
8Unit
Designing code,
dealing wit rrors

Object-oriented
programming with Java

M255 Unit 8

h e

UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008.

.2006, 2008 The Open UniversityªCopyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

8 ISBN 978 0 7492 5500

2.1

CONTENTS

Introduction 5

6

1.1 Indentation 6

1.2 10

1.3 11

Converter class 14

27

3.1 27

3.2 32

42

4.1 Debugging if, for and while statements 42

4.2 45

49

Glossary 50

Index 52

1 Formatting Java code

Self-documenting code

Wrapping long lines of code

2 Developing the

3 Errors in programming

Compile-time errors

Run-time errors

4 Debugging

Tracing execution

5 Summary

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Academic Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Associate Lecturer, Author and Critical Reader

Robin Walker, Critical Reader, Associate Lecturer

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

When you write a program you express it as text in a particular programming language,
Java in the case of M255. The code you write has to comply with the syntax rules of the
language – its grammar – and you may need to correct quite a few syntax errors before
what you have written is accepted by the Java compiler.

However, getting the code to compile is only the first step; it is simply static code. To
make anything happen, it has to be executed.

During the development of a program our attention is naturally focused on the
programming statements we are writing and we do not tend to think much about its
execution. In fact we often come to think of what we are writing as though it were the
running code, which it is not. When we actually run a program, it is highly likely we shall
find things do not go according to plan – the program may work incorrectly or it may
even crash. Then we need to debug it by diagnosing and correcting program errors.

In this unit we start by showing good practice in how to format your code in order to
make it more readable and understandable. Next we take you through the design of a
new class, the class Converter – this will serve to reprise and put into practice the ideas
you have learnt from earlier units. The second half of this unit looks at errors in code,
both compile-time and run-time errors and how to interpret the error messages given by
the BlueJ compiler. The unit ends with some techniques for debugging code.

6 Unit 8 Designing code, dealing with errors

1 Formatting Java code

One of the goals of M255 is for you to learn how to write programs that are not only
correct but also understandable.

Your code should be readable, because if it is not readable, the chances of it being
correct are slim. Moreover, if your program is unreadable, it will be difficult and time
consuming to find and correct any errors in it. Your code should also be readable by
others, not just you. Remember some TMA questions ask you to write Java code – if your
tutor has difficulty reading and understanding your code how are they going to mark it
accurately? Outside this course, making code readable by others becomes even more
important. Most programs exist for a long time and require ‘maintenance’ – changes to
adapt to new and different requirements, upgrades in other software, new hardware.
The author of a program is quite likely not to be around when maintenance is required;
someone else must read the program and understand it enough to update it
successfully. Even a program you write for yourself should be readable; if not, soon after
finishing it you will probably not remember it well enough to make changes easily. Thus,
it makes sense to develop programming habits that lend themselves to writing readable,
understandable and correct programs.

In this section we introduce you to a number of formatting guidelines that will make
your code clearer to read, understand and debug.

1.1 Indentation
While the use of braces tells the compiler which lines of code belong to a particular
code block, such as a class, method, or if statement, indentation can be used to make
the structure of code clear to a human reader. In the following discussion we talk about
indenting by multiples of three spaces rather than tabbing using the tab key of your
keyboard. The reason we stipulate this is that generally, in an editor, if you use the tab
key to provide indentation then the format of your code will not look the same if you send
it to a friend or colleague when they open up the code in an editor which has not got the
tabs set to the same number of spaces. However, when you hit the tab key in the BlueJ
editor it does not enter the unicode tab character, it enters proper spaces – so using the
BlueJ editor you can happily use the tab key and be sure that your code will look the
same no matter what editor subsequently reads the code. By default, the tab key in
BlueJ enters four spaces which many programmers prefer. However in this course we
have set the tab in BlueJ to be three spaces to avoid too much line wrapping. So in the
following discussion when we talk about three spaces you can just use the tab key if you
are using the BlueJ editor.

Classes
When writing a new class, any class comment, any import statement and the class
header should not be indented at all – they should be hard left. The matching pair of
braces that delimit the class should always appear on their own lines and should line up
with each other and not be indented. This tells a human reader the extent of the class.
Everything else within a class should then be indented relative to the enclosing class
block. The indentation is achieved by entering three spaces. Here is an example.

import ou.*;
public class Converter
{
...
}

Variables
Instance and static variable declarations should be indented by three spaces relative to
the class block, as shown below.

import ou.*;
public class Converter
{

private static double fixedFee = 2.00;
private static double percentageRate = 0.05;
private double exchangeRate;
private String currencyName;
...

}

Methods
The method header and the braces that delimit the method block should be indented by
three spaces. The matching pair of braces that delimit the code within a method should
always appear on their own lines and should line up with each other. This tells a human
reader the extent of the method. All statements within a method should then be indented
by (at least) another three spaces so that it is clear to a reader that they form part of a
particular method. Here is an example.

import ou.*;
public class Converter
{

private static double fixedFee = 2.00;
private static double percentageRate = 0.05;
private double exchangeRate;
private String currencyName;

public void foo()
{

< method statement block >
}

...
}

if statements
Notice that the if keyword is indented by three spaces relative to the method’s opening
and closing braces, and that the opening and closing braces for the then statement
block are also indented by three spaces and line up vertically with each other. The
statements within the then statement block are indented by a further three spaces.
Notice too that the else keyword lines up vertically with the if keyword, and the
statements within the else statement block are indented by a further three spaces. See
the following example.

Remember that then isn’t
actually a Java keyword
but we will leave it in code
styling when referring to a
statement block, to
indicate that we are talking
about a section of code.

1 Formatting Java code 7

8 Unit 8 Designing code, dealing with errors

public void foo()

{

if (<condition>)

{

< then statement block >

}

else

{

< else statement block >

}

}

while statements
The while keyword is also indented by three spaces and the opening and closing
braces for the statements in the while statement block are also indented by three
spaces and line up vertically with each other. The statements in the while statement
block are indented by a further three spaces.

public void foo()

{

while (<condition>)

{

< statement block >

}

}

for statements
As you can see in the example below, the indentation of the for statements are the
same as for the while statements.

public void foo()

{

for (<init>; <test>; <inc>)

{

< statement block >

}

}

Nested statements
Indentation within nested statement blocks is a little more complex, as in the following
example of an if statement nested within a while loop.

public void foo()

{

while (<condition>)
{

if (<condition>)

{

< statement block >

}

}

}

1 Formatting Java code 9

Note that the indentation of the if statement is relative to the while loop. Here is an
even more complicated example where a for loop is nested within an if statement
block.

public void foo()
{

while (<condition>)

{

if (<condition>)
{

for (<init>; <test>; <inc>)

{

< statement block >

}

}

}

}

Here the for loop is indented relative to the if statement which in turn is indented
relative to the while loop. By indenting the code in this manner it makes it clear that the
for loop is inside the if statement block and that the if statement is inside the while
statement block – a bit like Russian dolls.

We have stated throughout this section that the matching pair of braces that delimit
blocks of code should always appear on their own lines and should line up with each
other. However there is another convention that is popular which you might see in
programming books and it looks like this:

public void foo() {
if (<condition>) {

< then statement block >

}

else {

< else statement block >

}

}

(Note that this is the same as the code example that appears under the ‘if statement’
heading.) This style of coding is popular because it takes up fewer lines. However, on
this course we prefer to have pairs of braces on their own lines as we believe it makes
the code clearer to read.

Spaces in code
There are also some stylistic guidelines about the use of spaces in Java. Thus, if, for
and while statements should have a space before the opening parenthesis of the
condition, for example:

while (<condition>)

not

while(<condition>)

not t
e

not

)

not

)

not

:

x + y

not

x+y

:

)

not

)

10

Method headers should have a space before the opening parenthesis, because i

helps us to distinguish method names from keywords such as whil . So we write:

public void foo()

public void foo ()

There should be a space after each comma in a method’s argument list so that we can
clearly identify the individual arguments:

public void foo(a, b, c

public void foo(a,b,c

Everything we have said above about spacing in method headers is also true of
message-sends, so use:

this.foo(a, b, c)

this.foo (a,b,c)

Finally there should be a space before and after an operator, for example, we write

The dot operator is an exception, we always write

this.foo(

this . foo(

Unit 8 Designing code, dealing with errors

1.2 Self-documenting code
Rather than trying to write inline comments to explain how a method performs a complex
task, try to make the code easier to read by introducing local variables which serve to
label intermediate steps in the logic of a method.

Consider this method which determines whether or not a particular year is a leap year:

/**
* Return true if the year given by the argument (a four digit

* integer) is a leap year, false otherwise.

*

* Leap years occur in years divisible by 4, except that years

* ending in 00 (exactly divisible by 100) are leap years only

* if they are exactly divisible by 400.

*/

public boolean isLeapYear(int y)
{

return (((y % 400) == 0) || (((y % 4) == 0) && ((y % 100) != 0)));
}

1 Formatting Java code 11

It would take a very experienced eye to understand what this method is doing. In
comparison the following version of the method is made much easier to understand by
assigning the results of intermediate expressions to meaningfully named local variables.

public boolean isLeapYear(int year)
{

boolean potentialLeapYear = ((year % 4) == 0);
boolean nonCenturyYear = ((year % 100) != 0);
boolean nonCenturyLeapYear = (potentialLeapYear && nonCenturyYear);
boolean centuryLeapYear = ((year % 400) == 0);
return nonCenturyLeapYear || centuryLeapYear;

}

Another approach to writing this method with local variables would be:

public boolean isLeapYear(int year)
{

boolean divisibleBy4 = ((year % 4) == 0);
boolean divisibleBy100 = ((year % 100) == 0) ;
boolean divisibleBy400 = ((year % 400) == 0);
return (divisibleBy400 || (divisibleBy4 && ! divisibleBy100));

}

The declaration and use of the local variables make no difference to the efficiency or
speed of the compiled code but make a great deal of difference to the efficiency and
speed of a human reader!

1.3 Wrapping long lines of code
When an expression will not fit on a single line, break it according to these general
principles:

c break after a comma;

c break before an operator;

c align the new line with the beginning of the sub-expression at the same level on the
previous line.

Here are two examples of putting line breaks in the argument list of message-sends:

obj1.someMessage(argument1, argument2, argument3,

argument4, argument5);

someVar = obj2.someMessage1(argument1,
obj3.someMessage2(argumentA, argumentB));

Here is an example of a println() message where the argument is made up of a
number of concatenated strings:

System.out.println("This is a rectangle with length " + this.length()
+ "breadth " + this.breadth()
+ " Its area is " + this.getArea()
+ " Its perimeter is " + this.getPerimeter()+ ".");

12

n

)

expression)

= sign:

Exercise 1

–

;
;

;

{

+
;

;

}

{
)

}
;

}

;
i++;
}

;
}

The following are two examples of breaking an arithmetic expression which is part of a
asssignment statement. The first example is preferred, since the break occurs after the
parenthesised sub-expression.

longName1 = longName2 *(longName3 + longName4 - longName5
+ 4 * longname6; // PREFER

longName1 = longName2 *(longName3 + longName4
- longName5) + 4 * longname6;

The second example of line breaking should be avoided as the break is within the sub­
(longName3 + longName4 - longName5 so making that sub-expression

harder to read.

Another suitable place to put a line break is after the

int age =
Integer.parseInt(OUDialog.request("Please enter your age"));

Using pencil and paper, format the following code (chosen at random from a Java training
site on the Web!) along the lines of the guidelines given in this section. You do not need to
try and understand what the code does just apply the guidelines.

private Vector inspectCollection(Object obj){
Vector dataV = new Vector()
Vector rowV = new Vector()
rowV. add("size");
rowV .add("int");
rowV.add(Integer. toString(((Collection)obj).size()));
dataV.add(rowV);
rowV = new Vector()
Iterator it = ((Collection) obj).iterator();
Object anObj;
int i = 0;
while (it.hasNext())
anObj = it.next();
rowV.add(" ["+Integer.toString(i)

"]")

rowV.add(anObj.getClass().getName())
if (checkForPrimitive(anObj))
{rowV.add(anObj.toString());
else

if (anObj instanceof java.lang.String
{rowV.add(anObj);}
else
{rowV.add("Inspect object");
hm.put("["+Integer.toString(i)+"]", anObj)

dataV.add(rowV);
rowV = new Vector()

return dataV

Unit 8 Designing code, dealing with errors

1 Developing the Converter class 13

)
{

;
;

;
;

;
)

{
;

;

{

}

{
)

{

}

{

}
;

}
;

;
i++;

}

}

SAQ 1

a

t

Solution ..

private Vector inspectCollection(Object obj

Vector dataV = new Vector();
Vector rowV = new Vector()
rowV.add("size")

rowV.add("int");
rowV.add(Integer.toString(((Collection) obj).size()));
dataV.add(rowV)

rowV = new Vector()
Iterator it = ((Collection) obj).iterator();
Object anObj;
int i = 0

while (it.hasNext()

anObj = it.next()
rowV.add(" [" + Integer.toString(i) + "]")
rowV.add(anObj.getClass().getName());
if (checkForPrimitive(anObj))

rowV.add(anObj.toString());

else

if (anObj instanceof java.lang.String

rowV.add(anObj);

else

rowV.add("Inspect object");

hm.put("[" + Integer.toString(i) + "]", anObj)

dataV.add(rowV)

rowV = new Vector()

return dataV;

Why is it important to format code in accordance with a set of commonly accepted
guidelines?

ANSWER...

The most important reason is that it will make your code more understandable to
reader. This makes it easier to debug and maintain. There is something more: to format
code clearly, you need to understand it clearly, and so the process of formatting it is par
of being sure you have got it right. Also when code is delivered to a customer they will
expect to see consistent formatting and this is best arranged by everyone using the
same rules.

14 Unit 8 Designing code, dealing with errors

5% can be expressed as
the decimal number 0.05,
so 5% of 150 is the same
as 0.05 6 150. We shall
express any percentages
as a decimal number in
our equations.

2 r classDeveloping the Converte

In this section we are going to investigate how to design and implement a solution to a
particular programming problem.

Walton Bureau de Change is a small company based in Milton Keynes that changes
pounds sterling into the various foreign currencies needed by Open University staff
when they travel abroad on business. Walton Bureau de Change only sell foreign
currencies; they do not buy back any unused foreign currency. Also, they only sell whole
numbers of a foreign currency, i.e. they will sell $150, but not $150.45 as they do not
keep foreign currency small change. For this service Walton Bureau de Change charge
a commission, and this commission consists of two fees: a fixed fee for handling the
transaction, plus a percentage fee that is related to the cost (in pounds) of the foreign
currency being purchased.

An example will clarify how the costs of buying foreign currency from Walton Bureau de
Change are worked out.

Suppose we want to buy $150. Also suppose that the exchange rate is $1.5 to
£1 sterling, that the transaction fixed fee is £2.00 and that the percentage fee is 5% of
the number of dollars being purchased. Then the percentage component of the
commission, in dollars, is given by:

5% of $150 = 0.05 * 150 = $7.50.

This percentage fee part of the commission can be converted into sterling:

7.5/1.5 = £5.00.

The total commission is the sum of the fixed fee and the percentage fee, that is:

£2.00 + £5.00 = £7.00.

The exchange price of $150 in £ sterling is 150 / 1.5 = £100, and so the total cost of
purchasing $150 from Walton Bureau de Change is:

£7 + £100 = £107.

We can generalise these calculations in the following descriptive mathematical
formulas.

percentage fee = (percentage rate * amount of currency) / exchange rate

commission = fixed fee + percentage fee

total cost = commission + (amount of currency / exchange rate)

At the moment Walton Bureau de Change work out these calculations by hand, using
pencil and paper which by its very nature is error prone. In fact Walton Bureau de
Change have had a number of complaints recently from customers who have been
overcharged. Therefore Walton Bureau de Change have asked us to come up with a
software solution that will do these calculations for them.

Exercise 2

e

,
, .

.

.

Exercise 3

r

o

r a

c fi – a

.

c e –
a

.

r class

A software solution for Walton Bureau de Change can be achieved by writing a singl

class. Suggest the name of that class and from what class it should be subclassed.

Solution...

Instances of this new class will be used to calculate the cost of buying various foreign
currencies in pounds sterling, so for example one instance of the class might be used to
calculate the cost of buying US dollars and another may be used to calculate the cost of
buying euros. A suitable name for the class, that reflects what instances of the class
actually do, would be something like ForeignCurrencyCalculator
CurrencyTransactionCalculator CurrencyConverter, or just simply Converter
For brevity we shall chose the name Converter

So far in the course you have not come across a class that is similar to this new class,
therefore the class should be created as a subclass of Object

The class Converte will be created as a subclass of Object, and your next task is
decide what instance and class (static) variables will be needed.

To decide what variables are needed you need to work out what attribute values
instances of the class will need to remember in order to carry out their behaviour, i.e. t
calculate the cost of a particular currency and report that cost to the user. To help you
decide, here is a description of what an instance of the class must do.

Instances of the Converte class are to be used to calculate the cost of buying
particular/different foreign currency in pounds sterling, so for example one
instance of the class might be used to calculate the cost of buying US dollars and
another may be used to calculate the cost of buying euros. Instances of the class
will need different exchange rates in order to correctly calculate the cost of buying
a particular foreign currency. The commission for all transactions (regardless of
the particular currency an instance of the class has been created to work with) will
be calculated using the same fixed fee and the same percentage rate. Once an
instance of the class has calculated the cost of buying the currency it should
report that cost to the user via a dialogue box.

When deciding which class variables will be needed, you need to ask yourself what
attributes will have the same values for all instances of the class.

When deciding which instance variables will be needed, you need to ask yourself what
attributes will probably have different values for each instance of the class.

List what instance variables and class (static) variables will be needed to implement the
class. State also what types these class and instance variables should be declared as.

Solution...

The class will need the following class variables:

xedFee to hold the fixed part of the commission. This should be declared as
double, because the fixed part of the commission needs to be a decimal number
that represents a value in £ sterling

percentageRat to hold the percentage to be used to calculate the percentage
part of the commission. This should be declared as double, because the
percentage rate is to be represented as a decimal number

2 Developing the Converte 15

16 Unit 8 Designing code, dealing with errors

Launch BlueJ and open the project Unit8_Project_1. Double-click on the icon for the
Converter class. Once the editor has opened write the Java declarations for the class
and instance variables after the opening curly bracket, {. You should give any class
variables default values in your variable declarations.

Given that we will later provide accessor methods for these variables you must decide
whether the variables should be declared as public or private.

DISCUSSION OF
ACTIVITY 1

You should have added the following code to the class:

private static double fixedFee = 2.00;
private static double percentageRate = 0.05;
private double exchangeRate;
private String currencyName;

All the variables should be declared as private to implement data hiding. Access to
the class and instance variables will be via accessor methods.

These variables need to be class variables, because every instance of the class will
need to calculate the commission cost based on the same values for fixedFee and
percentageRate.

The class will need the following instance variables:

c exchangeRate – to hold the exchange rate for a particular currency. This should be
declared as a double, because the exchange rate is to be represented as a
decimal number.

c currencyName – to hold the name of the currency. This should be declared as a
String, because currency names will be strings such as "US dollars" or "euros ".
The value of this instance variable will be useful when reporting the cost of buying an
amount of a particular currency in a dialogue box.

exchangeRate and currencyName need to be instance variables as their values will
differ for each Converter object.

You may have chosen slightly different names for the class and instance variables, but
so long as the names you have chosen clearly indicate the purpose of each variable this
is fine and normal.

You may have decided that an instance variable is needed to record the amount of
foreign currency to convert for a particular transaction – this is not needed as instances
of the class Converter do not need to remember the details of the amount of currency
to convert for a particular transaction as will become clear once you do Activity 4.

ACTIVITY 1

Now that we have declared the class and instance variables we also need accessor pairs
for them, namely setExchangeRate(), getExchangeRate(), setCurrencyName(),
getCurrencyName(), setFixedFee(), getFixedFee(), setPercentageRate() and
getPercentageRate().

SAQ 2

)
)

e s
argument.

r class

Explain the purpose of accessor methods using examples.

ANSWER...

Accessor methods are used to access the values held by the instance variables of an
object. Usually each instance and class (static) variable has a get and set method that
make up a pair. Naming is usually common to the methods in the pair and the instance
variable. For example, the getExchangeRate(method returns the value of the
receiver’s instance variable exchangeRate. The setExchangeRate(method enables
the receiver’s instance variable exchangeRat to be set to the value of the method’

2 Developing the Converte 17

ACTIVITY 2

If it is not already open, launch BlueJ and open the project Unit8_Project_2. Double-click
on the icon for the Converter class to open the editor; you will see that the instance and
class variables from the previous activity have been added to the class file for you.

You are now going to write the accessor methods for the class and instance variables of
Converter. You must decide the return types and argument types, whether the methods
should be declared as public or private and which should be declared as static.

DISCUSSION OF
ACTIVITY 2

// class methods
/**

* Sets the fixedFee of the receiver to the value of the argument

*/

public static void setFixedFee(double fee)

{

Converter.fixedFee = fee;

}

/**

*Returns the value of the fixedFee of the receiver

*/

public static double getFixedFee()

{

return Converter.fixedFee;

}

/**
* Sets the percentageRate of the receiver to the value of the argument
*/
public static void setPercentageRate(double percentage)

{

Converter.percentageRate = percentage;

}

/**

*Returns the value of the percentageRate of the receiver

*/

public static double getPercentageRate()

{

return Converter.percentageRate;

}

s
/**

*/
)

{
;

}

/**

*/
)

{
;

}

/**

*/
)

{
;

}

/**
r

*/

{
;

}

e

e

:

this

e class variable.

this

18

//instance method

* Sets the exchangeRate of the receiver to the value of the argument

public void setExchangeRate(double rate

this.exchangeRate = rate

*Returns the value of the exchangeRate of the receiver

public double getExchangeRate(

return this.exchangeRate

* Sets the currencyName of the receiver to the value of the argument

public void setCurrencyName(String nameOfCurrency

this.currencyName = nameOfCurrency

*Returns the value of the currencyName of the receive

public String getCurrencyName()

return this.currencyName

Note that all the methods have been declared as public because all the static and
instance variables have been declared as privat , therefore the user(s) of the class
Converter will need to use the accessor methods to get and set the variables.

Note also how within the accessor methods we can differentiate between instanc
variables and class variables. Instance variables are prefixed by this, and class
variables are prefixed by the class name. For example

this.exchangeRate denotes the exchangeRate instance variable of whatever
Converter object is referenced by at run-time.

Converter.percentageRat denotes the percentageRate

Qualifying a class variable with the class name is not obligatory within a class’s own
methods, nor is prefixing an instance variable with . However it does make your
code much clearer to read.

Unit 8 Designing code, dealing with errors

Next we need a constructor (other than the default) for objects of the class Converter,
but what values should the instance variables be set to by this constructor? We might
decide to set the instance variables to some default values, for example exchangeRate
to 1.5 and currency to "US dollars" on the basis that often we want a Converter
object to convert US dollars into sterling. But another user of the class may want to
convert euros into sterling more often. So setting the instance variables to default values
is not the solution. What we want is a constructor with arguments, the values of which will
be used by the constructor to set the instance variables.

r class 192 Developing the Converte

ACTIVITY 3

r
a

r a argument
named and a

If it is not already open, launch BlueJ and open the project Unit8_Project_3. Double-click
on the icon for the Converte class to open the editor; you will see that the accessor
methods from the previous activity have been added to the class file for you. Now write
constructor for the class Converte that takes two arguments: String

nameOfCurrency double argument named rate. Write your code just after

ACTIVITY 3

{
;

;
}

a

the declaration of the static and instance variables.

DISCUSSION OF

public Converter(String nameOfCurrency, double rate)

this.currencyName = nameOfCurrency
this.exchangeRate = rate

Note that in the constructor we directly assign the values of the arguments to the
instance variables rather than use the setter methods. The main reason for this is that if
the constructor sends a message whose corresponding method is overridden in
subclass, then problems will arise if that method then tries to use some uninitialised
variable.

Now we have the class and instance variables, their accessor methods and a
constructor. However a method to carry out the business of converting currency is
still missing. So to finish the class Converter we need one more method,
costOfCurrency(). In the next activity you will write the costOfCurrency() method
which will calculate the cost in pounds of buying an amount of foreign currency.

ACTIVITY 4

If it is not already open, launch BlueJ and open the project Unit8_Project_4. Double-click
on the icon for the Converter class to open the editor; you will see that the constructor
from the previous activity has been added to the class file for you.

In this activity you are going to write the costOfCurrency() method. You should write
the method at the bottom of the class Converter, just before the closing brace. The
method takes an int as an argument which represents the amount of currency to buy.
The method does not return a value but instead uses an appropriate dialogue box to
report to the user the total cost of buying the currency in £ sterling

When writing the method remember to use accessor methods (it is not good practice to
directly access the instance and class variables). A comment should be included to
describe briefly the behaviour caused by the method.

At the beginning of this subsection we generalised the calculations needed to carry out a
currency transaction with the following descriptive mathematical formulas which should
help you to write the method.

percentage fee = (percentage rate * amount of currency) / exchange rate

commission = fixed fee + percentage fee

total cost = commission + (amount of currency / exchange rate)

The method should have the following header:

public void costOfCurrency(int amountOfCurrency)

20 Unit 8 Designing code, dealing with errors

Once you have calculated the total cost of the transaction you will need to display the
result in a dialogue box. To do this you will need to concatenate strings and numbers
together to create a suitable string argument for an alert() dialogue box. If the
exchange rate is, for example, 1.7, the message displayed will be:

150 dollars cost £94.6470588235294

Obviously, this is far too many decimal places, so, if you are feeling confident and looking
for an extra challenge, you can round the final cost of the transaction to two decimal
places. To do this, you will need first to import the DecimalFormat class at the top of the
Converter class file, with the statement:

import java.text.DecimalFormat;

This is a class supplied by Java to format string representations of decimal numbers.
Once you have done that, in the costOfCurrency() method write code to create an
object of this class and assign it to a variable as follows:

DecimalFormat df = new DecimalFormat("0.##");

Then, when you need to display the cost of the currency, the message expression

df.format(cost)

will ensure that the string representation of cost will be displayed as a decimal number
with only two decimal places.

Ensure that the Converter class compiles correctly before moving on.

DISCUSSION OF
ACTIVITY 4

/**
* Calculate and report cost in sterling of buying an amountOfCurrency
*/
public void costOfCurrency(int amountOfCurrency)
{

double percentageFee, commission, cost;
DecimalFormat df = new DecimalFormat("0.##");
percentageFee = Converter.getPercentageRate() * amountOfCurrency

/ this.getExchangeRate();
commission = Converter.getFixedFee() + percentageFee;
cost = commission + (amountOfCurrency / this.getExchangeRate());
OUDialog.alert(amountOfCurrency + " " + this.getCurrencyName()

+ " cost £" + df.format(cost));
}

Note how within the costOfCurrency() method we can differentiate between message­

sends to objects and invocations of a class’s static methods.

c this.getExchangeRate() is a message-send. The compiler cannot determine the
corresponding method code for getExchangeRate(). The message
getExchangeRate() will be sent to whatever object is referenced by this at run­
time, which of course could be an object of some subclass of Converter that has
overridden the getExchangeRate() method declared in the class Converter.

c Converter.getPercentageRate() is not a message-send; it is an invocation of a
static method. The code for that method can be determined at compile time as the
code Converter.getPercentageRate()explicitly tells the compiler that the
method can be found in the Converter class.

SAQ 3

n and

e, n and

r

r class

Explain the use of the local variables percentageFee, commissio cost in the
method costOfCurrency(). Will these variables be available outside the method?

ANSWER...

The values which the local variables percentageFe commissio cost hold are
only ‘remembered’ by those variables for the lifetime of the execution of the method
costOfCurrency(). These local variables cannot be accessed from outside the
method and once costOfCurrency() has finished executing, the variables no longe
have any meaning. More generally, local variables only exist for the lifetime of execution
of the method in which they are declared.

2 Developing the Converte 21

The term scope describes the areas of program code from which a variable may be
used. We say that the scope of a local variable is the statement block in which it is
declared and any nested statement block.

ACTIVITY 5

If it is not already open, launch BlueJ and open the project Unit8_Project_5. The class
Converter in this project has had the code from the previous activity added. (You can if
you wish use Unit8_Project_4 to which you added the costOfCurrency() method if you
got it to compile successfully.)

Open the OUWorkspace and convince yourself that an object of the class Converter
works as described above by executing the following statements (one line at a time) in
the OUWorkspace.

Now create a Converter object:

Converter dollarConverter = new Converter("US dollars", 1.7);

Now try some currency transactions:

dollarConverter.costOfCurrency(300);

dollarConverter.costOfCurrency(250);

The next statement will cause an exception. Can you think why?

dollarConverter.costOfCurrency(2.6);

Change the value of the object’s exchangeRate instance variable:

dollarConverter.setExchangeRate(2.0);

Change the value of the class variable percentageRate:

Converter.setPercentageRate(0.07);

Now try two more currency conversions:

dollarConverter.costOfCurrency(300);

dollarConverter.costOfCurrency(250);

DISCUSSION OF
ACTIVITY 5

Converter.costOfCurrency(300); will display a dialogue box with the message:

300 US dollars cost £187.29

dollarConverter.costOfCurrency(250); will display a dialogue box with the message:

250 US dollars cost £156.41

In this unit differing values
for the exchange rate have
been used deliberately to
mirror the fluctuations
encountered in real life.

22 Unit 8 Designing code, dealing with errors

dollarConverter.costOfCurrency(2.6); results in OUWorkspace reporting an error
message in the display pane:

Semantic error: Message costOfCurrency(double) not understood by class 'Converter'

The reason for this is that the method costOfCurrency() has the following signature:

costOfCurrency(int)

but we have sent a costOfCurrency() message with a double value as the argument.
What this error message is telling us is that there is no method defined for Converter
objects called costOfCurrency() that takes a double as its argument. The reason that
we wrote the method to take an int argument is because Walton Bureau de Change sell
only whole numbers of a foreign currency, i.e. they sell $150, but not $150.45 as they do
not keep foreign currency small change.

After changing the values of the exchangeRate instance variable and the
percentageRate class variable we have the following.

c dollarConverter.costOfCurrency(300); displays a dialogue box with the
message:

300 US dollars cost £162.5

c dollarConverter.costOfCurrency(250); displays a dialogue box with the
message:

250 US dollars cost £135.75

Walton Bureau de Change, although initially happy with our solution to their problem,
have decided that they want some additional functionality; their staff have been
complaining that the new system requires them to do too much typing. Often they might
have to do a number of transactions for the same currency one after the other; they want
to be able to send a message to an initialised Converter object which will ask them to
enter the amount of currency needed, display the cost, and then ask if they would like
another transaction. If they click ‘Yes’, they will be asked for the amount of currency and
again the cost will be displayed. They want this to repeat until, when prompted for
another transaction, they click ‘No’.

ACTIVITY 6

If it is not already open, launch BlueJ and open the project Unit8_Project_6. The class
Converter in this project has had the code from the previous activities added.

In this activity you are going to add another instance method to the Converter class – the
header of the method will be as follows:

public void doTransactions()

The new method does not take an argument. It prompts the user to enter the amount of
currency via a request() dialogue box. Note that whatever the user inputs into the
request() dialogue box will have to be converted into an integer using the parseInt()
method you encountered in Unit 5. For example, if the String "150" was referenced by
the variable myString and you wanted to convert it to its int equivalent and assign the
result to a local variable myInt, you could do it as follows:

int myInt = Integer.parseInt(myString);

myInt would then hold the int value 150.

2 Developing the Converter class 23

Once the cost of the currency in sterling has been calculated and displayed by a
costOfCurrency() message the method asks the user via a confirm() dialogue box if
they wish to calculate the cost of another transaction. The method will continue to ask the
user (after the cost of a transaction has been calculated) if they wish to calculate the cost
of another transaction until the user clicks the No button of the confirm() dialogue box.

To write this method you will need a loop of some sort; should it be a while loop or a for
loop? You decide, but if you are not sure, ask yourself: can you predict the number of
times the loop will need to execute? Once you have written the method, and it has
compiled without errors, open the OUWorkspace, create a new instance of Converter
that will calculate the cost of buying euros and then test your method by sending a
doTransactions() message to that new instance. Note that if the string you enter into
the request() dialogue box cannot be translated into an int argument by the method
parseInt()a run-time error will occur (see Section 3).

DISCUSSION OF
ACTIVITY 6

Your code should look similar to the following:

public void doTransactions()
{

String amountString;

int amountOfCurrency;

boolean repeat = true;

while (repeat)

{

amountString = OUDialog.request("How many "

+ this.getCurrencyName() + "?");

amountOfCurrency = Integer.parseInt(amountString);
this.costOfCurrency(amountOfCurrency);
repeat = OUDialog.confirm("Would you like another transaction?");

}

}

Because we cannot determine in advance how many times the loop must execute (the
user may want one, five or even 20 transactions to be calculated) a while loop is the
most natural choice. (The method could be coded using a form of for loop that you
have not encountered and it will not be used in this course.)

public void doTransactions()
{

String currencyString;

int amountOfCurrency;

for (boolean repeat = true; repeat;)

{

amountString = OUDialog.request("How many "

+ this.getCurrencyName() + "?");

amountOfCurrency = Integer.parseInt(amountString);
this.costOfCurrency(amountOfCurrency);
repeat = OUDialog.confirm("Would you like another transaction?");

}

}

Using a for loop in this manner is considered bad practice as a for loop should only be
used for writing code that is to be repeated a predetermined, fixed number of times.

;

24

To test your method you should have written and executed something like the following
in the OUWorkspace:

Converter euroConverter = new Converter("euros", 1.45)
euroConverter.doTransactions();

A working version of the class Converter can be found in Unit8_Project_7.

Unit 8 Designing code, dealing with errors

Walton Bureau de Change are delighted with the new functionality, but a couple of
weeks later they come back and tell us:

A lot of prospective customers are wanting to know how much commission they
will have to pay before buying a certain amount of a particular currency; the
software you have provided does not allow us to display this information and so
either the customer walks away or a member of staff has to work this out with
pen and paper – this is most unsatisfactory – please add this additional
functionality to the software.

In the next activity you will do precisely that!

ACTIVITY 7

In this activity you must do three things:

c write a method called calculateCommission()which will calculate the total
commission payable if one were to purchase a certain amount of a particular
currency;

c write a displayCommission() method that makes use of the
calculateCommission() method to display the commission cost;

c modify the costOfCurrency() method so that it does not duplicate the code in your
calculateCommission() method; instead costOfCurrency() should send a
calculateCommission() message to this in order to get the cost of commission.

If it is not already open, launch BlueJ and open the project Unit8_Project_7. The class
Converter in this project has had the code from the previous activity added.

Write the method calculateCommission(), its purpose is to return the total commission
charge for the transaction. The method will take an int argument which represents the
amount of currency and it will return a value of type double which will be the commission
cost. Here is the method header:

public double calculateCommission(int amountOfCurrency)

You already know how to calculate the commission for a particular transaction, you did it
in the costOfCurrency() method you wrote in Activity 4. The code below in bold is the
code that calculates the commission and it can be adapted for use in this new method.

public void costOfCurrency(int amountOfCurrency)
{

double percentageFee, commission, cost;

DecimalFormat df = new DecimalFormat("0.##");

percentageFee = Converter.getPercentageRate() * amountOfCurrency

/ this.getExchangeRate();
commission = Converter.getFixedFee() + percentageFee;
cost = commission + (amountOfCurrency / this.getExchangeRate());
OUDialog.alert(amountOfCurrency + " " + this.getCurrencyName()

+ " cost £" + df.format(cost));
}

Once you have got your calculateCommission() to compile correctly, you should write
the method displayCommission(). Here is the method header:

public void displayCommission(int amountOfCurrency)

The method should determine the total commission payable on amountOfCurrency; it
should do this by making use of a calculateCommission() message. The method
should then display in a dialogue box the value returned by calculateCommission().
Note that to display the commission to two decimal places you will need to make use of
the DecimalFormat class as shown in the code above. The message displayed should
be something like the following:

To buy 60 euros will entail a commission cost of £4.07

Finally, once you have got your displayCommission() to compile correctly, modify the
costOfCurrency() method so that it does not duplicate the code in your
calculateCommission() method; instead costOfCurrency() should send a
calculateCommission() message to this in order to get the cost of commission.

Once you have got your modified costOfCurrency() to compile correctly, test the new
methods and the modified costOfCurrency() by executing the following code in the
OUWorkspace:

Converter euroConverter = new Converter("euros", 1.45);
euroConverter.displayCommission(60);
euroConverter.costOfCurrency(60);

DISCUSSION OF
ACTIVITY 7

A possible solution for the calculateCommission() method is given below, you may
have written your method slightly differently.

public double calculateCommission(int amountOfCurrency)
{

double percentageFee;
percentageFee = Converter.getPercentageRate() * amountOfCurrency

/ this.getExchangeRate();
return Converter.getFixedFee() + percentageFee;

}

Next, we have the displayCommission() method:

public void displayCommission(int amountOfCurrency)
{

DecimalFormat df = new DecimalFormat("0.##");
OUDialog.alert("To buy " + amountOfCurrency + " "

+ this.getCurrencyName()
+ " will entail a commission cost of £"
+ df.format(this.calculateCommission(amountOfCurrency)));

}

2 Developing the Converter class 25

A modified costOfCurrency() method that makes use of calculateCommission() is
shown below:

public void costOfCurrency(int amountOfCurrency)
{

double commission, cost;
DecimalFormat df = new DecimalFormat("0.##");
commission = this.calculateCommission(amountOfCurrency);
cost = commission + (amountOfCurrency / this.getExchangeRate());
OUDialog.alert(amountOfCurrency + " " + this.getCurrencyName()

+ " cost £" + df.format(cost));
}

The statement:

euroConverter.displayCommission(60);

Should display the following message in a dialogue box:

To buy 60 euros will entail a commission cost of £4.07

The statement:

euroConverter.costOfCurrency(60);

Should display the following message in a dialogue box:

60 euros cost £45.45

If you have problems finishing the class Converter, the project Unit8_Project_8 contains
the finished class.

26 Unit 8 Designing code, dealing with errors

3 Errors in programming 27

3 Errors in programming

l
–

l

d

.
y

syntax .
a

f

c ;

c ;

c ");

c

c

SAQ 4

(a) ;

(b) ;

(c)

(d)

In this section we look at the various errors that can occur in code. There are two genera
types of computer programming error compile-time errors (errors which occur when
you try to compile a class) and run-time errors.

The compiler will report any compile-time errors it finds and usually supply some helpfu
information, such as the kind of error and the line number at which it occurs. Although
removing all the compile-time errors may sometimes take a while, we can be sure the
compiler will find them all, and with the assistance of the diagnostic details it provides
we will sooner or later succeed in compiling our code. Only when this has happened is it
possible to actually run the code.

The checking that the compiler carried out will have eliminated many errors in the
program. However it will only have been able to deal with those that can be checke
‘statically’, i.e. without the program running. When execution takes place, run-time errors
may occur. The program may not behave as intended or it may fail and stop completely

It is these errors that people mean when they talk about ‘bugs’. Bugs can be ver
difficult indeed to correct, typically much harder than compile-time errors.

Compile-time errors can be subdivided into syntax errors and static semantic errors.

Syntax errors
The set of grammatical rules which govern how the elements of Java may be combined
is called the of the language. The term syntax error comes from linguistics
In English ‘The is sun a star’ has syntax error, ‘is’ cannot follow ‘the’ in a well-formed
English sentence. In a similar way, we can say that an improperly formed Java sentence,
i.e. an incorrectly formed Java statement, has a syntax error. In the first phase o

compiling a class, the compiler in the BlueJ IDE will parse the code to determine its
grammatical structure and this will reveal any syntax errors. Any such errors are
reported in the message area of the BlueJ editor. Examples of common mistakes that
give rise to syntax errors in Java are:

omitting a semicolon at the end of a statement

omitting a bracket or brace

omitting a string delimiter (i.e. a double quote mark

putting a Java keyword in an inappropriate part of the code;

inserting a semicolon where there should not be one.

Identify the syntax errors in the following statements.

HoverFrog h1 = HoverFrog() new

String s1 = hello world"

int x = 55

int y = (10 / 2) *(3 + 4) + 6);

3.1 Compile-time errors

28

(a) The new

o.

(c) .

* (;

or

(

.

SAQ 5

.

/**

*/

{
;

;
}

The

ANSWER...

operator must come before a constructor, not after it.

(b) There should be a double quote mark (string delimiter) before hell

There should be a semicolon at the end of the statement

(d) There is a left-hand bracket missing in the compound expression. The expression
should have been written as:

(10 / 2) (3 + 4) + 6)

(10 / 2) *(3 + 4) + 6);

depending on which order the programmer intended the sub-expressions to be
evaluated

Identify the syntax error in the following hypothetical method for the class Frog

* Increment position of receiver by 1 and return the new position.

public int moveRightAndGetPosition()

return this.getPosition()
this.right()

ANSWER...

return statement terminates the method and therefore the statement
this.right();

is unreachable. Unreachable statements are illegal in Java. More generally, a return
statement can only appear as the last statement in a block.

Unit 8 Designing code, dealing with errors

We shall not study the syntax of Java in detail here. An informal knowledge of it is all that
we shall require, although as the course progresses you will come to learn more.

Semantic errors
After verifying that your program is syntactically correct, the compiler’s parser next
checks for another kind of correctness – semantic correctness. Again, the term
semantics comes from linguistics. In English, the sentence ‘The sky is made of green
cheese’ is a semantic error – it is an error of meaning – the sky is certainly not made of
green cheese. However, the sentence is syntactically correct; it has a correct form.

Examples of semantic errors would be.

c Using an undeclared variable in an expression.

c Using a variable in an expression before it has been given a value.

c Assigning a value of some type to a variable that has been declared of some other
non-compatible type.

c Using an undefined identifier – this may occur because you have forgotten to
declare a variable, or you may have mistyped a declared identifier (a variable
name).

3 Errors in programming 29

c

;

g

) as
)

)
{

;
;

}

)

a
) r

SAQ 6

;
;

e

SAQ 7

(a) 4

(b)

(c)

;

(a) $

int to a

Sending a message to an object that is referenced by a variable that has been
declared as a type which does not support that message. For example:

Frog kermit = new HoverFrog();
kermit.up()

results in a semantic error. Although the HoverFro object does have the message
up() in its protocol, the variable kermit to which it is assigned, has been declared
as being of type Frog which does not have up() in its protocol.

Suppose when typing in the code for method costOfCurrency(), in the class
Converter, we inadvertently misspelt the message calculateCommission(
calculateComission((with only one ‘m’) so that the method read as follows:

public void costOfCurrency(int amountOfCurrency

double commission, cost;
commission = this.calculateComission(amountOfCurrency)
cost = commission + (amountOfCurrency / this.getExchangeRate())
OUDialog.alert(this.getCurrencyName() + amountOfCurrency

+ " cost £" + cost);

The entire method is syntactically correct, the ‘grammar’ of Java has been correctly
followed and the message send:

this.calculateComission(

is also syntactically correct, however it is semantically incorrect, because it has no
meaning in the context of Converter object, because there is no message called
calculateComission(in the instance protocol of the class Converte and the
compiler would generate an error message.

Why will the following code result in a semantic error?

Toad myToad = new Toad()
myToad.up()

ANSWER...

The messag up() is not in the protocol of Toad objects.

Find the syntax and semantic errors in the following Java code.

int x = 3 $

int y = 3;

String s = y;

int z = 4;

String t = "for 2"

if (z == t) then z = 5;

ANSWER...

While the letter can be used in identifiers, in its position in this line of code the
compiler would interpret $ as an operator, and there is no such operator in Java
(syntax error).

Also there is no semicolon at the end of the line (syntax error).

(b) The second line of code tries to assign an String (semantic error).

(c) int to a

Also
d z int

30

The condition z == t is comparing an String (semantic error).

then is not a legal Java keyword but it is a legal identifier, so a compiler might
think you were declaring a variable calle of type then and then assigning an
to it. So it is a syntax error or a semantic error depending on how you look at it!

Unit 8 Designing code, dealing with errors

In the next activity you will be asked to introduce some syntax and semantic errors
into the source code for the class Converter, in order to understand the error
reports that result from attempting to compile it. The ability to interpret the various
error reports displayed by the BlueJ compiler is an important skill to learn.
Throughout the activities, you will be experimenting with the code for the method
public void costOfCurrency(int amountOfCurrency).

ACTIVITY 8

Launch BlueJ and then open the project Unit8_Project_8. Double-click on the Converter
class to open the editor.

Scroll down the code for the Converter class until you find the method header
public void costOfCurrency(int amountOfCurrency).

1 	Remove the closing parenthesis (round bracket) at the end of the fourth line of code:

cost = commission + (amountOfCurrency / this.getExchangeRate());

Then click the compile button and note the error message. Restore the closing
parenthesis to the method and make sure that the class compiles correctly before
proceeding.

2 	Remove the opening parenthesis on the fourth line of code. Then click the compile
button and note the error message:

cost = commission + (amountOfCurrency / this.getExchangeRate());

Restore the opening parenthesis to the method and make sure that the class
compiles correctly before proceeding.

3 	Remove the word commission and the comma from the variable declaration:

double commission, cost;

Then click the compile button and note the error message. Restore the word
commission and the comma to the variable declaration and make sure that the class
compiles correctly before proceeding.

4 	Remove the argument amountOfCurrency from the third line of code:

commission = this.calculateCommission(amountOfCurrency);

Then click the compile button and note the error message. Restore the argument
amountOfCurrency and make sure that the class compiles correctly before
proceeding.

DISCUSSION OF
ACTIVITY 8
1 	The compiler should have displayed the error message ')' expected and the line

of code in which the ‘)’ is missing should be highlighted.

The compiler’s parser reads and analyses the code during compilation, checking
that the code is syntactically correct (well formed). On encountering the opening
parenthesis, it starts looking for the matching closing one. However before one is
found, a semicolon indicating the end of the statement is encountered. So the parser
displays the appropriate error message. This is an example of a syntax error.

3 Errors in programming 31

2 	The parser does not know that the programmer intended to use parentheses in this
expression to calculate the cost. It does not detect an error until it has reached the
unexpected closing parenthesis. Not unreasonably, it thinks that the code without
parentheses was intended. It therefore assumes that the programmer meant to
insert a semicolon rather than a bracket, so displays the message ';' expected
and the line of code in which the error is found is highlighted. This is an example of a
syntax error.

3 	The parser displays the error message:

cannot find symbol - variable commission

and highlights the following line of code:

commission = this.calculateCommission(amountOfCurrency);

The parser is indicating that commission has not been declared as a variable. This
is an example of a semantic error.

4 The parser displays the following error message:

calculateCommission(int) in Converter cannot be applied to ()

and highlights the following code:

commission = this.calculateCommission();

The parser sees that the method calculateCommission() needs an argument
which is an int but that the message-send this.calculateCommission() does not
include an argument. This is an example of a semantic error.

.

SAQ 8

In the early stages of learning Java, you will probably spend a lot of time tracking down
compile-time errors. As you gain experience, though, you will make fewer errors and find
and correct them faster

What sorts of error are detected at compile time?

ANSWER...

Syntax and static semantic errors are detected at compile time.

ACTIVITY 9

In this activity you are going to fix the compile-time errors in a new class called
InterestCalculator. This class has a single static method calculateInterest()
which calculates the compound interest of a fixed sum over a fixed number of years.

Launch BlueJ and open the project Unit8_Project_9 and then the InterestCalculator
class. Try to compile the class. You will get a compile time error. Fix the error and then
recompile. You will get another error.

c Work on the errors in order, and recompile after each error is fixed.

c Use the error messages and the highlighting of the code; they are there to help you.

c Sometimes the exact position at which the compiling process spotted an error is not
the place where the mistake was made!

c Read the message and learn to recognise the technical language for different sorts of
errors.

c Use your knowledge of Java to fix the error.

32 Unit 8 Designing code, dealing with errors

ACTIVITY 9

d

;

:

;

fi e is
rate

as a

DISCUSSION OF

The first error message you get is ';' expecte . The following line is highlighted:

nestEgg = nestEgg + interest;

However the cause of the error is on the previous line where a semicolon is missing.

The second error is unclosed string literal and the following line is highlighted:

OUDialog.alert("After " + years + " years your nest egg would be worth £
+ df.format(nestEgg))

The error is that there should be closing double quotes after the pound sign (£).

The first two errors were simple syntax errors, The next error is more interesting. The line

rate = Double.parseDouble(OUDialog.request ("Enter interest rate"))

is highlighted and the error message cannot nd symbol - variable rat
displayed. The problem is that is not declared, so it will not be recognised by the
compiler as a variable. We need to add a declaration of rate double to the variable
declarations at the top of the method.

So, is that it? The code is now fixed? No, we have only fixed the compile-time errors and
there might be run-time errors to be fixed! We shall return to this code in Activity 12, in
Section 4 which deals with debugging run-time errors.

3.2 Run-time errors
In general, compile-time errors are relatively easy to detect and are reported; translation
and execution does not take place until they have been corrected. However compilers
are not perfect and so do not catch all errors at compile time. Some errors only become
apparent at run-time.

You may have heard about, or read reviews of, software which is described as having
‘bugs’. The word bug seems to have entered the language of computing to mean any
computer malfunction arising from the use of some piece of software. Its use is rather
general, and describes run-time errors, and sometimes even hardware problems.
Because of this rather imprecise usage we shall avoid the term, but it is now so common
that you are bound to come across it, and may wonder how a word describing insects
has become a generic term for a computer error.

Admiral Grace Hopper, the inventor of COBOL (Common Business Oriented Language),
made famous the story of how a computer technician solved a problem with an early
computer by removing an insect from inside it. This led to her describing any general
computer problem as a bug – the common use of the word today. However, the use of
the word was soon reserved for software errors.

Run-time errors can be subdivided into logical errors and dynamic semantic errors
(sometimes called execution errors).

Logical errors
A logical error is the result of code not correctly implementing the specification of a
particular problem. Although the code is both syntactically and semantically correct, it
does not behave as expected at run-time. For example, the wrong results may be
returned. As a trivial example, when writing a method, you may have got muddled

a)

,

=

+

)

)
{

}

;

3

9

a

.

–

33

between left and right, and sent Frog object the message right(when you wanted
it to move left in the microworld.

Suppose in the currency converter example we had not fully understood how the
components of the commission charges were calculated. This would lead to an incorrect
equation for the calculation of the final cost, and hence to a code solution which
although syntactically and semantically correct, returned an incorrect calculation.

Suppose we thought that the equation for calculating the commission when buying
some foreign currency was:

commission fixed fee + (percentage rate * amount of currency)
exchange rate

instead of the correct equation

commission = fixed fee (percentage rate * amount of currency)
exchange rate

Then we would implement calculateCommission(as follows.

public double calculateCommission(int amountOfCurrency

return (Converter.getFixedFee() + (Converter.getPercentageRate()
* amountOfCurrency)) / this.getExchangeRate();

This is syntactically correct but implements the incorrect equation. If the incorrect
equation and the following code were used and executed:

Converter dollarConverter = new Converter();
dollarConverter.setCurrencyName("US dollars");
dollarConverter.setExchangeRate(1.5)

The statement:

dollarConverter costOfCurrency(100);

would result in a dialogue box displaying:

US dollars 100 cost £71.3

rather than

US dollars 100 cost £71.9

Such an error could go undetected for some time, costing Walton Bureau de Change,
over time, a great deal of money. It is the formula not the coding that is at fault in that
logical error was made in the algorithm for solving the original problem. The code is
correctly performing what it was asked to do. It might be quite tricky for a programmer to
determine the cause of the incorrect answer because, while it is the message-send
dollarConverter.costOfCurrency(100) that has produced a wrong answer, the
error is in the method calculateCommission()

A logical error like this can be difficult to detect because neither the compiler nor the
Java Virtual Machine (JVM) can give us any help. As far as they are concerned all is well
the syntax rules and semantics of the Java language have been obeyed and the

method computes the expressed logic. Neither the compiler nor the Java Virtual
Machine (JVM) can read the programmer’s mind!

3 Errors in programming

Imagine how such a
logical error made in
formulas for trading stocks
and shares could quickly
multiply into a multimillion­
pound mistake.

34 Unit 8 Designing code, dealing with errors

n

.

SAQ 9

A object g and a object d

;
;

a

;
;

One way of detecting logical errors is to generate data against which the computed
results can be compared. This often involves working out values by hand and
comparing them with values resulting from message executions. The process is called
testing and while testing cannot guarantee that you have the correct logic, it ofte
reveals the presence of errors in code. Here, because the calculations involved are
simple numerical ones, testing would be relatively easy to carry out; it would involve
doing some calculations by hand and comparing them with the computed values. Since
we could not verify every possible conversion, the difficulty would be in deciding which
values would best test the code and give us some confidence that it was correct. We
shall not attempt to answer that now but will return to testing in Unit 13

What do you understand by run-time?

ANSWER...

Run-time is when the bytecode produced by the compiler is executed on the JVM.

SAQ 10

Frog aFro Toad aToa are to be included in a method. At the
end of the method, these objects are to be positioned on the leftmost ‘stone’. The
programmer writes the following code at the end of the method.

aFrog.home()

aToad.home()

What type of error has the programmer made? Give the correct code.

ANSWER...

A logical error has been made. The ‘home’ position for Toad object is the rightmost
stone. The code should be as follows.

aFrog.home()

aToad.setPosition(1)

Dynamic semantic errors
Another type of runtime error is a dynamic semantic error, dynamic because it is a
semantic error that cannot be detected by the compiler, but which can be detected by
the JVM or a method at runtime (if it has been written to do so). If a method has been
written to detect a particular kind of dynamic semantic error, and it does encounter such
an error, it is said to throw an exception. An exception, is so called because it usually
indicates that something exceptional (and usually bad) has happened: a condition has
occurred in the executing method which means the normal flow of execution cannot
continue safely. The exception that is thrown is actually a Java object that contains
information about the error, including its type and the state of the program when the error
occurred. It is thrown with the hope that another method, which sees the bigger picture
and so knows better how to resolve the problem, will catch it and will either take action
allowing the program to continue, or at least arrange for the program to terminate
gracefully. The actions that are taken as a result of an exception being thrown are called
exception handling.

3 Errors in programming 35

When a method throws an exception it is first caught by the JVM which then attempts to
find another method to handle that exception. The set of possible methods that could
handle the exception is the ordered list of methods that have been called (invoked) to
get to the method where the error occurred. This list of methods is known as the call
stack – Figure 1 shows a snapshot of the call stack after a doTransactions() message
has been sent to a Converter object and shows the state of the call stack once the
method calculateCommission() has invoked the getPercentageRate() method on
the Converter class.

method call

method call

method call

getPercentageRate()

calculateCommission()

costOfCurrency()

doTransactions()

Figure 1 Snapshot of the call stack after a doTransactions() message has been sent to a
Converter object

If the method on the top of the call stack (the currently executing method) throws an
exception, the JVM searches down the call stack for a method that contains a block of
code that can catch that exception. This block of code is called an exception handler.
The search begins with the method that called the method in which the error occurred,
and proceeds down through the call stack (as depicted by Figure 2).

36 Unit 8 Designing code, dealing with errors

JVM

method call

method call

method that encounters
a rror and throws an

exception

method without an
appropriate

except andler

method call

method with an
appropriate

except andler

method without an
appropriate

except andler

throw xception caught by JVM

except andler?

except andler found

except andler?

n e

ion h

ion h

ion h

n e

ion h

ion h

ion h

Figure 2 Exception catching

If an appropriate handler is found in a method, the JVM passes the exception on to that
handler. An exception handler is considered appropriate if the class of the exception
object thrown matches the class that can be handled by the handler. The exception
handler chosen is said to catch the exception. If the JVM exhaustively searches all the
methods on the call stack without finding an appropriate exception handler it informs the
user (ideally the programmer rather than the end-user) of the nature of the exception
and then the JVM (and, consequently, the execution of the program) terminates.

The most common exceptions that you are likely to have encountered so far include:

c ArithmeticException – an instance of this class is thrown when an exceptional
arithmetic condition has occurred; for example, when division by zero is required.

c NullPointerException – an instance of this class is thrown when you try and
access an instance variable of, or send a message to, a reference variable that is
set to null as it does not yet reference an object.

c NumberFormatException – an instance of this class is thrown to indicate that a
method that converts a string to one of the numeric types has been passed a string,
which does not have the appropriate format, as its argument.

The exception classes above are all built-in exceptions: they are part of the standard
Java library. In addition to these built-in exceptions, Java provides a mechanism for the
programmer to define other types of exceptions but this is beyond the scope of this
course.

r
)

{

;

{

;
;

}
}

a
,

the)
fifty 50

"fi

) r

37

An example of a method that throws an exception is the Intege class’s static method
parseInt(which you used in Activity 6 for the doTransactions() method. Here is the
code for the method:

public void doTransactions()

String amountString;
int amountOfCurrency
boolean repeat = true;
while (repeat)

amountString = OUDialog.request("How many " + this.getCurrencyName() + "?");
amountOfCurrency = Integer.parseInt(amountString)
this.costOfCurrency(amountOfCurrency)

repeat = OUDialog.confirm("Would you like another transaction ?");

Sending the doTransactions() message to Converter object would result in the
doTransactions() method starting to execute. Within the while loop of the method

request(method is invoked on the OUDialog class to display a dialogue box. If in
response to this request dialogue box, the user entered rather than , the local
variable amountString would hold the string fty". Next the method invokes the
parseInt(method on the Intege class with amountString as the argument. This

3 Errors in programming

method call

parseInt()

doTransactions()

would give us a call stack as depicted in Figure 3.

Figure 3 Call stack after doTransactions() has invoked parseInt().

As the parseInt() method starts to execute it would throw an instance of the
NumberFormatException class because it was expecting, as its argument, a string that
contained only digits, rather than a string containing alphabetic characters ("fifty").
The exception would be caught by the JVM which would then look for an appropriate
event handler. As there is only one other method on the call stack, doTransactions(),
the JVM has only one place to look. As our code for doTransactions() does not
attempt to catch instances of the NumberFormatException class (or indeed any other
class of exception), the JVM just informs the user that a NumberFormatException has
occurred and terminates execution.

This is not an ideal state of affairs; it would seem that our code is not very robust!
However Java does give us a mechanism to catch exceptions – the try–catch
statement. Here is the syntax:

try
{

< try block statements >
}
catch(ExceptionClass e)
{

< catch block statements >
}

The try block is prefixed by the keyword try and it is here (between the curly brackets)
that we put code that we suspect might result in an exception. The catch block is
prefixed by the keyword catch and then in parenthesis there is an argument declaration
just like the argument declaration for a method. This argument declaration gives the
class of the argument (in this case a made-up class name, ExceptionClass, for the
purpose of showing the syntax) and the name of the argument, in this case e. The only
exceptions thrown by the try block that the catch block can catch are those which
match the class of the catch block’s argument. So the catch block will only ever
execute if the try block throws an exception which matches the class of the catch
block’s argument declaration.

Let us see what this would look like in the context of a hypothetical method called
timesTwo().

public void timesTwo()
{

String numberString;
int number, answer;
boolean again = true;
while (again)
{

numberString = OUDialog.request("Enter a number to times by two");
try
{

number = Integer.parseInt(numberString);
answer = number * 2;
OUDialog.alert(numberString + " * 2 = " + answer);

}
catch(NumberFormatException anException)
{

OUDialog.alert("The string entered did not contain an integer");
}
again = OUDialog.confirm("Would you like another go?");

}
}

In the above code, if parseInt() throws an exception, execution of the timesTwo()
method will jump immediately to the catch block and the other two lines in the try block
will not be executed. If no exception is thrown the catch block is not executed. The code
after the catch block is always executed. Notice how a catch takes an argument, just
like a method. The argument in this case is called anException and it is declared to be
of class NumberFormatException. This defines that the catch block will only handle
cases of NumberFormatException, it will not handle any other class of exception.

Unit 8 Designing code, dealing with errors 38

ACTIVITY 10

1 If it is not already open, launch BlueJ and open the project Unit8_Project_10. This
project contains the class Converter from the previous section. Next open the
OUWorkspace and execute the following code:

Converter dollarConverter = new Converter("US dollars", 1.5);
dollarConverter.doTransactions();

When the doTransactions() method requests input, try entering into the text box of
the request dialogue box the word fifty and observe how the method behaves.
Observe any output in the Display Pane.

2 Next, in the BlueJ window, double-click on the icon for the Converter class to open
the editor and then add code to the doTransactions() method so that it catches any
NumberFormatException thrown by parseInt() (just as was shown in the
timesTwo() method above). Once you have done that, and you have successfully
recompiled the class, try the following code once more in the OUWorkspace:

Converter dollarConverter = new Converter("US dollars", 1.5);
dollarConverter.doTransactions();

As the code in the doTransactions() method loops, try entering into the request
dialogue box 50, fifty, twenty and 20 in turn and once again observe how the
method behaves.

DISCUSSION OF
ACTIVITY 10
1 Entering fifty into the request dialogue box results in the following message being

displayed in the Display Pane (if both lines are executed together).

Exception: line 2. java.lang.NumberFormatException:
For input string: "fifty"

2 Here is the code you should have written.

public void doTransactions()
{

String amountString;
int amountOfCurrency;
boolean repeat = true;
while (repeat)
{

amountString = OUDialog.request("How many "
+ this.getCurrencyName() + "?");

try
{

amountOfCurrency = Integer.parseInt(amountString);
this.costOfCurrency(amountOfCurrency);

}
catch(NumberFormatException anException)
{

OUDialog.alert("The string entered did not represent an integer");
}
repeat = OUDialog.confirm("Would you like another transaction ?");

}
}

3 Errors in programming 39

fifty or
e

Unit8_Project_11.

40

You should have observed that entering twenty into the request dialogue
box no longer caused execution of the method to cease and an error message to b

displayed in the Display Pane, instead the statement in the catch block is executed
and the method continues executing.

If you had problems with this activity, the solution code has been added to

Unit 8 Designing code, dealing with errors

Exceptions are objects so we can send messages to them. For example, we could have
written the catch statement in the previous activity as:

catch(NumberFormatException anException)

{

OUDialog.alert(anException.toString());

}

In this code, the message toString() is sent to the exception object to get its textual
representation which in this case is displayed in a dialogue box. When toString() is
sent to a NumberFormatException object the message answer looks like the following:

java.lang.NumberFormatException: For input string <some string>

where <some string> is the string that caused the exception. You will notice that this is
the same string that was shown in the Display Pane in part 1 of Activity 10, before we put
the try–catch statement into our code.

ACTIVITY 11

If it is not already open, launch BlueJ and open the project Unit8_Project_11. This project
contains the Converter class with the changes made in Activity 10.

In the BlueJ window, double-click on the Converter icon to open the editor and then in the
method doTransactions() change the code in the catch block so that a dialogue box
shows the result of sending toString() to the caught exception. Once you have done
this and successfully recompiled the Converter class, open the OUWorkspace and try
the following code once more in the OUWorkspace:

Converter dollarConverter = new Converter("US dollars", 1.5);
dollarConverter.doTransactions();

When the doTransactions() method requests input, try entering into the request
dialogue box fifty and observe how the method behaves.

DISCUSSION OF
ACTIVITY 11

The code in the catch block should now look like the following:

catch(NumberFormatException anException)

{

OUDialog.alert(anException.toString());

}

Entering fifty into the request dialogue box now results in an alert dialogue box
displaying the following string:

java.lang.NumberFormatException: For input string: "fifty"

If you had problems with this activity, the solution is in Unit8_Project_11_sol.

3 Errors in programming 41

In Java there are two families of exceptions: checked exceptions and unchecked
exceptions. Checked exceptions are subclasses of the class Exception, and
unchecked exceptions are subclasses of the class Run-timeException. There is an
important difference between how Java handles checked and unchecked exceptions.

c If you write a method that causes the execution of a method that throws a checked
exception, you must try and handle that exception. It is enforced by the compiler;
your code will not compile until you explicitly either try and catch that exception or
alternatively give your method a signature that declares it also throws that
exception, so making the code that invokes your method deal with it.

c If you write a method that causes the execution of a method that throws an
unchecked exception, the compiler does not force you to handle that exception,
although you as the programmer may decide to catch that exception – as you did in
the previous activity.

The exceptions we have mentioned in this section are all unchecked exceptions.
In Unit 12 you will be introduced to checked exceptions.

42 Unit 8 Designing code, dealing with errors

4 Debugging

Debugging is the process of removing run-time errors from programs. Typically at this
stage, the program compiles and runs, but one or more errors prevent the program from
functioning properly.

In an ideal world programs would be written correctly the first time and therefore never
require debugging. Almost as ideal is catching the errors in the program simply by
thoroughly examining it, usually mentally running it on various test cases to verify what
should be true at this point. Evaluating the correctness of a program by examining the
code is known as inspection. If the program appeared to be correct on inspection, but
errors become apparent as it runs, how should we set about tracking down the causes?

Probably the most common technique that programmers employ to debug code is to
add output statements to a program. These statements are strategically placed in the
code to inform the programmer of the flow of control and the values of key variables. The
output produced may make the problem obvious or may be used to successively narrow
down the problem location.

In Java there is a class called System that is always in scope (it is automatically
imported into every Java program). This class gives the programmer access to system
resources, one of these resources is the output console, out, which is an object which
will send text to a particular window or pane. In the context of the OUWorkspace out will
display text in the Display Pane if you send it a println() message. For example,
typing and executing the code:

System.out.println("I'm here");

will display the following in the Display Pane of the OUWorkspace:

I'm here

4.1 Debugging if, for and e
statements

whil

In this section we look at how you can use println() statements to debug if, for and
while statements.

if statements
When debugging code that involves an if statement, it is often useful to find out which branch
is executing. You can do this by putting println() statements at the top of each branch:

if (test)
{

System.out.println("test was true so executing then block");

// rest of the then block statements

}

else

{

System.out.println("test was false so executing else block");
// rest of the else block statements

}

4 Debugging 43

In the aforementioned code if the condition test evaluates to true, the code will print
out that the then block is executing, if test evaluates to false, the code will print out
that the else block is executing.

while statements
When debugging while statements, we are generally interested in the value of the
condition that controls whether the while block executes or not. If the condition
evaluates to false the first time through the loop, the statements inside the block are
never executed, so it is useful to output the value of the condition just before the while
statement. So long as the condition evaluates to true before the while statement then
the while block will execute at least once. The code in the block should change the
value of one or more variables so that, eventually, the condition evaluates to false and
the loop terminates, otherwise the loop would repeat for ever (called an infinite loop).
Therefore the last statement in the block should again output the value of the condition
so that you can determine that the condition eventually evaluates to false.

System.out.println("Before while statement: test = " + test);
while (test)
{

//while block statements
System.out.println("Inside while block: test = " + test);

}

for statements
As you know, for statements are used when we want a block of code to execute a fixed
number of times. For example, the following

for (int controlVar = 1; controlVar < 3; controlVar = controlVar + 1)
{

//for block statements
}

would execute twice, whereas

for (int controlVar = 1; controlVar <= 3; controlVar = controlVar + 1)
{

//for block statements
}

would execute exactly three times. The difference between these two for statements is
that the first one has the condition controlVar < 3, whereas the second has the
condition controlVar <= 3. It is relatively easy to get these Boolean conditions wrong,
so to make sure that the for block executes the correct number of times, you can output
the value of the control variable as the first line of the block, for example:

for (int controlVar = 1; controlVar <= 3; controlVar = controlVar + 1)
{

System.out.println("The value of controlVar is " + controlVar);
//rest of the for block statements

}

44 Unit 8 Designing code, dealing with errors

When the above executes, the following output would be displayed in the Display Pane
of the OUWorkspace:

The value of controlVar is 1

The value of controlVar is 2

The value of controlVar is 3

confirming that the for block is executed three times.

ACTIVITY 12

The static method calculateInterest() in the class InterestCalculator has a
logical error; no matter what integer is entered for the number of years to calculate the
interest, the calculation seems to only calculate years -1. Since it is within the for loop
that this calculation takes place, it is sensible to put a println() message within the for
loop to print out the value of the control loop variable year. Open Unit8_Project_12 and
add a line of code to the for loop so that it includes a println() message to display the
value of the control loop variable as indicated below in bold.

for (int year = 1; year < years; year = year + 1)
{

System.out.println("year is now " + year);
interest = nestEgg *rate / 100.0;

nestEgg = nestEgg + interest;

}

Compile the code and then, in the OUWorkspace, send the message
calculateInterest() to the InterestCalculator class and, when prompted for the
number of years to invest, enter the number 5.

DISCUSSION OF
ACTIVITY 12

In the OUWorkspace you should have evaluated the following code:

InterestCalculator.calculateInterest();

After prompting you for the interest rate, the sum to be invested and the number of years
to invest, your code should print the following to the Display Pane of the OUWorkspace:

year is now 1

year is now 2

year is now 3

year is now 4

It is clear from the output that the for statement block never executes for year 5 – what is
wrong? Well, let us take a closer look at the condition for the loop which is year < years.

The first time the condition is tested year = 1 which is less than years which holds the
value 5, so the statement block is executed and the interest is calculated.

The second time the condition is tested year = 2 which is less than years, so the
statement block is executed and the interest is calculated.

The third time the condition is tested year = 3 which is less than years, so the statement
block is executed and the interest is calculated.

The fourth time the condition is tested year = 4 which is less than years, so the
statement block is executed and the interest is calculated.

4 Debugging 45

Now the fifth time the condition is tested year = 5 which is not less than years, so the
statement block is not executed and the interest for that year is not calculated.

The error is clearly in the for loop’s condition, so let us look at that condition again:

year < years

We know that a for loop will only exit when the Boolean condition evaluates to false.
With years holding 5, this will happen when year gets to 5. When that happens, the for
loop will terminate. One way to avoid this and to get the loop to execute a correct
number of times is to add 1 to years in the condition:

year < years + 1.

This would work, but is poor programming style because it makes the code more difficult
to read. What we want to make explicit in the code is that if years is 5, the loop should
execute five times. The real problem is that we are using the wrong operator. In the
condition we are testing whether year is less than years, when what we really should be
doing is testing whether year is less than or equal to years. So the correct fix would be
to change the condition of the for loop to read year <= years. Using the wrong
comparison operator is easily done and a potent source of errors.

4.2 Tracing execution
In the previous subsection you saw how println() messages can be used to ascertain
how many times a for loop’s statement block is executed, and which branch of an
if-then-else statement is executed. However println() can also be used in your
code to ascertain what methods are executing at a particular time and in what order.

When you send a message to an object it often results in that object sending another
message to either itself or another object. Often it can be hard to tell what other
messages will be sent because it may depend on the outcome of a conditional
statement. In such circumstances it can be hard to track down logical errors in your
code. To facilitate this it is often useful to add println() messages in your methods so
that when a method is executed it prints out some or all of the following information:

c the method name;

c the state of the receiver;

c the values of local variables and arguments.

The uses of println() statements are not restricted to dealing with error conditions.
They can also be used to help in understanding error-free code by tracing the execution
of the code message by message. We shall look at tracing error-free code in this
subsection

We look at a very simple class called Debug that has been designed to illustrate how to
trace through code. It should not be treated as an example of good programming!

Class Debug
The class Debug does not have any instance variables. It has three instance methods
alpha(), beta() and gamma()the code for which is given below.

/**
* Sends the receiver the message beta()
*/
public void alpha()
{

int answer;
answer = this.beta();

}

/**
* Sends the receiver the message gamma()
*/
public int beta()
{

return this.gamma();
}

/**
*Returns the number 42
*/
public int gamma()
{

return 42;
}

When an instance of Debug receives the message alpha() the corresponding method
is found and the alpha() method starts to execute. This starts a chain of further
messages (beta(), then gamma()), as the method alpha() sends the message beta()
and the method beta()sends the message gamma().

At this point three messages have been sent in the order of alpha(), beta(), gamma(),
but none of the corresponding methods have completed execution. The method
gamma() then returns the number 42 – and so completes its execution. The method
beta() can now complete, returning the result of this.gamma() to the method
alpha(), and then alpha() can similarly complete execution. So a message answer is
returned first by gamma(), then by beta(); this is the reverse of the order in which the
messages were sent.

ACTIVITY 13

Launch BlueJ and then open the project Unit8_Project_13. Double-click on the class
Debug to open the editor. Your task is now to add println() statements to the methods.

In the method alpha() add a line of code just after the declaration of the local variable
answer that will print out "Hello from alpha()!". Then add a final line of code that will
print out the value of the local variable answer using println(). The println() method is
overloaded so its argument can be a string or a number so it is quite legal to use answer as
the argument to println(). However your output will be more meaningful if you
concatenate a suitable string such as "The value of answer is " with the variable answer.

In the method beta() add a first line of code that will print out "Hello from beta()!".

In the method gamma() add a first line of code that will print out "Hello from gamma()!" .

Unit 8 Designing code, dealing with errors 46

4 Debugging 47

Once you have edited the methods and successfully recompiled the class, open the
OUWorkspace and execute the following code, observing what is displayed in the Display
Pane:

Debug d = new Debug();
d.alpha();

DISCUSSION OF
ACTIVITY 13

The code for your methods should now look like this:

/**
* Sends the receiver the message beta()
*/

public void alpha()

{

int answer;
System.out.println("Hello from alpha()!");
answer = this.beta();
System.out.println("The value of answer is " + answer);

}

/**
* Sends the receiver the message gamma()
*/

public int beta()

{

System.out.println("Hello from beta()!");
return this.gamma();

}

/**
*Returns the number 42
*/

public int gamma()

{

System.out.println("Hello from gamma()!");
return 42;

}

After executing d.alpha() in the OUWorkspace the following should be displayed in
the Display Pane:

Hello from alpha()!
Hello from beta()!
Hello from gamma()!

The value of answer is 42

Using carefully placed println() messages is a standard way of enabling tracing or
debugging of code.

The project Unit8_Project_13_sol contains a version of the Debug class with the
println() statements added.

48 Unit 8 Designing code, dealing with errors

ACTIVITY 14

)

;
;

;

g)

)

;
;

h
in

s

In this activity you will experiment a little more on tracing program flow using println(
statements.

Launch BlueJ and then open the project Unit8_Project_14. Double-click on the class
Maze to open the editor.

The class declares the following variables:

private String s1 = "nine";
private String s2 = "time"
private String s3 = "A stitch"
private String s4 = "saves ";
private String s5 = "in"

We have partially completed three instance methods for you. Your task in this activity is to
complete the methods by addin println(statements to these methods, where
indicated by comments, that make use of the above instance variables. The hard bit of
this activity is that you should use the above instance variables in the println(
statements in such a way so that when the following code:

Maze mz = new Maze()
mz.m1()

is executed in the OUWorkspace, the Display Pane displays the well-known saying:

A stitc

time
save

nine

DISCUSSION OF
ACTIVITY 14

Here is the code you should have written showing you the order in which the println()
statements are executed.

public void m1()
{

System.out.println(s3); // executes first

this.m3();

System.out.println(s1); // executes fifth

}

public void m2()

{

System.out.println(s2); //executes third

}

public void m3()
{

System.out.println(s5); //executes second

this.m2();

System.out.println(s4); //executes fourth

}

Summary 49

5 Summary

c

c

c a
.

c

n

c
)

After studying this chapter you should understand the following ideas.

It is important to format code according to a set of widely followed guidelines so that
it is readable and understandable by yourself and by others.

Compile-time errors occur due to mistakes in the syntax or semantics of the source
code. The compiler detects these errors and provides error messages to help the
programmer to fix the errors.

Run-time errors occur because of flaws in the programmer’s logic or
misunderstanding of the syntax or semantics used

Java provides a powerful tool for dealing with the unpredictable kind of run-time
errors. When an irregular situation occurs in a running program, the Java Virtual
Machine creates an Exceptio object, which is passed to whichever object can
best sort out the problem.

Debugging is a process of ridding a program of avoidable run-time errors. Using
println(messages to display information about the running program can aid in
debugging.

S

c

c

c

c

c

c

LEARNING OUTCOME

After studying this unit you should be able to:

format Java code in accordance with the guidelines given in this unit;

understand what is meant by compile-time errors and explain the difference
between syntax and semantic errors;

use the errors displayed by the compiler to track down and fix compile-time errors;

understand what is meant by a run-time error and explain the difference between
logical and dynamic semantic run-time errors;

write simple code to catch an exception;

use the debugging techniques taught in this unit to fix run-time errors.

50 Unit 8 Designing code, dealing with errors

Glossary
bug .

catch – see try– h

An
exception.

A compiler,
can

a run-time
error

.

.

parse See parsing.

parser

parsing

or
.

The cause of a run-time error

The process of catching an exception catc statement.

checked exception exception that the compiler requires the programmer to
handle if they write code that executes a method that can throw such an

compiler Software which checks that text written in a high-level language is correctly
formed and, as far as can be determined before compilation, that it is meaningful
source code for the language. If the check is successful, then the source code is
translated into machine code. The particular machine code is generated for execution
by the hardware of a real computer, or for some languages, such as Java, execution ‘on’
a virtual machine.

compile-time error Errors that are to do with the form of the text as determined by the
rules for a given programming language. These are detected and reported during the
early stages of compilation (see compiler). The compilation does not proceed to code
generation if an error is detected.

debugging The identification and removal of run-time errors (bugs) from a program.

dynamic semantic error semantic error that cannot be detected by the
but which be detected by the JVM or a method at run-time and which results in an
exception being thrown.

exception An object that is thrown by a method or the JVM as the result of
. The exception object holds details of what went wrong allowing the exception

handler which catches the exception to take appropriate action.

exception handling The programmed catching of an exception and the subsequent
execution of reliable code to abandon execution, for example, or to restore the software
to a meaningful state

formatting guidelines A set of guidelines which specify how program code should be
laid out.

logical error The result of code not correctly implementing the specification of
particular problem. Although the code is both syntactically and semantically correct, it
does not behave as expect at run-time

That part of the compiler which checks source code for syntactic and
semantic correctness.

The process of deciding whether the input text is a ‘sentence’ of a given
language and obeys its syntax and semantic rules.

run-time Refers to the moment when a program begins to execute, in contrast to the
time at which it has been loaded or compiled. The amount of time, elapsed time, used in
executing a program is sometimes called the run-time.

run-time error A programming error that only becomes apparent when the program is
run, and cannot be detected beforehand. Run-time errors can be logical errors
exceptions

5 Glossary 51

scope

l

.

parser.

syntax

parser.

throw .

try– h .

An

run-time system The Java run-time system consists of the virtual machine plus
additional software, such as class libraries, that are needed to implement the Java API
on your operating system and hardware.

The scope of a variable describes the areas of program code from which the
variable may be used. The scope of a local variable is the statement block in which it is
declared (and any nested statement block). In discussing methods, the scope of a loca

variable is the method in which it is declared.

semantics That part of the definition of a language concerned with specifying the
meaning or effect of text that is constructed according the syntax rules of the language

semantic error A semantic error arises from a misunderstanding of the meaning or
effect of some construct in a programming language. Many such errors are detected
during compilation by the

source code Text expressed in a high-level programming language. The term is also
often applied to text that does not fully conform to the language (it contains an error), but
with minor correction would conform.

Rules defining the legal sequences of characters in a programming language.
Syntax rules define the form of the various constructs in the language, but say nothing
about the meaning of these constructs.

syntax error Failure to observe a syntax rule. Such an error is detected during
compilation by the

the process of throwing an exception, see exception

catc statement An exception handler, a mechanism to catch exceptions

unchecked exception exception that the compiler does not require the
programmer to handle if they write code that executes a method that can throw such an
exception.

C

52 Unit 8 Designing code, dealing with errors

Index

B

bug 32

call stack 35

catch 34

checked exception 41

compile-time errors 27

D

debugging 42

dynamic semantic error 34

E
exception 34

handler 35

handling 34

F

formatting guidelines 6

L

logical error 32

P

parse 27

R

run-time error 32

S

scope 21

semantic error 28

syntax error 27

T

throw 34

try–catch statement 38

U

unchecked exception 41

