays, the
pairs of corresponding nested arrays must also be equal.

5 The components of firstIntArray now hold the integer elements in the following
order:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and the components of firstStringArray now hold the string elements in the
following order:

{"Alan", "Anne", "Bob", "Mani" }.

The effect of Arrays.sort() is to sort the elements of the argument array into
ascending order (as long as the elements can be compared). The Arrays class also
has another version of the sort() method that allows part of an array to be sorted.
For example the code Arrays.sort(intArray, 4, 8) would sort the elements at
indexes 4 to 7, but leave the others unchanged. Note it would not sort up to index 8
because the third argument to this method is exclusive whereas the second
argument is inclusive.

6 The components of firstIntArray now hold the following.

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

The effect of Arrays.fill() is to fill the components of the argument array with the
given value. This method can be used with any type of literal value as the second
argument (as long as it matches the component type of the array).

7 The components of secondIntArray now hold the following elements, in the
following order.

{9, 3, 100, 100, 100, 100, 100, 100, 5, 6 }

The effect of this version of Arrays.fill() is to fill just part of an array. The first
argument is the array, the next two int values give the starting and ending indexes,
and the fourth argument gives the value to be assigned to the components within
those indexes. The array is filled from the start index to the end index –1 (that is, in
this case, from index 2 to index 7).

48 Unit 9 Collections: Arrays, strings and StringBuilders

8	 The static method signature is binarySearch(int [], int). A binary search
should only be conducted on a sorted array. The code to be executed is:

Arrays.sort(secondIntArray);
Arrays.binarySearch(secondIntArray, 9);

This returns 3, indicating that 9 was found at index 3.

9 The static method signature is binarySearch(Object [],Object). The two
expressions to be executed are:

Arrays.binarySearch(firstStringArray, "Anne");
Arrays.binarySearch(firstStringArray, "Bill");

The first expression returns 1, indicating that "Anne" was found at index 1. The
second expression returns –3. The negative value indicates that "Bill" was not
found in the array. The value of the negative int is given by,

(– (insertion point) –1)

where the insertion point is the index at which the value should be inserted in order
to maintain the sorting. So if, for example, –3 is returned this indicates that "Bill"
should be inserted at index 2 (one less than the absolute value of the return value).

3 The main() method 49

3 The main() method

So far in this course you have used BlueJ to write and adapt classes and then to compile
them. You have then used the OUWorkspace to write and execute code that creates
instances of those classes and then send messages to them. In this way you have made
frogs dance, transferred money between bank accounts, converted currency and
displayed marionettes, all by sending messages to objects in the OUWorkspace. In
effect, you have used the OUWorkspace to write small programs.

In this section we will look at how programs can be written without using the
OUWorkspace, or even BlueJ.

Any program that is executed outside the OUWorkspace (and in real life this is the
normal situation) has to have an entry point; it must start somewhere. To define the
starting point for execution, Java uses the mechanism of a main() method, which
follows the approach used by the earlier programming language C.

To run a Java program, the Java Virtual Machine (JVM) loads a particular class that
must have been previously specified. This class must contain a special static method
called main(). The JVM then executes this main() method, which sets the ball rolling
and everything else the program does cascades from this. To all intents and purposes,
main() does the same job as the OUWorkspace.

Java is very strict on how the main() method is defined; it must have exactly this
header:

public static void main(String []args)

As stated, the purpose of the main() method is to provide a starting point for the
execution. Therefore it must be declared as public because it has to be available to the
world outside the class in which it is defined. It must also be declared as static,
because main() is the first method to be invoked, and at this point no objects exist. It
does not return anything, so its return type is void. You will also see that it has a single
argument, which you should recognise as an array of String objects, called args. We
will talk more about this argument later in this section.

3.1 Developing programs outside the BlueJ
environment

It is perfectly possible to compile and execute programs without using the BlueJ
environment (or any other IDE such as JBuilder or NetBeans) as long as the Java
Development Kit (JDK) is available on your computer. The source code can be written
and edited in any text editor (for example, Microsoft Notepad), and then compiled and
executed from the command prompt window with the command prompt tools provided
with the JDK. If a program is developed outside of the BlueJ environment it must include
a main() method, so let us look a bit more closely at what a main() method might look
like.

The command prompt
window is also known as
the C prompt, the shell,
the cmd prompt and the
command line.

50 Unit 9 Collections: Arrays, strings and StringBuilders

Here is an example of a very simple class.

/**
* Prints "Hello world" to the default output device
*/

public class Welcome

{

/**
* main() method
*/

public static void main(String []args)

{

welcome.start();

}

/**
* Prints "Hello world" to the default output device.
*/

public static void start()

{

System.out.println("Hello world");

}

}

The Welcome class consists of two static methods, main() and start(). The code in
the body of main() merely invokes the start() method. It is generally the case that the
main() method simply ‘passes the buck’ by invoking another method, in this case
start(), within which resides the code to coordinate the meaningful task. Here the
meaningful task is to output the phrase ‘Hello World’ to the standard output device.

ACTIVITY 6

We would recommend
Notepad, or any other
simple text editor because
word-processing
packages often insert
special characters, such
as smart quotes, which
may not be recognised by
the Java compiler.

In this activity you will create, compile and run the Welcome program without using the
BlueJ environment. For your convenience we have provided a copy of the source code in
the folder Unit9_Activities_6-8 in a file called Welcome.txt.

Do not open BlueJ, instead open this file within a text editor, such as Notepad. Do not
modify it, but save it with the name Welcome.java. In Notepad you can do this by using
SaveAs, and then changing the Save as type: field to All Files, before typing the filename
Welcome.java in the File name: field. (Note that in Java, class source files must end in
.java and must be named with the same name as the class they contain.)

Many text editors add their own file extension as a default, for example .doc for Word
documents, so if you are not using Notepad ensure that the file really has been saved as
Welcome.java (and not Welcome.java.doc, for example.)

You should now access the command prompt window. For your convenience we have
provided an easy means to do this, and to set the correct path. Simply double-click on the
file called ‘command prompt’ which is in the Unit9_Activities_6-8 folder. You should find
that the command prompt window opens and (depending on where you installed the
M255 software) looks something like this:

C:\> ... M255\M255Projects\Block3\Unit9_Activities_6-8>

3 The main() method 51

Now to compile the Welcome source file you need to type the JDK compile command,
javac, followed by the file name and extension of your source file like this:

C:\> ... M255\M255Projects\Block3\Unit9_Activities_6-8>javac Welcome.java

The source code provided contained no syntax errors so it should compile. You will not
get any feedback that this has happened in the command prompt window, but you should
find that a new file called Welcome.class will have automatically been created for you in
the same folder as your original .java source file. (Note that all compiled class files end
with .class in Java.)

Now you are ready to execute your program. In the command prompt window type java
followed by the name of the .class file. Note that you must not include the .class extension
here.

C:\> ... M255\M255Projects\Block3\Unit9_Activities_6-8>java Welcome

Once your program has run correctly, open the file from a text editor such as Notepad and
introduce a syntax error into the source code, for example, type an extra } at the end.
Save this file, and try to compile it again. What happens? Now correct the syntax error,
but delete or comment out the main() method in the source code before compiling it and
running it again. What happens?

If you have another Java
IDE installed on your
computer (in addition to
BlueJ), do not double-click
.java files, as it may
result in the other IDE
starting up.

DISCUSSION OF
ACTIVITY 6

When your program executes, Hello world is output to the command prompt window.

After you have introduced a syntax error, the class will not compile, and the following
error message appears:

Welcome.java:24: 'class' or 'interface' expected
}
^
Welcome.java:25: 'class' or 'interface' expected
}
^

indicating that the source code does not have the correct syntax for a class or interface.

If main() is commented out the class will compile successfully, but attempting to
execute it produces the following error message:

Exception in thread "main" java.lang.NoSuchMethodError: main

indicating that the class does not constitute a program as it does not have a main()
method.

3.2 Arguments to the main() method

We have not yet explained the purpose of the argument to the main() method, which as
you recall is in the form of String []args. You learnt in Unit 4 that arguments are the
means by which the additional information that the method needs to do its job is made
available to the method. The same applies to the main() method. When a program is
executed from the command prompt, any additional information the program needs can
be typed in as arguments at the command prompt. These arguments are then stored in
the args array and are available to be used by the main() method.

52 Unit 9 Collections: Arrays, strings and StringBuilders

Consider this amended program:

/**
* Prints the name entered as arguments at the command prompt
*/

public class Welcome2

{

/**
* The main()method
*/

public static void main(String []args)

{

Welcome2.start(args);

}

/**
* Prints names to the standard output device
*/

public static void start(String []names)

{

System.out.print("Hello");

for (String eachName : names)

{

System.out.print(" " + eachName);

}

}

}

Now suppose this source code is saved as Welcome2.java and successfully compiled.
It can then be executed from the command prompt, as follows:

C:\>...M255\M255Projects\Block3\Unit9_Activities_6-8>java Welcome2 John Rob Kermit

The command line arguments, John, Rob and Kermit are stored in the args array which is
the argument of the main() method. So when the program is executed, args will contain
the three string elements "John", "Rob" and "Kermit" at indexes 0, 1 and 2, respectively.

��� ���

��� ���

��� ��� ��� ���

����

�

�

�

���

���

���

��� ���

Figure 39 The args array for Activity 6

3 The main() method 53

In our simple program, args is then passed as an argument to the start() method,
where each of the String elements is printed in turn, using a foreach statement.

In fact, command line arguments are rarely used in Java, but the syntax requires the use
of String []args as the argument for every main() method.

ACTIVITY 7

1	 The source code for the Welcome2 class has been saved as Welcome2.txt, in the
folder Unit9_Activities_6-8. Save this file as Welcome2.java, and compile and run it at
the command prompt with a variety of different arguments.

2	 Save your source file as Welcome3.java. Using Welcome3.java carefully amend the
source code so that it outputs the command line arguments in reverse order. You will
have to use a for loop to do this (rather than a foreach), with the loop counter
initialised to the last index of the array, and being decremented after each iteration.
(Note that you will need to change any references to Welcome2 in the source code to
Welcome3.) Compile and run this new program.

DISCUSSION OF
ACTIVITY 7
1	 You should find that Hello followed by the command line arguments is output.

2	 You want to print out the last element of the array, down to the element at index 0, so
the start() method should be modified as follows.

public static void start(String []names)
{

System.out.print("Hello");

for (int i = names.length - 1; i >= 0; i--)

{

System.out.print(" " + names [i]);

}

}

3.3 A complete program that uses arrays

ACTIVITY 8

In this activity you will compile and run a standalone program that grades a multiple­

choice quiz. You will run the program from the command prompt with a pupil’s answers
being entered as command line arguments. There are four possible answers to each
question, which will be stored as the strings "A", "B", "C" and "D". When it is run, the
program will take 10 command line arguments and these will be used to construct an
array called pupilsTest of the pupil’s answers. The key for the test will be ‘hard coded’
into the program as an array called key. The pupil’s quiz will be graded by comparing
each element of key to the corresponding element of pupilsTest, and the result (as a
percentage) will be displayed in a dialogue box, along with a message saying whether the
pupil passed or failed (anything less then 40% is a fail). Here is the source code, which is
also available in the Unit9_Activities_6-8 folder, as a .txt file called QuizMarker.txt.

54 Unit 9 Collections: Arrays, strings and StringBuilders

public class QuizMarker
{

private static final String []KEY = {"D","A","A","B","C","B","A","C","C","D"};
private String []pupilsTest;

/**
* Creates an instance of class QuizMarker
* and sends it the message markQuiz()

*/

public static void main(String []args)
{

QuizMarker marker = new QuizMarker(args);

marker.markQuiz();

}

/**
* The method that controls the program.
*/

public void markQuiz()

{

// the return value from mark() is used as

// the argument for reportResults() message

this.reportResults(this.mark());

}

/**
* Constructor for objects of class QuizMarker. It will initialise
* the array pupilsTest to be identical to args (the elements of
* arg come from the command line arguments).
*/

public QuizMarker(String []args)

{

this.pupilsTest = args;

}

/**
* Compares the key with the pupils test, and
* returns the number of marks scored by the pupil.
*/

private int mark()

{

int score = 0;

for (int i = 0; i < this.pupilsTest.length; i++)

{

if (QuizMarker.KEY [i].equals(this.pupilsTest [i]))

{

score = score + 1;

}

}

return score;

}

3 The main() method 55

/**
* Displays the result of a pupil to standard output. The argument
* pupilScore is the number of marks the pupil scores
*/

public void reportResults(int pupilScore)
{

int percentage = (int)((pupilScore * 100.0 / QuizMarker.KEY.length) + 0.5);
String result = "passed";
if (percentage < 40)
{

result = "failed";
}
System.out.println ("Percentage score is " + percentage

+ "%" + " the pupil has " + result);
}

}

There are a couple of new things in this program that you might want to note. First you will
see that the static variable, KEY, is unusually spelled in upper-case letters, and it has the
keyword final in its header. The final keyword ensures that once a variable has been
assigned a value or object (here it is an array object) the value or state of this variable
cannot be altered during the execution of the program. To indicate this to anyone reading
the program, a variable that has been declared as being static and final is usually spelled
in upper-case letters.

The other unusual thing is that we have not provided setter or getter messages for the
instance variables. This is common practice for instance variables that reference array
objects – they are usually accessed directly.

Read the program through carefully, and make sure that you understand it. Note in
particular the way that the args array in main() is passed as an argument to the
constructor where it is assigned to the instance variable pupilsTest. You may also want
to make sure that you understand the casting that is done in the calculation of
percentage in the reportResults(int) method.

Once you understand the program, save the file as QuizMarker.java.

Compile your class from the command line. Now execute your program as follows:

java QuizMarker A B C D A B A B D C

Try other command line parameters.

DISCUSSION OF
ACTIVITY 8

With the given test data the output is:

Percentage score is 20% the pupil has failed.

56 Unit 9 Collections: Arrays, strings and StringBuilders

3.4 Programs that involve more than one
class

In the simple examples we have used, the program has involved only one class and so
the source code can be written in a single file. However, a program could involve many
classes, and it may be convenient for the source code for each class to be saved in
separate files. Typically, then, in real life, a Java program could consist of many files. In
order to get over the inconvenience of having lots of files, the JDK allows a mechanism
for collecting together the contents of all these separate files into a single zipped up file
called a .jar file. A .jar file provides an easy and portable way of packaging programs.

Before a .jar file can be executed the programmer must indicate which class contains
the main() method. This is recorded in a file within the .jar bundle called the manifest
file. Once this has been done, the .jar file can be executed using the appropriate JDK
command. For some operating systems the JDK will ensure that the operating system
treats a .jar file as an executable file. So in Windows, for example, a .jar file can also be
executed by simply double-clicking its icon.

4 Strings 57

4 Strings

You may recall that String objects model sequences of characters.

4.1 Creating and manipulating String
objects

Strings are commonly encountered when a user inputs data from the keyboard. For
example, you have seen assignment statements such as this:

name = OUDialog.request("Please enter your name", "anonymous");

where the expression on the right of the = returns a string, which is then assigned to the

variable name (which must have been previously declared as type String).

You have also seen how to create a String object as a string literal, for example:

String name = "Brian";

Here the string referenced by name consists of a sequence of five characters,

'B' 'r' 'i' 'a' and 'n', in that order.

Underneath the surface a string is stored as an indexed sequence of characters:

��� ������

� � �

������

� �

Figure 40 A string as a sequence of characters

However, it would be a big mistake to think of strings as being similar to arrays – they are
very different. Strings are constant, once a string has been created its state (the
individual characters) cannot be changed. The array notation cannot be used with
String objects. String objects do respond to messages, but none of those messages
change a string’s state.

You explored some of the protocol of String in Unit 3, where you saw useful messages
such as toUpperCase(), toLowerCase() and concat(). In fact, String has a very
large protocol and in the next activity you will explore some of the other messages that
can be sent to instances of the String class.

ACTIVITY 9

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select
OUWorkspace. Open the file called CodeForActivity9.txt. In this activity you will look at
messages in the protocol of String objects.

58 Unit 9 Collections: Arrays, strings and StringBuilders

Create the following String literals.

String aString = "Brian Aldridge";

String bString = "Ed Grundy";

String cString = "brian aldridge";

String dString = " a string with leading and trailing spaces ";

Enter, select and execute each of the following expressions, one by one, noting the value
that is returned in each case. Try to determine what effect the message has had each
time. If you are not sure, try out some different examples (all of these messages will work
when sent to string literals).

1	 aString.charAt(4);

bString.charAt(0);

2	 The following statements when executed all return an integer; do not worry about the
size of the integer, just its sign (whether it is + or -).

aString.compareTo(bString);

bString.compareTo(aString);

aString.compareTo(cString);

aString.compareToIgnoreCase(cString);

3	 aString.indexOf('i');

bString.indexOf('G');
cString.indexOf('B');

4	 aString.indexOf("Ald");

bString.indexOf("ward");

5	 aString.replace('r', 'w');

bString.replace('d', 'm');

6	 dString.trim();

7	 aString.length();

8	 aString.substring(4);

bString.substring(6);
cString.substring(3, 5);

DISCUSSION OF
ACTIVITY 9
1	 The first message answers 'n' and the second answers 'E'. The message

charAt(int) returns the character at the index indicated by the int argument.

2	 The first message answer is a negative int, the second a positive int and the third
a negative int. The message compareTo(String) compares the receiver string to
the argument string. If the receiver string comes before the argument string
alphabetically the message answer is a negative int (notice that an upper-case
letter comes before the same alphabetical lower-case letter) otherwise the message
answer is a positive int. If the two strings are exactly equal, 0 is answered. The size
of the answer (positive or negative) tells you how far apart in the character sequence
the first unequal characters are. So, in the first expression the answer is a -3
because 'B' in the receiver has a value that is 3 less than 'E' in the argument (the
first dissimilar character in the argument). The third expression evaluates to -32
because the 'B' in the receiver has a value that is 32 less than 'b' in the argument.

The fourth message expression uses the compareToIgnoreCase(String)
message, and answers 0. As the name of the message suggests, it ignores the case
of the characters and so the two strings aString and cString are deemed to be
equal.

4 Strings 59

3	 The message answer from the first expression is 2 and the message answer
from the second expression is 3. The third expression returns –1. The message
indexOf(char) returns the index within the receiver string of the first occurrence of
the character argument. If the character is not found, -1 is returned.

4	 The message answer from the first expression is 6 and the message answer from
the second expression is –1. If the string argument of the message with the
signature indexOf(String) occurs as a substring within the receiver string, then
the index of the first character of the first such substring is returned; if it does not
occur as a substring, -1 is returned.

5	 The message answers in each case are "Bwian Alwidge" and "Em Grunmy". The
message replace(char, char) returns a new string in which all the occurrences of
the first char argument in the receiver string have been replaced by the second
char argument. The receiver itself is not changed. If the first character does not
occur in the receiver, a string with the same state as the receiver is returned.

6	 The following string is returned "a string with leading and trailing spaces".
The effect of the message trim() is to return a copy of the receiver string with any
leading and trailing white space removed, or the receiver if it has no leading or
trailing white space. In either case, the receiver is unchanged.

7	 The message answer is 14, the number of characters in the receiver string. Note
that, unlike arrays, length() is a message (hence the () is needed).

8	 The first expression returns "n Aldridge", the second returns "ndy", and the third
returns "an" . The message substring(int) returns a new string that is a
substring of the receiver string. The substring begins with the character at the index
indicated by the argument and extends to the end of the receiver.

An IndexOutOfBoundsException is thrown if the argument is negative or greater
than the length of the string. The message substring(int int) returns a new
string that is a substring of the receiver. The substring begins at the index specified
by the first int argument and extends to the character at an index one less than the
second int argument (so the length of the substring is the difference between the
two int arguments). An IndexOutOfBoundsException is thrown if the first
argument is negative, or if it is bigger than the second argument, or if the second
argument is larger than the length of the receiver string.

4.2 Equality and identity

In Unit 3 you learnt how to use the message equals() to compare two strings to see if
they have the same state – that is, whether they contain exactly the same characters in
exactly the same order. For example, if you executed the following code:

String string1 = "Brian";
String string2 = "brian";
String string3 = "Brian";

you would expect the expression string1.equals(string3)to return true because
string1 and string3 contain the same characters in the same order. Notice that an
upper-case character and a lower-case character are considered to be different, so
string2.equals(string1) would return false.

You came across the
identity operator in Unit 3.

You might be surprised, however, to learn that executing string1 == string3 also
returns true. You will recall that the == operator (when used with objects) tests to see if
the two operands (here string1 and string3) reference the same object, so this result

60 Unit 9 Collections: Arrays, strings and StringBuilders

tells us that although the code appeared to create two different String objects (that
happened to have the same state), we, in fact, created a single String object,
referenced by two different variables; we say that string1 and string3 have the same
identity.

A reference diagram would look like this:

�������

�������

���

���

���

���

���

Figure 41 String variables with the same identity

In fact, whenever an attempt is made to create a string literal with exactly the same
sequence of characters as an existing string literal, a second reference to the original
String object is created instead. This means that only one copy of a particular string
literal needs to be kept in the system at any one time. Each time a string literal is created
Java looks to see if it already exists. If it does, rather than creating another one with
exactly the same state, Java ‘shares’ the existing String object by simply creating a
new reference to the existing string literal. The reason for this is one of efficiency – there
is no point in having more than one string literal in the system with exactly the same
character sequence, it is more efficient to share a single String object.

The situation is different if a string’s value is computed while a program is being
executed (that is, at run-time). In this case the new string becomes a distinct object,
even if there is a string with the same character sequence already in the system.

It is the case that the string
referenced by name4 has
the same state as the
string referenced by
name3, "JoLo".

Suppose the following code fragment is executed.

String name1 = "Jo";
String name2 = "Lo";
String name3 = "JoLo";
String name4 = name1 + name2;
String name5 = "Jo" + "Lo";
String name6 = new String("JoLo");

name4 would reference a distinct object to name3 because name4 references a string
whose value is computed when the program is executing (we can tell this because the
right-hand side of the assignment contains variables and not literal values). Similarly,
name6 and name3 reference distinct objects, because name6 is not assigned a literal
string, but a string created by new at run-time.

However, name3 and name5 would both reference the same String object, "JoLo", as
these strings have an identical sequence of characters, and have both been created as
literals.

4 Strings 61

SAQ 22

Given name1, name2 etc. as created by the code above, identify three variables that
reference three distinct strings with the same state.

ANSWER...

name3, name4 and name6 all reference distinct objects with the same state (one is a
literal and the other two are created at run-time). Because name5 references the same
object as name3, you could have also chosen name5 instead of name3.

SAQ 23

What will Figure 41 look like after the following statement is executed?

String myName = "Brian";

ANSWER...

An additional reference would be created to the existing String object:

�������

�������

������

���

���

���

���

���

Figure 42 Answer to SAQ 23

SAQ 24

Consider the following statements.

String name1 = "Lee";

String name2 = "Ann";

String name3 = "LeeAnn";

String name4 = name1 + name2;

String name5 = "Lee" + "Ann";

Once they have all been executed, what is the result of evaluating each of the following?

(a) name3.equals(name4);

(b) name3 == name5;

(c) name3 == name4;

ANSWER...

(a) true

name3 and name4 both have the same state, "LeeAnn".

(b) true

name3 and name5 reference the same object, the single copy of the string "LeeAnn".

62 Unit 9 Collections: Arrays, strings and StringBuilders

Important note: you may get a different result if you try this in the OUWorkspace, rather
than a method because, at the time of writing, the OUWorkspace handles literal strings
slightly differently from the BlueJ compiler.

(c) false

Because name4 was created at run-time, it references a distinct object (even though a
string with the same state already exists in the system).

4.3 String objects are immutable

Perhaps a surprising fact about the String class is that it is designed so that its
instances are immutable, which means that once a String object has been created, it
cannot be changed. This may seem counter-intuitive since in Unit 3 you learnt that
strings can be concatenated. For example, if this code is executed:

String name = "Brian";
name = name + " Aldridge";

the original string, "Brian", will appear to have been altered to "Brian Aldridge".
However, what actually happens is that a new instance of String is created and
initialised to "Brian Aldridge", and it is this new string that is assigned to name. The
original string "Brian" is unaltered and still exists in the system. Moreover it is now
unreferenced because the variable name now references the new string "Brian
Aldridge". This means that it will not be removed from the system until the garbage
collector calls, and until then it is occupying valuable memory space. At first glance this
may seem like a trivial problem, but consider this piece of code to build a string of
asterisks:

String str = "";

for (int i = 1; i <= 10000; i++)

{

str = str + "*";

}

Each time through the loop the previous incarnation of str is not deleted, instead it
continues to exist as an unreferenced object. By the time that this loop has finished we
have 10,001 different String objects ("", "*", "**", etc.) and all but one of these is
unreferenced. Only the final string with 10,000 asterisks is referenced (by str).

In a nutshell, whenever it looks as if we are altering a string we are, in fact, creating a
new string. If this new string is assigned to the original variable, the old string persists
and large numbers of unreferenced objects can end up cluttering up the system (which,
in turn, leads to relatively long garbage collection times). As you can imagine, unless the
programmer is aware of this, the immutable property of String objects can lead to
some very slow code. However, we will see how to get over this problem in the next
section.

5 The StringBuilder class 63

5 The StringBuilder class

In some situations the StringBuilder class provides a better alternative to the class
String because a StringBuilder object can be changed – it is mutable. In the last
section we learnt that underneath the surface a String object is stored as a sequence
of character values. The underlying representation of a StringBuilder object is also a
sequence of character values, however, for a StringBuilder object there is some
buffer space so that the number and sequence of characters can be changed. If the
buffer turns out not to be large enough to accommodate any changes, a new, longer
sequence is automatically created and the characters moved over into it.

5.1 Creating StringBuilder objects

There are several constructors for StringBuilder:

c StringBuilder() initialises an ‘empty’ StringBuilder object with the potential to
store 16 characters.

c StringBuilder(String) initialises an instance of StringBuilder that contains
the same characters as the string argument plus buffer space for 16 additional
characters. For example, the code:

StringBuilder sb = new StringBuilder("Hello");

declares a StringBuilder variable referenced by sb, and assigns to it a new
instance of StringBuilder with the character sequence 'H' 'e' 'l' 'l' 'o', but
with space for an additional 16 characters (giving the potential for the object
referenced by sb to contain 21 characters in total).

A third constructor for StringBuilder allows the programmer to specify the capacity of
the buffer, which is the number of characters a StringBuilder object can potentially
hold. For example, this code creates a new StringBuilder object that has a capacity
of 200 characters and assigns it to the variable myStringBuilder:

StringBuilder myStringBuilder = new StringBuilder(200);

Note that the capacity of a StringBuilder object is different to its length. As with a
String object, the length of a StringBuilder object is the number of characters in the
sequence. The capacity is the potential number of characters an existing StringBuilder
object can hold.

Building strings with StringBuilder
Consider this code:

StringBuilder sb = new StringBuilder(10000);
for (int i = 1; i <= 10000; i++)
{

sb.append("*");
}

The first line creates a new StringBuilder object with a buffer capacity of 10,000 and
assigns it to sb. At this stage sb is ‘empty’. Within the loop the append() message
appends the character (or characters if there are more than one) contained in the string
argument to the end of the existing string buffer.

64 Unit 9 Collections: Arrays, strings and StringBuilders

In this code, only a single StringBuilder object ever exists. The virtual system does
not have to create a new object during every iteration, as it did in the similar example we
saw in Section 4.3, using a String. Nor does it have to garbage collect any superfluous
unreferenced objects afterwards. The StringBuilder version of the code is very much
more efficient than the String version.

The moral of the story is that if you are going to want to change a string, in particular if
you are going to build a long string, it is far better to use a StringBuilder object. You
may ask what happens when a StringBuilder buffer gets ‘full’? If the buffer has
reached its capacity, and an attempt is made to insert or append more characters, a
new and larger underlying character sequence is created, and the existing character
sequence is copied into it. The original sequence is then garbage collected. On the
whole, though, letting the system create a new instance of StringBuilder is bad form
(object creation is a time-consuming business for the processor), it is better to simply
create a StringBuilder object that is a suitable size for your purposes in the first place.
However, if you are unsure whether there is sufficient capacity in a StringBuilder
object to append or insert additional characters, two messages can be of help. These
are capacity(), which returns the capacity of a StringBuilder object; and length()
which returns the number of characters currently in a StringBuilder object. The
difference between these two quantities will give the amount of spare space available for
additional characters.

ACTIVITY 10

We have talked about how the buffer capacity of a StringBuilder object makes building
strings a more efficient process. How can we test that? One fairly crude but simple
measure might be to compare the time it takes to build a character sequence of 10,000
asterisks using String and StringBuilder objects.

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select
OUWorkspace. Open the file called CodeForActivity10.txt. In this file there is the
following code fragment.

Date d1 = new Date();
String str = "";
for (int i = 1; i <= 10000; i++)
{

str = str + "*";
}
Date d2 = new Date();
System.out.println(d2.getTime() – d1.getTime() + " ms");

When executed, this code will first create an instance of Date, initialising the time
instance variable from your computer’s internal clock. Once the loop that builds a string of
10,000 asterisks has been executed, a second instance of Date is created. Finally, the
difference in the times (in milliseconds) between these two instances of Date is
calculated and displayed. This gives a crude reckoning of how long the loop has taken to
execute.

1 Execute this code, and note the number of milliseconds displayed.

2 Write a similar code fragment that uses a StringBuilder object to build the
character sequence of 10,000 asterisks. Note the number of milliseconds displayed
when your code is executed. Note also that neither the operator + nor the message
concat() can be used with StringBuilder objects.

5 The StringBuilder class 65

DISCUSSION OF
ACTIVITY 10
1	 The number displayed will be different for different machines, and will be different

from one execution to the next. (On my rather slow machine it was around 600–700 ms.)

2	 The code looks like this:

Date d1 = new Date();

StringBuilder sb = new StringBuilder(10000);

for (int i = 1; i <= 10000; i++)

{

sb.append("*");

}

Date d2 = new Date();

System.out.println(d2.getTime() – d1.getTime() + " ms");

(On my slow machine the time was 10 ms – much faster than the String version.)

Note that because the number of characters needed was known in advance, the
StringBuilder object has been created with the correct capacity using the
StringBuilder(int) constructor. This prevents the necessity of resizing it at run-time.

5.2 The protocol of StringBuilder

Many of the messages in the protocol of StringBuilder objects have the same
signature as messages in String, and behave in the same way. For example, if the
message with the signature indexOf(String) is sent to an instance of StringBuilder
and the argument occurs as a substring within that instance of StringBuilder, then the
index of the first character of the first such substring found is returned, just as occurs
when such a message is sent to a String object. The messages with the signatures
substring(int) and substring(int, int) also have the same effect when sent to
StringBuilder object as to String object. In the following activity you will explore some
of the other messages in the protocol of StringBuilder.

ACTIVITY 11

Launch BlueJ and open project Unit9_Project_1. Then from the Tools menu select
OUWorkspace. Open the file called CodeForActivity11.txt.

In the OUWorkspace create the following StringBuilder object.

StringBuilder aSB = new StringBuilder("Bob");

Select and execute each of the following statements, one by one, noting the value that is
returned by the message-send in each case. Try to determine what effect the message
has had each time. If you are not sure try out some different examples.
1 aSB.length();

aSB.capacity();

2 aSB.append(" is ");

aSB.append(50);

3 aSB.length();

aSB.capacity();

4 aSB.deleteCharAt(0);

5 aSB.insert(0, 'R');

6 aSB.reverse();

7 aSB.toString();

66 Unit 9 Collections: Arrays, strings and StringBuilders

DISCUSSION OF
ACTIVITY 11
1	 The first message returns 3 and the second 19. The default constructor creates a

StringBuilder object that has the sequence of 3 characters that appear in the
String argument followed by a buffer that can hold an additional 16 characters.
The message length() returns the number of characters in the receiver
StringBuilder object, and the message capacity() returns the total number of
characters the StringBuilder object can potentially hold.

2	 You have already seen that the message with the signature append(String) results
in the character sequence in the String argument being appended to the end of
the character sequence in the receiver StringBuilder object. The receiver is
returned in its new state, containing the following character sequence 'B' 'o' 'b' '
' 'i' 's' ' '.

The second message, with the signature append(int) results in the characters '5'
and '0' , corresponding to its int argument, being appended to the receiver
StringBuilder object. The resulting character sequence is as follows.

'B' 'o' 'b' ' ' 'i' 's' ' ' '5' '0'

3	 The message length() returns 9 (there are 9 characters, including the two blank
characters). The message capacity() returns 19 (the receiver StringBuilder
object can potentially hold 19 characters).

4	 The message answer is the receiver, which has been modified by removing the
character at index 0. The resulting character sequence is as follows.

'o' 'b' ' ' 'i' 's' ' ' '5' '0'

The message with the signature deleteCharAt(int) removes from the receiver the
character at the position indicated by the message’s argument and then answers
with the receiver.

5	 The message answer is the receiver, which has been modified by inserting the
character 'R' at index 0. The resulting character sequence is as follows.

'R' 'o' 'b' ' ' 'i' 's' ' ' '5' '0'

The message with the signature insert(int, char) results in the character given
by the second argument being inserted in the receiver at the index given by the first
argument. The message answers with the receiver.

6	 The message answer is the receiver, which has been modified by reversing the
character sequence. The resulting character sequence is as follows.

'0' '5' ' ' 's' 'i' ' ' 'b' 'o' 'R'

7	 The message answer is a new String object "05 si boR" with a character
sequence identical to that of the receiver StringBuilder object.

5.3 Revisiting the concatenation operator, +

You have learnt that the concatenation operator + joins two strings. Although that is true,
in fact, the concatenation operator uses StringBuilder objects below the surface.

For example, consider this expression:

"a" + 5 + "b" + 10;

The Java compiler implements this as follows:

(new StringBuilder("a")).append(5).append("b").append(10).toString();

5 The StringBuilder class 67

The fact that all the processing for the concatenations takes place in a single
StringBuilder object, and only at the end is the result converted back into a String,
means that far fewer temporary String objects have to be created, and if there are
many concatenations (for example, within a loop) this internal use of StringBuilder
means a big saving in memory and processing time.

68 Unit 9 Collections: Arrays, strings and StringBuilders

6 Summary

After studying this unit you should understand the following ideas.

c An array is a fixed size, homogeneous indexed collection that can hold either
primitive values or references to objects.

c When an array variable is declared, the type of primitive or object to be stored in the
array must be stated. This is called the component type of the array.

c When an array object is created, the number of items that the array is going to store
must be stated. This is called the length of the array.

c In Java, arrays are zero-based, which means that the first index is 0, so the length of
an array is always one more than the last index.

c An array is a set of contiguous memory locations called components. These contain
the primitive values or reference the objects that are to be stored in the array.

c A component of an array is analogous to a variable, but it is accessed using its
index.

c The components of an array can be processed using looping statements.

c A two-dimensional array is an array whose components hold arrays.

c The java.util.Arrays class contains methods to manipulate arrays.

c A String object is a sequence of characters.

c A String object is an example of an immutable object; once a string has been
created it cannot be changed.

c If many String objects are created using the + operator (within a loop, for example),
problems can arise because large numbers of unreferenced strings are created that
then have to be garbage collected.

c A StringBuilder object is also a sequence of characters, but its associated buffer
space means that it can be modified. Hence StringBuilder objects are not
immutable.

Summary 69

LEARNING OUTCOMES
After studying this unit you should be able to:

c describe the characteristics of an array object;

c declare and create one-dimensional and two-dimensional array objects;

c access elements in an array and use them in statements and expressions;

c process a whole array (or a meaningful sub-array) using a foreach statement or
another looping structure, as appropriate;

c process two-dimensional array objects by row and/or by column;

c use the methods of the class java.util.Arrays to manipulate array objects;

c explain the difference between a String and a StringBuilder object;

c create and manipulate String and StringBuilder objects;

c explain what is meant by the term ‘immutable’;

c describe the problems that using String objects can cause, and recognise when
StringBuilder objects should be used instead.

70 Unit 9 Collections: Arrays, strings and StringBuilders

Glossary

.jar file A file that ‘zips up’ the individual files that contain the different Java classes
that make up a Java program.

array An indexable, fixed-size collection whose elements are all of the same type.

buffer A sequence of unfilled components that allows a StringBuilder object to grow.

capacity The number of characters a StringBuilder object can hold.

collection A collection consists of a number of, possibly zero, objects or primitives.
The objects or primitives within a collection are referred to as elements.

component The memory location at which an element (or a reference to it) of an array
is stored.

component type The type of the components of an array object; this determines the
types of the objects or primitive values that can be stored in the array.

effective length The number of meaningful elements that a fixed-size collection
actual holds.

element The name given to the primitive value stored in, or the object referenced by,
an array component.

final A keyword that indicates that an instance variable may not be changed once it
has been assigned.

fixed-size collection A collection whose number of elements is fixed on creation.
Such a collection can neither grow nor shrink.

foreach statement A statement that enables iteration through every element of a
collection.

homogeneous collection A collection in which all the elements are of the same
type.

identity Two variables have the same identity if they both reference the same object or
primitive.

immutable An object or primitive that cannot be changed.

index An integer that is used to access the elements of an indexable collection.

indexable collection A collection in which every element is accessed by an integer
index.

java.util.Arrays A Java utility class that contains static methods for manipulating
arrays.

length The number of elements that an array can hold.

main() A public static method that all Java programs must include in order to be
executed independently of an environment such as BlueJ.

String A class whose instances represent a sequence of characters. Such objects
are immutable.

Glossary 71

StringBuilder A class whose instances represent a sequence of characters. Such
objects are mutable.

sub-array A part of an array consisting of contiguous components.

two-dimensional array An array whose components reference (one-dimensional)
arrays.

72 Unit 9 Collections: Arrays, strings and StringBuilders

Index

A
array 5, 7

B

buffer 63

C

capacity 63

collection 5, 8

component 7

component type 9, 42

E

effective length 15

element 8

element type 10, 42

F

final 55

fixed-size 7, 32

foreach statement 26

H

homogeneous 7

I

identity 60

immutable 62

index 7

indexable 7

J

.jar file 56

java.util.Arrays 46

L
length 10

M

main() 49

manifest file 56

S

string 57

StringBuilder 63

sub-array 31

T

two-dimensional array 38

