
7Unit
C sign and class
members

Object-oriented
programming with Java

M255 Unit 7

ode de

UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008.

.2006, 2008 The Open UniversityªCopyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

5 ISBN 978 0 7492 5499

2.1

CONTENTS

Introduction 5

6

1.1 6

1.2 8

1.3 9

1.4 13

16

2.1 16

2.2 18

2.3 The class 19

2.4 34

35

3.1 35

3.2 37

3.3
the class 40

3.4 Constants 44

46

1 How work gets done in programs

Getting results by sending messages

Getting results without messages

Forms of collaboration

Overloading and overriding

2 Coordinating sequences of actions

Approaches to organising code

Orchestrating behaviour

BarnDanceCaller

Simulation and reality

3 Class methods and class variables

Class variables

Class methods

Adding a class variable and class method to
Frog

4 A review of the different kinds of variable

4.1 46

4.2 46

4.3 46

4.4 48

4.5 50

51

56

Glossary 58

Index 60

Local variables

Workspace variables

Instance variables

Class variables

Method and constructor arguments

5 General-purpose classes

6 Summary

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Academic Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Associate Lecturer, Author and Critical Reader

Robin Walker, Critical Reader, Associate Lecturer

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

In this unit you will learn important new ideas about the design of object-oriented
software. You will also learn more about class methods and class variables and see how
they are used in practice.

The unit begins by looking at some general ideas about the design of object-oriented
software. Starting with an examination of how work gets done in an object-oriented
program, we then consider forms of interaction between objects, before explaining the
important concepts of overloading and overriding.

Sections 2 covers ways of organising and structuring object-oriented code. We survey
some standard techniques, explore trade-offs between simplicity and flexibility, and
consider how the design of code may affect its maintainability. Various principles are
introduced as rules of thumb for good design, and the idea of refactoring code –
reorganising it to improve the design – is studied. This section of the unit ends by looking
in some detail at how a special coordinating class may be added to a design in order to
orchestrate the activities of a group of objects.

Section 3 revisits class methods and variables – collectively known as static members –
and deals with them in depth.

The various kinds of variables available in Java are then reprised in Section 4 before
going on to the final part of the unit, Section 5, where we look at the role of general­

purpose utility classes that exist to provide various sorts of facilities – services – to
objects of other classes, using static constants and methods.

6 Unit 7 Code design and class members

1.1 Getting results by sending messages

1 How work gets done in programs

­

e

.

Exercise 1

The principal way (though not the only way) in which useful work gets done in object
oriented programs is by objects sending messages to other objects, or indeed to
themselves. Within this general pattern, there are many possible variations. Below, w
will illustrate some of the main variants. The different categories that the examples
illustrate are informal rather than hard and fast, and there is no need to memorise them
Many of the categories and examples overlap. However, you will find that becoming
aware of the variety of ways in which sending a message can get work done will help
you in understanding fundamental decisions when writing object-oriented programs.

The table below illustrates some informal categories of ways of getting work done by
sending a message. Fill in the blanks with message-sends (all the categories can be
illustrated using frogs and/or accounts, but feel free to use any examples you like). Note
that a particular message-send could be used for more than one category.

1 ;

2 ;

3

4

5

6 t

7

8
d

9

Type of task Example statements

To cause an object to take some action kermit.right()

To get an object as a message answer kermit.getColour()

To get a primitive value as a message answer

To check whether something is true

To change the internal state of an object

To cause some object to make use of another objec
momentarily

To cause some object to use an item of primitive data

To cause the physical hardware to take some action, such as
emit a soun

To cause an object to become part of the internal state of
another object

–

and r and

7

Solution...

Many other answers are possible these are just examples.

These examples assume that kermit kermitJunio are frogs and account1

1 How work gets done in programs

2 ;

3 ;
;

4 ;

5 ;

6 t

7
;

8 ,

9
t

;

account2 are accounts.

Type of task Example statements

To get an object as a message answer kermit.getColour()

account2.getHolder();

To get a primitive value as a message answer kermit.getPosition()

account2.getBalance()

To check whether something is true kermit.getColour().equals(OUColour.BLUE)

To change the internal state of an object kermit.setColour(OUColour.BLUE)

account1.credit(100);

To cause some object to make use of another objec
momentarily

kermit.sameColourAs(kermitJunior);
account1.transfer(account2, 100);

To cause some object to use an item of primitive data kermit.setPosition(1);
account1.setBalance(200)

To cause the physical hardware to take some action
such as emit a sound

kermit.croak();

To cause an object to become part of the internal
state of another objec

kermit.setColour(OUColour.PURPLE)

account2.setholder("Wood Beez");

Note that category 8 in the table above (causing the physical hardware to take some
action) relies on the fact that a small number of methods in the Java Class Library are
what is known as native methods which do not get work done by causing any further
operations on objects or primitive data, but instead use mechanisms that cause the Java
Virtual Machine in turn to cause the computer hardware take some action, such as make
a sound or change the display on the screen. For example, the croak() method sends
a message that ultimately invokes a native method. You do not need to know anything
about native methods; we simply mention them so that you will be aware of their
existence.

In the table above we have not considered the use of a constructor or the invocation of a
class method on a class. This is because neither of these involves the sending of a
message, which is what the table is looking at. Of course, the sending of a message
could result in the use of a constructor or class method indirectly, if these appeared in
the method that is executed when a message is sent. For instance, if Frog had a method
sayBoo() which contained the code OUDialog.alert("Boo!") then the message­

send kermit.sayBoo() would indirectly cause the invocation of the class method
alert().

8 Unit 7 Code design and class members

1.2 Getting results without messages

not

without

Exercise 2

a

It is also useful to consider various ways of getting work done in Java programs that do
involve sending a message to an object. The actions below can be performed

without any message being sent.

(Of course, any of the examples below might appear inside a method, in which case
they would be carried out as the result of a message being sent, and in fact this is often
what happens, but the point we are making is that the actions can perfectly well be
performed an actual message being involved.)

As in the previous subsection, the categories are informal rather than hard and fast; they
may overlap, and there is no need to memorise them. As before, we give examples for
some of the categories, and ask you to come up with examples for the other ones.

The table below shows some categories of ways of getting work done without sending
message. Fill in the blanks.

1

2 ;

3

4

5

6

7
)

8

9

Type of task Example statement

Declaring a variable

Invoking a constructor to create a new object kermit = new Frog()

Assigning a value to a variable

Accessing an instance variable of an object

Carrying out an operation on primitive data

Carrying out an operation on one or more objects without
using a message

Invoking a method on a class
(Hint: consider the class OUDialog

Iterating over a block of code

Selecting a branch of code to execute

9

Solution...

These are the examples we came up with but there are many other answers and yours

1 How work gets done in programs

1 ;

2 ;

3

4

5

6 ;

7

8 ;
)

{
;

}

9

are likely to be different.

Type of task Example statement

Declaring a variable Frog kermit

Invoking a constructor to create a new object kermit = new Frog()

Assigning a value to a variable int answer = 42;

Accessing an instance variable of an object this.position

Carrying out an operation on primitive data 2 + 2;

Carrying out an operation on one or more objects
without using a message

kermit == kermitJunior

Invoking a method on a class OUDialog.alert("Boo");

Iterating over a block of code int total = 0
for (int count = 1; count <= 16; count++

total = total + count

Selecting a branch of code to execute if (count == 5) total = 42;

Different programming languages vary in the extent to which they get things done using
messages. Some languages, such as C, do not use messages at all, and are not at all
object-oriented. Other languages, such as Smalltalk, use messages to do everything, or
almost everything. These are pure object-oriented languages. As you can see above,
Java is a hybrid that combines a mixture of object-oriented and non-object-oriented
approaches. The next subsection focuses on ways of doing things in Java using
objects.

1.3 Forms of collaboration
Section 4 of Unit 2 discussed how, in order to carry out the behaviour associated with a
message, an object might have to collaborate with another object to get the work done.
In this subsection we look again at collaboration and identify two forms: direct
interaction and indirect interaction.

One simple way in which Java objects can interact to collaborate may occur when one
object is used as the argument for a message sent to some other object. For example,
executing the following statement using two instances of the Frog class, frog1 and
frog2, illustrates just such an interaction.

frog1.sameColourAs(frog2);

This example is a direct interaction in the sense that frog2, which is used as an
argument, is not merely ignored or just passed on by frog1 to yet another object.
Instead, within the workings of the method sameColourAs(), frog1 sends a message
to frog2, which is then used to alter the state of frog1. Where one object has a
reference to another, and this reference is used to affect the state or behaviour of one of
the objects, this is a direct interaction.

10 Unit 7 Code design and class members

The following statement involves a more indirect interaction than the above example.

frog1.setPosition(frog2.getPosition());

In the case of this statement, frog1 never knows of the existence of frog2. However, the
statement has a reference to both of them and combines two messages to cause the
state of one to affect, indirectly, the state of the other. In particular, the statement uses
the messages getPosition() and setPosition(). The message getPosition()
returns the position of frog2. The message setPosition() then uses the message
answer as its argument, so changing the position of frog1. For the reasons just
explained, if we were going to be precise about the type of collaboration, we would have
to say that this new example is not an example of direct interaction, but only an
example of indirect interaction. Some third party is coordinating the behaviour of the
two frogs by sending them both messages. It is worth being aware of the distinction
between direct and indirect interaction, and the fact that some kind of coordinator is
needed for the latter to take place. We will return to this general idea later in the unit.

ACTIVITY 1

Open the project Unit7_Project_1.

Extend the protocol of the Frog class, by writing a new method with the heading

public void sameStateAs(Frog aFrog)

This method should make the state of the receiver the same as that of the argument
aFrog. (Loosely speaking, this method will extend the behaviour of the method
sameColourAs()that is already defined for frogs, but in this case the position of the
receiver will also need to become the same as the position of the method’s argument.)

Once you have written this method and got it to compile successfully, open the
OUWorkspace, and then an Amphibians window from the Graphical Display menu.
Next execute the following code to create two frogs and two hoverfrogs.

Frog frog1 = new Frog();

Frog frog2 = new Frog();

HoverFrog hoverFrog1 = new HoverFrog();

HoverFrog hoverFrog2 = new HoverFrog();

frog2.setPosition(11);

frog2.setColour(OUColour.PURPLE);

hoverFrog2.setPosition(5);

hoverFrog2.setColour(OUColour.RED);

hoverFrog2.setHeight(4);

Next, test your new method by executing the following four statements (one by one):

frog1.sameStateAs(frog2);

hoverFrog1.sameStateAs(hoverFrog2);

frog2.sameStateAs(hoverFrog1);

hoverFrog2.sameStateAs(frog1);

View the results of these statements in the Amphibians window and by inspecting the
receivers of the sameStateAs() messages after each statement is executed.

The code for the sameStateAs() method has been added to the Frog class in
Unit7_Project_2. So, if you had problems getting your sameStateAs() method to
compile, the above code can be executed in the OUWorkspace after opening
Unit7_Project_2.

ACTIVITY 1

e

)
{

}

receiver – ;

1 and 2

;

and
send

;

and

and 2

and
1 f 2

11

DISCUSSION OF

There are several ways of writing the method, but here is one possibility (we hav
omitted the method comment for brevity).

public void sameStateAs(Frog aFrog

this.sameColourAs(aFrog);
this.setPosition(aFrog.getPosition());

Notice how we have made use of the sameColourAs() message to set the colour of the
this is much better style than using this.setColour(aFrog.getColour())

In the case of the frogs frog frog , the effect of the message-send

frog1.sameStateAs(frog2)

is to put the receiver into the same state as the argument.

In the case of the hoverfrogs hoverFrog1 hoverFrog2, the effect of the message­

hoverFrog1.sameStateAs(hoverFrog2)

is to put the receiver into the same state as the argument as regards its position
colour instance variables, but leaves height untouched.

The message-send

frog2.sameStateAs(hoverFrog1);

sets the postion colour instance variables of frog to be the same as
hoverFrog1, and finally

hoverFrog2.sameStateAs(frog1);

sets the postion colour instance variables of hoverFrog2 to be the same as
frog leaving the height o hoverFrog untouched.

1 How work gets done in programs

As the previous activity has demonstrated, the message sameStateAs(), as defined by
the corresponding method in the Frog class, can be used to put two frogs in the same
state. The previous activity also demonstrated, which you may have found surprising,
that this message can also be sent to a HoverFrog object with another HoverFrog
object as the argument, or to a Frog object with a HoverFrog object as the argument, or
to a HoverFrog object with a Frog as the argument.

This flexibility is possible because HoverFrog is a subclass of the Frog class and so the
HoverFrog class inherits all of the methods defined for the Frog class, therefore the
message sameStateAs() can also be sent to HoverFrog objects. Also, although the
formal argument to sameStateAs() has been defined to be of type Frog, we can use a
HoverFrog object as the actual argument because HoverFrog is a subtype of Frog.
Hence, hoverfrogs are substitutable for frogs in both places – both as the receiver of the
message and as the argument.

However, frogs have only two instance variables, position and colour whereas
hoverfrogs have an extra instance variable height, which the method sameStateAs()
knows nothing about. Therefore a message-send such as

hoverFrog1.sameStateAs(hoverFrog2);

cannot result in the two hoverfrogs having the same state unless they had the same
value for height in the first place. Only the values of the position and colour instance

Note the terminology we
are using; variables and
formal arguments have a
type, whereas the objects
that are assigned to them
have a class.

12 Unit 7 Code design and class members

variables of hoverFrog1 would be changed to match those of hoverFrog2, height
would be ignored and remain unchanged as the sameStateAs() method knows nothing
about the height instance variable.

A message-send such as

frog2.sameStateAs(hoverFrog1);

can be used to put frog2 in the same state as hoverFrog1 as regards the kinds of state
that frogs know about – position and colour. However, frogs do not have a height
instance variable, so frog2 cannot be put at the same height as hoverFrog1.

Finally

hoverFrog2.sameStateAs(frog1);

In this case, hoverFrog2 can be put in the same state as frog1 as regards position
and colour, but hoverFrog2’s height instance variable will be left untouched, since
the object referenced by frog1 does not have a height, and, more to the point, the
method sameStateAs() does not know about height.

Strictly speaking, there is no possibility whatsoever for a hoverfrog and a frog to have
the same state as they have a different number of instance variables. However it is
possible to write a method that will put two hoverfrogs into the same state. To do this, we
need to define a method sameStateAs() in the HoverFrog class, which will make the
height instance variable of the two hoverfrogs the same as well as their position and
colour.

ACTIVITY 2

Open the project Unit7_Project_2.

Extend the protocol of the HoverFrog class, by writing a new method with the heading

public void sameStateAs(HoverFrog aHoverFrog)

which takes height into consideration (you may find it helpful to refer back to Activity 1).

Once you have written this method and got it to compile successfully, open the
OUWorkspace, and then an Amphibians window from the Graphical Display menu. Next
execute the following code to create two hoverfrogs with different states.

HoverFrog hoverFrog1 = new HoverFrog();
HoverFrog hoverFrog2 = new HoverFrog();
hoverFrog2.setPosition(5);
hoverFrog2.setHeight(3);
hoverFrog2.setColour(OUColour.RED);

Next test your new method by executing the following statement:

hoverFrog1.sameStateAs(hoverFrog2);

View the result of executing the statement in the Amphibians window and by inspecting
hoverFrog1.

The code for the sameStateAs() method has been added to the HoverFrog class in
Unit7_Project_3. So, if you had problems getting your sameStateAs() method to
compile, the above code can be executed in the OUWorkspace after opening
Unit7_Project_3.

131 How work gets done in programs

ACTIVITY 2

e

)
{

d
e

;
e

;
}

) and
of g

(

r

) s t
s

) in

)
{

;
;

;
}

DISCUSSION OF

There are several ways of writing the method, but here is one possibility (we hav
omitted the method comment for brevity).

public void sameStateAs(HoverFrog aHoverFrog

// First use the superclass method to make the position an
// colour of the two hoverFrogs the sam

super.sameStateAs(aHoverFrog)

// Then make their heights the sam
this.setHeight(aHoverFrog.getHeight())

Here we are making use of the fact that the method with the signature
sameStateAs(Frog defined in the Frog class already allows the position
colour HoverFro objects to be set to those of the given argument. To invoke that
method in the superclass Frog) at run-time we simply send the sameStateAs()
message to the receiver via the pseudo-variable supe . Then, to complete our new
sameStateAs(method, we merely need to set the receiver’ heigh to be the same as
the argument’ height. Note the element of code reuse in this example.

You could make the method work by reproducing the code from sameStateAs(
Frog, like this

public void sameStateAs(HoverFrog aHoverFrog

this.sameColourAs(aHoverFrog)

this.setPosition(aHoverFrog.getPosition())
this.setHeight(aHoverFrog.getHeight())

but that would be poor design and should always be avoided, for reasons which will be
discussed in detail in Section 2.

1.4 Overloading and overriding

In Unit 6 we looked at how inherited methods could be overridden in a subclass. We also
looked at how constructors could be overloaded. In this subsection we look at how
methods are overloaded and investigate how such methods are selected for execution
at run-time, contrasting this with how overridden methods are selected for execution.

Notice, in the previous activity, that the HoverFrog class now has two methods defined
whose method name is sameStateAs(), and both of them have a single argument.
These two methods have different signatures, as the types of their argument differ – in
one case the argument is of type Frog, in the other case the argument is of type
HoverFrog. The latter method is defined directly in HoverFrog, whereas the former
method is inherited from Frog.

In any case where a class has more than one method with the same name, but the
methods differ in the number of arguments, or in the order or type of one or more
arguments, the method name is said to be overloaded. In the present example the
number of arguments is the same – one – but as noted the type is different.

14 Unit 7 Code design and class members

ACTIVITY 3

Open the project Unit7_Project_3.

Execute the following statements in the OUWorkspace to create two frogs and two
hoverfrogs all with different states.

Frog frog1 = new Frog();
Frog frog2 = new Frog();
HoverFrog hoverFrog1 = new HoverFrog();
HoverFrog hoverFrog2 = new HoverFrog();
frog2.setPosition(11);
frog2.setColour(OUColour.PURPLE);
hoverFrog2.setPosition(5);
hoverFrog2.setColour(OUColour.RED);
hoverFrog2.setHeight(4);

Next execute the following statements (one by one):

frog1.sameStateAs(frog2);
hoverFrog1.sameStateAs(hoverFrog2);
frog2.sameStateAs(hoverFrog1);
hoverFrog2.sameStateAs(frog1);

View the results of these statements in the Amphibians window and by inspecting the
receivers of the sameStateAs() messages after each statement is executed.

DISCUSSION OF
ACTIVITY 3

The effect of the message-send

frog1.sameStateAs(frog2);

is to invoke the method sameStateAs() defined in the Frog class and to put the
receiver (a frog) into the same state as the argument (here also a frog).

In the case of the message-send

hoverFrog1.sameStateAs(hoverFrog2);

the compiler realises that the HoverFrog class has two candidate methods that could
match the message-send. The method with the signature sameStateAs(Frog) is
inherited from the Frog class, and the method sameStateAs(HoverFrog) is defined by
the HoverFrog class itself. Either method would match the message because
HoverFrog is a subtype of Frog, so it is legal for a HoverFrog object to be supplied as
the argument to a method wherever a Frog instance is expected.

In a case like this, when a class has several overloaded methods, then the compiler must
decide which method signature the JVM should use to select a method at run-time. The
process of picking the best match from a set of candidate methods is called overload-
resolution. The compiler chooses the best signature match based on the compile-time
type of the actual argument provided to the message. In the case of the message-send

hoverFrog1.sameStateAs(hoverFrog2);

hoverFrog2, which is used as the argument to the sameStateAs() message, has been
declared as a variable of type HoverFrog. Hence the compiler produces code that instructs
the JVM to select the method that matches the signature sameStateAs(HoverFrog) at
run-time. At run-time the method sameStateAs() defined in the HoverFrog class is invoked
which puts the receiver (a hoverfrog) into the same state as the argument (here also a
hoverfrog), taking into account their respective height.

)
g a g

a

and
t 2

a object.

d

g

1 a
type

)
.

and
.

15

The message-send

frog2.sameStateAs(hoverFrog1);

is non-problematic; the Frog class has only one sameStateAs(method, so there is no
confusion. HoverFro is a subtype of Frog, so it is legal for HoverFro object to be
supplied as the argument wherever Frog instance is expected. The version of the
method that is invoked is the one from Frog, because at run-time that is the class of the
receiver. The position colour of the receiver are set to those of the argument, but,
of course, no attempt is made to set a heigh , which could not apply to frog since it
references Frog

In the case of the message-sen

hoverFrog2.sameStateAs(frog1);

the compiler again realises that the HoverFro class has two candidate methods that
could match the message-send. So once more overload-resolution takes place and as
the reference provided as the argument to the message (frog) has been declared as
variable of Frog the compiler produces code that instructs the JVM to select the
method that matches the signature sameStateAs(Frog at run-time. So we infer that the
method that is invoked will be the version inherited from Frog Hence only the position

colour instance variables of the receiver are set to those of the message’s
argument and no attempt is made to set the height

1 How work gets done in programs

It is important at this juncture to make clear the difference between how an overloaded
method and an overriden method are invoked at run-time. A method name is said to be
overloaded if another method that can be invoked by a message to the same type of
receiver has the same name, but the arguments differ in number, order or type. By
contrast, if a method has the same name and the same arguments (and return type) as
an accessible method in a superclass, it is said to override that method.

Whenever a message corresponding to two or more overloaded methods is detected at
compile-time, overload-resolution takes place and the compiler decides what method
signature the JVM should use to select a method at run-time based on the compile-time
types of the actual arguments provided in the message. The run-time class of the
arguments cannot later affect which of the overloaded methods is invoked at run-time –
it is fixed at compile-time.

However, in the case of overriding, while the declared compile-time type of the variable
referencing a receiver is known to the compiler, the run-time class of the receiver is
generally not, and it may make a vital difference because different classes of receiver
will each implement their own different method corresponding to the message in
question. Hence the appropriate choice of method will depend on the class of the
message receiver at run-time.

Thus, there is a stark and important difference between the ways in which overriding and
overloading affect the selection of methods to correspond to a given message. This
contrast may also be seen, if you prefer, as being between the ways in which the type of
message arguments, as opposed to the class of a message receiver, affect which
method will be invoked by a given message. In either case, the class of the arguments is
never considered for the purpose of choosing a method – the number, type and order of
the arguments is all that Java is designed to consider.

Of course, it is possible for a message to be affected by both overloading and
overriding, in which case part of the decision on which method signature to choose will
be taken at compile-time, but a final decision will not in general be taken until run-time.

16 Unit 7 Code design and class members

2 actions
Coordinating sequences of

The examples explored in the previous section illustrate that there are diverse ways, in
an object-oriented program, in which work can get done. However, in any program, if it
is to be understandable and maintainable, actions (statements) need to be structured
into well-organised wholes. So, as well as an awareness of the different ways in which
things can get done, we need to consider how sequences of actions can be organised
and tied together.

In the next subsection we will reprise three ways of organising a sequence of actions
which you have already encountered. We will then go on to introduce you to a fourth,
new way of organising a sequence of actions.

2.1 Approaches to organising code

Organise a complex sequence of actions as a single method
Perhaps the simplest way to unify or organise a complex sequence of actions or
statements is to write it as a method of the appropriate class. We have already used this
approach on many occasions.

The dancing frogs of Unit 5 provide a good opportunity to illustrate the idea. Getting a
frog into its starting position in the traditional manner for a dance involves a sequence of
several actions, which in Unit 5 were merely assembled in the OUWorkspace.
Assembling these actions into a single method takeUpYourPositions(), as you will be
asked to do shortly, is a neat way of unifying the sequence.

Although this is a quite straightforward approach, it is highly effective.

Organise a complex sequence of actions as two or more
methods
The second approach is simply a variant of the first. The hallmark of this variant is where
a sequence of statements could be written as a single method of a class, but is better
split into several methods of the same class. There are several reasons why this might
be desirable. If the method is long, breaking it up might be desirable simply to improve
clarity and readability. But a more compelling reason is typically to remove code that
would otherwise be duplicated.

For example, any number of frog dances start with the movements necessary to get into
position. But it would be very poor programming style indeed to encode such dances by
copying and pasting code from the takeUpYourPositions() method mentioned above
into each of those dance methods. Instead, of course, the more complicated dance
methods should simply include the message

this.takeUpYourPositions();

which will have the same effect, but in a much neater way. Then, if any future need arises
to change the movements necessary to get into position, this need only be done in one
single place (namely the takeUpYourPositions() method), instead of having to track
down multiple places where the contents of the method might have been copied and
pasted.

.

m Unit 6

e

a

f
f

g, y and ffice in
in a

ffice, g and
Unit 6

f ffice
g and y

.

ffice
y and g m

ffice
and)

a
so

f

e
.

17

Indeed, whenever two or more methods have some section of duplicated code in
common, it is usually a good idea to factor out the duplicated code as a separate
method, and have the original methods call this code by sending the corresponding
message to this

Recall fro that methods which have no other purpose than to be used by other
methods in the same class, are known as helper methods. Helper methods are
normally not part of the external protocol of the class, so are usually declared as
privat . However, sometimes methods created in this way are made public (if they can
be useful to other objects as well), in which case they would not be regarded as helper
methods.

For our present purposes, the above discussion simply illustrates that when packaging
up a complex sequence of actions as a method, it is always worth considering whether
clarity can be improved, or duplicated code avoided, by breaking up the method into
two or more methods. More generally, this is a special case of the universal design
principle that duplicated code should be eliminated whenever possible. This is
fundamental principle for writing good quality code.

Distribute complex actions over appropriate classes
In the case of a single dancing frog, only a single class is involved, so it is fairly obvious
that the right way to organise a complex sequence of actions is to write it either as a
single method of the Frog class or to split it over several methods of the class, if this
improves clarity or avoids duplication.

However, sometimes a complex sequence of actions systematically involves objects o

more than one class. (For example, the sequence of actions involving instances o

WeatherFro Dais MetO Unit 6.) In general, the recommended approach
in such cases is to avoid detailed centralised control of the sequence of actions
single central object or central method that tells each of the objects of different classes
what to do in detail. In general, it is far better for each class of object to retain as much
autonomy as possible. Any object that must tell another object what to do should,
wherever possible, restrict itself to indicating the general idea, and let the receiving
object work out the details for itself.

For example, in the example illustrated by the classes MetO WeatherFro

Daisy, as explored in , a change in the weather could, in principle, trigger an
arbitrarily complicated sequence of actions. One could imagine a (misguided) re-design
of this example whereby an instance o MetO sent detailed messages to
WeatherFro Dais objects telling them step-by-step how to respond to each
change in the weather

In fact, however, the MetO class is wisely designed neither to know nor to care
anything about Dais WeatherFro objects and the actions that they may perfor
in response to changes in the weather. An instance of MetO simply assumes that its
clients can respond to the messages rain() sun(and leaves it to the clients to
deal with the detail of how to respond.

This is a good example of organising a potentially complex sequence of actions by
distributing responsibility over the relevant classes. The ideal is for the knowledge of
detailed sequence of actions involving objects of several classes to be distributed
that each object knows how to play its own part, and does not try to interfere with the
detail of how other objects go about their business. This is an important principle o

design, though it is difficult to state precisely in general terms. Application of this
principle can be much more of a matter of opinion than, for example, detecting
duplicated code. However, the principle is equally useful. You will see a worked exampl

of it in action later in the unit

2 Coordinating sequences of actions

Design principle 1

Write only once –
duplicated code should be
eliminated whenever
possible.

Design principle 2
Distribute responsibility –
objects should have
autonomy to deal with
matters that concern
them. Objects should
avoid interfering, as far as
possible, with the fine
detail of how other objects
go about their business.

single

–

a r

.

–

18

This principle, of distributing responsibility, is the normal way to organise object-oriented
programs and is fundamental to object-oriented development.

Coordinate actions by identifying and using a missing class
The fourth and final approach to organising a complicated sequence of actions may
seem at first to contradict the third approach of distributing responsibility among
existing classes, as it involves creating a new class of object specifically to handle the
organisation of a sequence of actions. However, there is not really a contradiction.

For example, if you wanted to organise a frog dance that involved more than one frog
carrying out coordinated actions, then why should any frog be doing all of the
organising. Which frog would one choose? Perhaps a new class of objects should be
created to do the coordinating call it the BarnDanceCaller class (we will ask you to
explore this idea practically in the activities below).

It would be poor design if such BarnDanceCalle class had an instance method that
spelled out every single action by every frog, but it would be perfectly reasonable if
each frog knew how to do various dance sequences and the caller simply coordinated
them by saying which sequences to do in turn. There is no clear need for a dancer to
know anything about any object other than itself.

So, if there is a group of objects to be coordinated, it is often a good approach to create
a new class of object to do the job, as long as the responsibility remains as distributed
as possible, and the central object abstains from unnecessary micro-managing of the
objects being coordinated.

The key point is that, sometimes, an organising or orchestrating class is needed to tie
together the different parts of a complicated interaction that does not seem to belong to
any single one of the objects obviously involved. If you tried to ignore the missing class,
and tried to organise the actions by distributing code among the existing objects, some
of the objects would end up having to deal with things that did not seem to be any of
their business.

You do not need to memorise the four different approaches described above, and we do
not expect you to be able to decide infallibly which one is called for. But you should be
able to discuss informally the pros and cons of the different options in particular cases
Which approach will work best is rarely cut and dried, and different solutions may be
equally valid the important thing is to be aware of the possibilities.

Unit 7 Code design and class members

SAQ 1

In the discussion of Activity 2, you were told that it is very much better style to reuse
code from the superclass, by sending a message to super, than it is to duplicate the
code from the superclass. Which of the ideas discussed above is this an example of?

ANSWER...

Various answers are possible, but the most obvious is Design principle 1. Using super
instead of repeating the statements from the superclass method is a good example of
avoiding code duplication.

2.2 Orchestrating behaviour
As discussed above, sometimes it is necessary to provide an object that makes sure
some collection of objects carries out one or more complicated sequences of actions in
the right order. In some cases this is not required, and nothing more is needed than a

a

a

1

n
Unit 5 class.

19

single method in an existing class, or a set of methods distributed over one or more
classes. Generally, it is better to distribute responsibility if possible, while making sure
duplication of code is minimised or eliminated. However, as indicated, sometimes an
organising object is useful.

In cases where an organising or coordinating object is used, this object is known as an
orchestrating object or orchestrating instance, which is often the sole instance of
class which models the way in which other objects can be coordinated. An orchestrating
instance coordinates the interactions between objects under its supervision by sending
the appropriate messages to them. To fulfil its role, an orchestrating instance must
encode one or more sequences of interactions between participating objects in one or
more methods.

In order to communicate with the objects under its supervision via messages, an
orchestrating instance needs an instance variable to reference each of the objects
involved.

Thus, an orchestrating object can communicate with a particular object by sending
message to the instance variable that references that object. For example, if some
orchestrating instance has an instance variable frog which references a frog, we can
use statements such as the following

frog1.right();

to make that particular ‘constituent object’ move right.

In order to synchronise the interactions between constituent objects an orchestrating
instance will hold details of a particular sequence of interactions as methods. The task
concerned can be initiated simply by sending the appropriate message to the
orchestrating instance.

In the following subsection, you will learn more about object orchestration by exploring
barn dancing in the Amphibian world. You will coordinate various amphibians moving in
a set of simple dances across the stones in their pond. This will build on previous work i

to develop an orchestrating BarnDanceCaller

2 Coordinating sequences of actions

Strictly speaking one
cannot send a message to
an instance variable and
we really ought to say
‘send a message to an
object via a reference held
by an instance variable’.
However, this is a bit
wordy, so for convenience
we speak of sending a
message to a variable, as
an informal shorthand.

2.3 The r classBarnDanceCalle

In Unit 5 you saw how to use for and while loops to make frogs perform a simple set of
dances. We will see that such activities can be organised in a neater and more
manageable fashion by using an orchestrating BarnDanceCaller class, an instance of
which will represent the coordinating role of the caller in a barn dance.

When you have completed the practical activities in this subsection, you should be able
to send simple messages to the orchestrating instance of BarnDanceCaller to request
that a specific dance routine be performed. The orchestrating instance will then pass on
more detailed messages requesting the necessary movements from the frogs
participating in that dance. We will use this to illustrate in more detail the notions of
collaborating and orchestrating objects, and state-dependent behaviour.

As you know, when defining a new class, you generally need to consider the following
points.

c What its superclass will be.

c Any additional instance variables required.

c What sort of constructor is needed.

c Any additional methods (behaviour) required and any inherited methods that
needed to be overridden.

20

SAQ 2

r?

.

or

and)
.

– the r
– l

them

SAQ 3

r have?

ANSWER

r

1 and 2 s

A a or a –
r

What should be the superclass of BarnDanceCalle

ANSWER...

BarnDanceCaller should be a subclass of Object since there does not seem to be an
existing class from which you would want to inherit some behaviour (methods) and state
(instance variables)

If you proposed making BarnDanceCaller a subclass of Frog Amphibian, you
probably reasoned that an instance of this class should represent a special type of Frog
that has additional behaviour so that it could act as a caller in a barn dance.

This is a perfectly understandable approach, because it is natural to think ‘Won’t I need
BarnDanceCaller to inherit from Frog so that I will have access to left() right(
and so forth?’

But in fact there is no need BarnDanceCalle class itself does not need to be able
to move left and right it just needs to have references to the two frogs so that it can tel

to do that. Its sole purpose is to organise other objects and it does not need to be
able to do the things they do.

What instance variables should BarnDanceCalle

...

An orchestrating instance needs to have a means of locating all the objects under its
supervision so that it can communicate with them in order to coordinate the interactions
between them. Since an instance of BarnDanceCalle is required to coordinate two
frogs to move in a set of simple dances, you will need two instance variables to hold
references to the dancers, say dancer dancer . Sending messages to the object
referenced by these instance variables will make the dancing frogs move as required.

BarnDanceCaller does not itself need to have colour position it is
sufficient that the BarnDanceCalle knows about frogs, which do have these attributes.

Unit 7 Code design and class members

Having tried these SAQs, you should now start Activity 4.

ACTIVITY 4

Open the project Unit7_Project_4.

Create a new class called BarnDanceCaller and comment it. Pay particular attention to
the provision of instance variables to allow the barn dance caller to refer to the two
dancers. You should write setters and getters for both instance variables, but those are all
the instance methods you are asked to write for the moment. We will add other behaviour
in the activities which follow.

212 Coordinating sequences of actions

ACTIVITY 4

{
s
;
;

)
{

}

{

}

{
;

}

{

}

{
;

}
}

DISCUSSION OF

Here is our code for the class so far (comments omitted for brevity).

public class BarnDanceCaller

// instance variable
private Frog dancer1

private Frog dancer2

public BarnDanceCaller(

super();

public void setDancer1(Frog aFrog)

this.dancer1 = aFrog;

public Frog getDancer1()

return this.dancer1

public void setDancer2(Frog aFrog)

this.dancer2 = aFrog;

public Frog getDancer2()

return this.dancer2

In Activity 4, you created the orchestrating BarnDanceCaller class for the barn dance
with two instance variables, dancer1 and dancer2, so that an instance of
BarnDanceCaller can hold a reference to each of the dancers participating in a dance.
As we want to give any two frogs the chance to dance together we need to provide the
BarnDanceCaller class with a method to instruct the orchestrating instance which frogs
will be dancing – we shall do this in the next activity.

ACTIVITY 5

Open Unit7_Project_5. This project includes the BarnDanceCaller class as developed
so far in Activity 4.

Write an instance method of BarnDanceCaller with the following method heading:

public void setDancers(Frog frog1, Frog frog2)

This method should make use of the setter methods you wrote in the previous activity to
set the instance variables dancer1 and dancer2 to the arguments of the setDancers()
method.

22

r
.

;

Inspect r 1 and 2
null.

;
;

;
;

1 and 2
sam and lew.

r 1 and 2 now
a object.

r class

ACTIVITY 5

for :

{

}

r
;

e
;

;
;

;
s

.

Once you have written the method and successfully re-compiled the BarnDanceCalle
class, open the OUWorkspace and execute the following statement

BarnDanceCaller caller = new BarnDanceCaller()

calle to confirm that the instance variables dancer dancer do not
reference Frog objects but hold the value

Now create two frogs using the following code:

Frog sam = new Frog()
sam.setColour(OUColour.PURPLE)
Frog lew = new Frog()
lew.setColour(OUColour.YELLOW)

Now execute the following statement to set the instance variables dancer dancer

to the frogs referenced by

caller.setDancers(sam, lew);

Finally, inspect calle to confirm that the instance variables dancer dancer

each reference Frog

The code for the setDancers() method has been added to the BarnDanceCalle
in Unit7_Project_6. So, If you had problems getting your setDancers() method to
compile, the above code can be executed in the OUWorkspace after opening
Unit7_Project_6.

DISCUSSION OF

The following is one way of writing the method setDancers() BarnDanceCaller

public void setDancers(Frog frog1, Frog frog2)

this.setDancer1(frog1);
this.setDancer2(frog2);

This is a straightforward method to establish which dancers (that is, which frogs) an
instance of BarnDanceCaller will be orchestrating.

It is useful to summarise all of the statements in this activity needed in testing the
method, with comments, which will remind you later of what you did. This might be as
follows:

// Create a calle
BarnDanceCaller caller = new BarnDanceCaller()
// Create two dancers and modify their stat
Frog sam = new Frog()
sam.setColour(OUColour.PURPLE)
Frog lew = new Frog()
lew.setColour(OUColour.YELLOW)
// Give the caller new dancer
caller.setDancers(sam, lew);

After executing this statement series, inspection of caller should confirm that its
instance variables refer to two frogs as anticipated

Unit 7 Code design and class members

2 Coordinating sequences of actions 23

In Unit 5 a

n Unit 5 a
f

Unit 5.

Exercise 3

r d
)

/**

*/

{

)
{

;
}

)
{

;
}

;

)
{

;
}

)
{

;
}

;
}

, you developed a series of statements which, when executed, would cause
frog to hop from any stone to the central stone (position 6), and then turn red. Since this
needs to be performed prior to each dance it would be convenient to wrap up the
statement series as a method. In fact, in Exercise 9 i , this was done using
method of the Frog class. For the purposes of this section, we will ignore the method o

Imagine that a colleague proposes to write a method of BarnDancecalle , calle

takeUpYourPositions(, which will cause both frogs to hop to the central stone and
turn red. Your colleague suggests the following code.

* Causes both dancers to take up their positions

public void takeUpYourPositions()

// dancer1 hop to centre and turn red
while(this.getDancer1().getPosition() < 6

this.getDancer1().jump();
this.getDancer1().right()

while (this.getDancer1().getPosition() > 6

this.getDancer1().jump();
this.getDancer1().left()

this.getDancer1().setColour(OUColour.RED)

// dancer2 hop to centre and turn red
while(this.getDancer2().getPosition() < 6

this.getDancer2().jump();
this.getDancer2().right()

while (this.getDancer2().getPosition() > 6

this.getDancer2().jump();
this.getDancer2().left()

this.getDancer2().setColour(OUColour.RED)

Assuming that this code makes the frogs move in the right way, would this be a good way
to organise this code, focusing on the approaches and principles noted in Subsection 2.1.
Which principles from that subsection seem to apply to this code?

24 Unit 7 Code design and class members

Solution...

Although the above method meets the requirements in terms of frog movements, it is in
very poor style, according to the criteria of Subsection 2.1. The most obvious stylistic
shortcoming is that the code of the main statement series – the code to move the frog
dancer – is duplicated. An important part of good style, in general, is to avoid code
duplication, for reasons discussed below. You may have noticed that there is at least one
other major stylistic fault in the method as written above, based on the criteria of
Subsection 2.1, but for now we will focus exclusively on the code duplication.

As a consequence of the proposed code duplication, if the programmer subsequently
decided that, for example, the dancers should commence from the home stone and perform
the dance while yellow, then it would be necessary to make the required modifications in two
places. The presence of duplicated code increases the effort to maintain the method and
increases the possibility of errors being introduced when the method is subsequently
modified. In this way, removing code duplication makes code more flexible and easier to
maintain. Ease of maintenance (or its absence) is such an important property of code that
programmers use a specific term, maintainability, to refer to this property.

ACTIVITY 6

Having put the above arguments to your colleague, they ask you to modify the code to
remove the code duplication, before making any other stylistic changes.

Open the project Unit7_Project_6.

This contains the code for the BarnDanceCaller class as specified in Activities 4 and 5
and the badly designed version of the method takeUpYourPositions() as given in
Exercise 3.

Open the OUWorkspace and the Graphical Display.

As in Activity 5, in the OUWorkspace create an instance of BarnDanceCaller. Next
create two Frog objects and then send a setDancers() message to your
BarnDanceCaller object to set its instance variables to the two frogs.

Then send your BarnDanceCaller object the message takeUpYourPositions() to
test that it does in fact produce the right frog movements.

Now rewrite the code of the takeUpYourPositions() method so that the duplicated part
becomes a separate helper method called getReady() which is used where required within
takeUpYourPositions(). Remember that helper methods should be declared as private.

Test your rewritten method in the OUWorkspace to confirm that it still orchestrates the
correct frog movements.

DISCUSSION OF
ACTIVITY 6

Our solution is shown here.

/**
* Causes both dancers to take up their positions.
*/

public void takeUpYourPositions()

{

this.getReady(this.getDancer1());
this.getReady(this.getDancer2());

}

2 Coordinating sequences of actions 25

/**
* Causes a frog to hop to its central stone and turn red.
*/
private void getReady(Frog aFrog)
{

while(aFrog.getPosition() < 6)
{

aFrog.jump(); aFrog.right();
}
while (aFrog.getPosition() > 6)
{

aFrog.jump(); aFrog.left();
}
aFrog.setColour(OUColour.RED);

}

e

d
in

n
, and g classes.

Exercise 4

e
) r

f
s

In Exercise 3, you began with working code that met its requirements. In Activity 6, you
rewrote the code in such a way that it ended up having exactly the same effect as
before, but code duplication was removed, style was improved, and the class becam
easier to maintain. When code is rewritten without changing its overall effect, but for the
purpose of improving its design, removing code duplication, or improving
maintainability, the process is calle refactoring. You encountered the term refactoring

Unit 6 when the term was used in the context of changing the hierarchy of the
amphibian classes by introducing the abstract class Amphibia as the common
superclass for the Frog Toad HoverFro

The refactored code seen in the discussion of Activity 6 is a great improvement on the
code proposed in Exercise 3. But it still violates the design principles noted in
Subsection 2.1. What further refactoring could be done to improve the design?

Solution...

The code organisation of both Exercise 3 and Activity 6 violates the design principle
noted in Design principle 2 given in Subsection 2.1. The BarnDanceCaller is interfering
too much with the fine detail of how frogs go about their business. We have mad

getReady(a method in BarnDanceCalle , which means the latter dictates to the frogs
what steps they must perform, but frogs should decide for themselves the fine detail o
how they take up their positions. As we have already noted, the application of thi
principle can be much more of a matter of opinion than, for example, detecting and
removing duplicated code. People can reasonably differ on how to interpret the second
principle. However, its use is still valuable.

You may have found other ways in which the design of the code is poor and needs
refactoring. However, for the moment we will focus on applying the second design
principle.

26 Unit 7 Code design and class members

ACTIVITY 7

Open the project Unit7_Project_7.

This contains the code for the BarnDanceCaller class as it was at the end of Activity 6.

Relocate the method getReady(Frog) to the Frog class. It will no longer need an
argument, because a frog ‘knows’ who it is without being told. You simply need to replace
aFrog in the method code with this.

Rewrite the BarnDanceCaller method takeUpYourPositions() so that it now sends
getReady() messages to the dancers telling them to get themselves ready. Note that as
an instance of BarnDancerCaller now needs to send a getReady() message to a Frog
object, this time the getReady() method should be declared as public.

Test your refactored code in the OUWorkspace.

DISCUSSION OF
ACTIVITY 7

Here is our refactored code.

In the BarnDanceCaller class:

/**
* Causes dancer1 and dancer2 to take up their positions.
*/
public void takeUpYourPositions()
{

this.getDancer1().getReady();
this.getDancer2().getReady();

}

In the Frog class:

/**
* Causes the receiver to hop to its central stone and turn red.
*/
public void getReady()
{

while (this.getPosition() < 6)
{

this.jump(); this.right();
}
while (this.getPosition() > 6)
{

this.jump(); this.left();
}
this.setColour(OUColour.RED);

}

The code for this activity has been added to the Frog class and the BarnDanceCaller
class in Unit7_Project_7_sol.

SAQ 4

s 1.

;

,

Exercise 5

)
{

)
{

}
)

{
;

}

}

e)

)
{

)
{

}
)

{
;

}

}

Notice that the code above uses messages to the pseudo variable this a lot, and uses
getter messages such a getDancer1() to access instance variables such as dancer
Hence, our code uses statements such as

this.getDancer1().getReady();

whereas in some common Java programming styles it would be more common to see
shorter statements such as

dancer1.getReady()

What are advantages of the two approaches?

ANSWER...

The shorter form is quicker to write, more concise, and can be easier to read. However
using getters and setters gives much improved flexibility, as the place and manner in
which state is stored can be subsequently changed without having to change code that
uses it. In addition the use of the pseudo variable this (which is not strictly necessary)
explicitly makes it clear that the receiver is sending itself a message, and helps make
the code easy to understand.

Refactoring to remove code duplication is the simplest way to improve the design of your
code. However, there are ways of misunderstanding and misapplying the idea of
refactoring. Consider the following method.

public void getReady(

while(this.getPosition() < 6

this.jump(); this.right();

while (this.getPosition() > 6

this.jump(); this.left()

this.setColour(OUColour.RED);

A colleague asks you, why do we not us getPosition(just once and keep the
position in a local variable? Such code would look like the following.

public void getReady(

int myPosition = this.getPosition();
while(myPosition < 6

this.jump(); this.right();

while (myPosition > 6

this.jump(); this.left()

this.setColour(OUColour.RED);

Is your colleague’s suggestion a good idea? If not, why not?

2 Coordinating sequences of actions 27

e
is

e

28

Solution...

It’s not a good idea at all! The whil loops rely on checking the current position of the
frog, which, of course, changes as it moves. However, the value stored in myPosition
set at the start and does not get updated when the frog changes position. So the code
above will not work.

The original version, which used this.getPosition(), is fine, becaus getPostion()
always returns a message answer saying where the frog is at the present moment.

Unit 7 Code design and class members

Although we have seen that it is preferable to make frogs responsible for their own
sequence of movements, rather than having a BarnDanceCaller spell out each
individual step, sticking to this policy can become difficult when the dances get very
complex. This is the case in the next few activities, where we will see some fairly intricate
interleaving of steps, and for simplicity we will therefore be specifying the details of each
dance in the BarnDanceCaller class and not in the Frog class.

ACTIVITY 8

Open the project Unit7_Project_8.

This contains the code for the classes Frog and BarnDanceCaller as they were before
the start of Activity 7.

You are now going to write a dance routine for a pair of frogs to perform. Remember, that
before a dance commences the caller announces (metaphorically speaking) ‘Get ready’
and the pair of frogs which are to participate in the dance move to the central stones and
turn red. When the dance finishes, the frogs metaphorically take off their red costumes
and revert to their natural green colour.

In this dance, the frogs perform the following sequence of movements for a fixed number
of times.

one step right, another step right, jump, then one step left

You will recall that you made a single frog move like this in Unit 5. However, in this case,
the two frogs take turns to make each move in the above sequence.

Write a method of BarnDanceCaller, with the method heading

public void dance1(int aNumber)

which simulates the dance, and where the actual argument supplied is the number of
times the sequence of movements is to be repeated.

Test that the frogs move as expected by executing a statement such as

caller.dance1(3);

in the OUWorkspace (remember to open the Graphical Display so that you can view the
results).

ACTIVITY 8

/**

s

*/

{

)
{

}
;
;

}

29

DISCUSSION OF

As usual, this is just one sample way that the method could be coded.

* Causes the dancers to first take up their positions, and then to
* perform a dance sequence of right, right, jump, left which i
*repeated aNumber of times before they turn back to green.
* The dancers take turns to make each move

public void dance1(int aNumber)

this.takeUpYourPositions();
for (int count = 1; count <= aNumber; count = count + 1

this.getDancer1().right(); this.getDancer2().right();
this.getDancer1().right(); this.getDancer2().right();
this.getDancer1().jump(); this.getDancer2().jump();
this.getDancer1().left(); this.getDancer2().left();

this.getDancer1().green()

this.getDancer2().green()

2 Coordinating sequences of actions

Exercise 6

e

)

{
;
;

}

.

{
;

}

Even though the activities of the two frogs are now thoroughly interleaved, the abov
method involves some repetition. Suggest a useful refactoring that could be made to
mitigate the repetition of sending right(messages to the dancers.

Solution...

One possible refactoring might involve constructing a new helper method of
BarnDanceCaller as follows:

private void bothRightTwice()

this.getDancer1().right(); this.getDancer2().right()

this.getDancer1().right(); this.getDancer2().right()

However, such a method would still involve exactly the same repetition, we have merely
moved it elsewhere (unless some other dance uses exactly the same move)

Consequently, a better answer would probably be to suggest a new method of
BarnDanceCaller as follows (using Design principle 1):

private void bothRight()

this.getDancer1().right(); this.getDancer2().right()

{

{

}

}

{

}

{

{

}

}

30

This would then allow the method dance1() to be refactored as follows:

public void dance1(int aNumber)

this.takeUpYourPositions();
for (int count = 1; count <= aNumber; count = count + 1)

this.bothRight(); this.bothRight();
this.getDancer1().jump(); this.getDancer2().jump();
this.getDancer1().left(); this.getDancer2().left();

this.getDancer1().green();
this.getDancer2().green();

This possible refactoring has obvious repetition in the line

this.bothRight(); this.bothRight();

so further refactoring would be possible by the introduction of yet another helper
method, a new version of the bothRightTwice() method.

private void bothRightTwice()

this.bothRight(); this.bothRight();

Consequently, the method dance1() could now be refactored as follows:

public void dance1(int aNumber)

this.takeUpYourPositions();
for (int count = 1; count <= aNumber; count = count + 1)

this.bothRightTwice();
this.getDancer1().jump(); this.getDancer2().jump();
this.getDancer1().left(); this.getDancer2().left();

this.getDancer1().green();
this.getDancer2().green();

Unit 7 Code design and class members

3 Design principle

Wherever possible, the
actions in a single method
should be at a single level
of detail. Actions that must
necessarily be at different
levels of detail are better
put in different methods,
where possible.

The suggested refactoring of dance1() in the above exercise is extremely instructive,
because it now contains statements close together that work at very different ‘levels of
detail’, as follows:

this.bothRightTwice();
this.getDancer1().jump();

This idea of ‘levels of detail’ is necessarily a little vague, but one crude way of pinning
down the different levels of detail involved in this particular example is to notice that the
first statement causes four frog movements, whereas the second statement causes a
single frog movement.

There is a general design principle (Design principle 3) that says that in general, the
actions in a single method should be at a single level of detail, where possible. Actions
that must necessarily be at different levels of detail are better put in different methods,
where feasible.

Index 31

{

}

Exercise 7

.

{

}

{

}

{

{

}

}

One way to apply this principle in the above example would be to create more helper
methods. One good candidate would be as follows:

private void bothJump()

this.getDancer1().jump(); this.getDancer2().jump();

Suggest two more methods that could be defined in a similar spirit to bothJump() as a
way of further applying Design principle 3 to refactoring dance1()

Solution...

Using Design principle 3 to guide further refactoring might lead to the following helper
methods (other variants are possible).

private void bothLeft()

this.getDancer1().left(); this.getDancer2().left();

private void bothGreen()

this.getDancer1().green(); this.getDancer2().green();

This would then give us the following refactored dance1() method:

private void dance1(int aNumber)

this.takeUpYourPositions();
for (int count = 1; count <= aNumber; count = count + 1)

this.bothRightTwice();
this.bothJump();
this.bothLeft();

this.bothGreen();

Applying Design principles 1 and 3 as we did in the last two exercises would make the
BarnDanceCaller class clearer and easier to read, and more maintainable.

However, for teaching reasons, in the next activity, using the BarnDanceCaller class,
we will temporarily ignore these improvements, and so will take the starting point of the
code for the next activity as it was at the end of Activity 8.

ACTIVITY 9

Open the project Unit7_Project_9.

In this activity you are going to write a method to orchestrate another dance. In this
dance, the frogs perform the same sequence of movements as they did in the first dance,
except that the dance finishes when both dancers reach a particular specified stone.

Write a method of BarnDanceCaller, with the method heading

public void dance2(int aPosition)

which simulates the second dance, and where the actual argument supplied is the ’stone’
(i.e. position) where the dance finishes.

In this dance routine, the net result of the movements is that the dancers move
progressively to the right, controlled by a while loop. So, if the actual argument supplied
to dance2() represents a stone which is to the left of the central stone, the dancers
should not move after takeUpYourPositions() has turned them red and moved them
to the central stone (they should, however, revert back to their natural colour of green).

Test that your method works using message-sends such as caller.dance2(8) and
caller.dance2(4). But beware! If your method omits a test for the finish position (that
is, the stone where the dance ends), be prepared for the frogs trying to dance forever.
You will need to remember the advice given in Unit 5 and the Software Guide about what
to do in such a situation.

DISCUSSION
OF ACTIVITY 9

The trickiest part of this method is the condition controlling repetition of the rightward
dances. The dances need to be repeated until both dancers have reached aPosition.
The following condition ought to evaluate to true until both dancers have reached the
final position aPosition.

(dancer1.getPosition() < aPosition) || (dancer2.getPosition() < aPosition)

In the following method a while loop statement contains a combined condition to check
that both dancers have not yet reached the specified stone. The frogs will continue to
dance while the evaluation of this combined condition above results in true.

/**
* Causes the dancers to move as in dance1, except they stop when
* a given stone, represented by the argument aPosition is reached.
* If the argument supplied represents a stone which is to the left
* of the central stone, the dancers do not move after takeUpYourPositions()
*has turned them red and moved them to the central stone, however they do
*revert back to their natural colour of green.
*/
public void dance2(int aPosition)
{

this.takeUpYourPositions();
while ((this.getDancer1().getPosition() < aPosition)

|| this.getDancer2().getPosition() < aPosition))
{

this.getDancer1().right(); this.getDancer2().right();
this.getDancer1().right(); this.getDancer2().right();
this.getDancer1().jump(); this.getDancer2().jump();
this.getDancer1().left(); this.getDancer2().left();

}
this.getDancer1().green();
this.getDancer2().green();

}

Unit 7 Code design and class members 32

2 Coordinating sequences of actions 33

Note that this implementation assumes that the takeUpYourPositions()message will
result in both dancers being in the same starting position, namely position 6.

Note also that the requirement for the dance only to take place while the dancers are to
the left of aPosition is implemented by the tests involving the operator < . If that test
were to be omitted, the dancers would potentially continue dancing forever.

Of course, the code above could be greatly improved by judicious refactoring, but we
will not explore this.

The code for the dance2() method has been added to the BarnDanceCaller class in
Unit7_Project_10.

ACTIVITY 10

The third and final dance is exactly the same as the first dance except that when the frogs
have finished dancing, they return directly to the stones they occupied before the caller
announced ‘Get ready’ with a takeUpYourPositions() message.

Open the project Unit7_Project_10.

Write a method of BarnDanceCaller, with the method heading

public void dance3(int aNumber)

The method will be identical to dance1() except that your code will need to remember
the dancers’ starting positions and return them to those positions once the dance is over.
Hence you should make use of a dance1() message in your method code.

In the OUWorkspace test that your method works correctly. When testing, start your two
frogs from two different positions.

DISCUSSION OF
ACTIVITY 10

In the following method, the initial positions of the participating frogs (part of their state)
are preserved by using two local variables, position1 and position2. After the dance
has finished, the frogs are restored to their initial positions. You can cause the frogs to
perform the first dance simply by sending the message dance1() to the receiver, the
orchestrating instance.

/**
* Cause the frog objects identified by dancer1 and dancer2 to
* perform dance1 aNumber of times and then return directly to the
* stones they occupied before the dance began
*/

public void dance3(int aNumber)

{

// Save starting positions.
int position1 = this.getDancer1().getPosition();
int position2 = this.getDancer2().getPosition();

// Execute the dance
this.dance1(aNumber);

// Restore both positions
this.getDancer1().setPosition(position1);
this.getDancer2().setPosition(position2);

}

As before, this method offers several opportunities for refactoring.

The code for the dance3() method has been added to the BarnDanceCaller class in
Unit7_Project_10_sol.

34 Unit 7 Code design and class members

2.4 Simulation and reality
n
u

.

.

h

).

SAQ 9

.

s

solutions.)

The previous activities illustrate some of the differences between an aspect of bar
dancing in the real world and using a computer system to simulate that aspect. Yo
need to understand the implications of the differences, as outlined below

In the simulation of barn dancing you carried out in the activities, the orchestrating
instance (representing the caller in the real world) needs to send a message to each
individual dancer object in turn to instruct them all to perform the next dance movement.
Before the orchestrating instance can send these messages to the dancers, it needs to
know where to find them; that is, it needs to hold a reference to each dancer object

In the real physical world, the dancers and the caller would presumably be in the same
room, or at least in earshot of each other, so the caller would simply have to call out each
dance movement once, and the instruction would be received by all the individuals
participating in the dance. But there is no simple way of mirroring this directly wit

objects. That is to say, there is no simple way of specifying that a set of objects are all ‘in
earshot’ of each other (though an important partial approximation to this idea will be
introduced in Unit 10

Consequently, in your code, individual messages have to be sent to each dancer in the
simulation of barn dancing. This is perhaps as though real world dancers each had to be
telephoned individually to pass on each command. As a result, dancers perform each
dance movement one after another rather than concurrently as they would in real life.

Describe how an orchestrating instance carries out its role as a coordinator of other
objects’ actions.

ANSWER...

The orchestrating instance holds references to the other objects and sends them
messages to coordinate their actions.

SAQ 10

Describe how you would modify the BarnDanceCaller class so that an instance could
coordinate four rather two frogs to perform the same dances

ANSWER...

Add two more instance variables to hold two more frogs, and adapt the method

accordingly. (After you have studied Unit 10, you may be able to see other or better

3 Class methods and class variables 35

3 variables
Class methods and class

You were introduced to class methods in Section 1 of Unit 5. The various methods of the
class OUDialog, such as alert() and request() are all class methods and you have
used them in statements such as:

OUDialog.alert("Illegal input");

Similarly you have been using class variables since Unit 3 ; the various predefined
colours that you have used with amphibians, such as GREEN and RED are all class
variables of the OUColour class which you have used in statements such as:

frog1.setColour(OUColour.GREEN);

3.1 Class variables
You are already familiar with instance variables in Java. Recall that instance variables
are defined by the class, but each object carries around its own unique copy of the
instance variables for its class, and uses these to store information about its individual
state, independently from any other object of the same class.

As well as instance variables, Java has what are known as class variables. In contrast
to instance variables, there is only a single copy of a class variable, and it belongs to the
class as a whole. A class variable does not in general depend on any objects of the
class having been created, and is available for use immediately the class is first used.
Indeed, normally speaking, it would make no difference if no objects of that class ever
came into existence; the class variable would still be there.

What sort of things would we want a class variable for? Here is an example of one
possible use. Suppose there is a kind of frog, called a bovverfrog, which is highly
territorial and extremely touchy about sharing stones with other bovverfrogs (when it is
first created). Therefore when a BovverFrog object is constructed, it has to be placed
on a different initial stone from any of the previous bovverfrogs. There could be many
ways to ensure this, but one very simple means is to put the first bovverfrog on stone 1,
the second on stone 2, and so on.

To put this idea into practice, we would need some way of keeping track of which stone
the next bovverfrog should go on. Using an instance variable to record the number
would be a possible solution, but not a very good one. Every bovverfrog would have its
own distinct copy of the instance variable. So we would have either to keep all of them
updated – unnecessarily complicated to code and a waste of effort and computer
memory – or to pick on a particular bovverfrog, make it solely responsible, and ignore all
the other copies of the instance variable – but how would we decide to favour one
bovverfrog over all the others (especially given their touchy nature!)? In both cases, we
would be allocating space for storing lots of numbers, when space for a single number is
all that is actually required.

Instead, a far better solution is to use a class variable called, say, nextEmptyStone.
There is a single copy of this for the whole class. It is initialised to 1 when the
BovverFrog class is first used. Then every time a new BovverFrog object is
constructed it is placed on nextEmptyStone, then nextEmptyStone is increased by
one by the constructor, ready for the next bovverfrog.

Declaration and initialisation of class variables
Here is the relevant part of the class definition that declares and initialises the class
variable nextEmptyStone.

public class BovverFrog extends Frog
{

public static int nextEmptyStone = 1;
...
...

}

Notice that the class variable declaration is done right at the beginning of a class
definition. This is where class variable declarations should typically appear. (It is not
forbidden for them to be declared elsewhere in the class, provided they are not inside a
method or constructor, but the common convention is for them to go where we suggest,
which makes them easy to find.)

Note how the keyword static is used in the variable declaration to show that this is a
class variable, not an instance variable.

Notice too that the class variable has been declared as public, this means that any
object of any class will be able to directly access the class variable. If we had declared
the variable as private, only class methods, instance methods or constructors of the
BovverFrog class would be able to directly access it.

Note also that the declaration also initialises the class variable to 1. There is an
interesting contrast between the way that a class variable such as nextEmptyStone is
initialised (i.e. given an initial value), and the way in which instance variables such as
colour and position are initialised. Instance variables have to be initialised separately
for every new instance, and this is reflected by the fact that they are usually initialised in
a constructor. However, class variables only have to be initialised once, when the
program first uses the class. To reflect this difference, a class variable is initialised within
the class definition, but outside any methods and constructor definitions. Class
variables are typically declared and initialised all in one statement, for example:

public static int nextEmptyStone = 1;

You might think that it would work equally well to separate the declaration of a class
variable and the assignment of its value into two statements as follows:

public static int nextEmptyStone;
BovverFrog.nextEmptyStone = 0;

However, this is not legal in Java and will not compile. There is a way that the statements
can be separated, if they are enclosed in what is called a static block, but this takes us
beyond the scope of the course.

Accessing a class variable
In our example, the constructor for instances of the BovverFrog class directly accesses
the nextEmptyStone to increment it whenever a bovverfrog is created, so ensuring that
no two bovverfrogs are initially put on the same stone.

public BovverFrog()
{

super();
// Place the bovverfrog on the next empty stone.
this.setPosition(BovverFrog.nextEmptyStone);
// Increment nextEmptyStone
BovverFrog.nextEmptyStone = BovverFrog.nextEmptyStone + 1;

}

Unit 7 Code design and class members 36

3 Class methods and class variables 37

Notice how in the above code nextEmptyStone is qualified with the class name,
BovverFrog. This is not strictly necessary within class methods, instance methods or
constructors of the class that defines the class variable, but it is good programming
style and complements the use of this to make it clear to the reader of the code that
nextEmptyStone is a class variable and not an instance variable. Objects of other
classes that might want to access nextEmptyStone must qualify the variable with the
class name.

The next activity is optional but demonstrates the effect of the constructor incrementing
the class variable nextEmptyStone.

ACTIVITY 11

Open Unit7_Project_11.

This includes the BovverFrog class. Open the OUWorkspace and the Graphical Display.

Now enter and execute the following statements one by one.

BovverFrog sid = new BovverFrog();
BovverFrog em = new BovverFrog();
BovverFrog daf = new BovverFrog();

DISCUSSION OF
ACTIVITY 11

You should have seen that each successive bovverfrog is placed on its own stone, as
required to avoid any unpleasant interaction between the bovverfrogs.

3.2 Class methods
As well as class variables, Java has class methods. These can be used irrespective of
whether any instances of the class have been created, and they are executed by
invoking them not on an object, but on the name of the class itself. The statements look a
bit as if we are sending a message to the class, and you might well find it helpful to think
of it that way, although strictly speaking this is not what is happening, since in Java a
class is not an object.

Returning to our BovverFrog class, consider a class method called
isNextEmptyStoneBlack() which would return true or false depending on whether
the next bovverfrog will be placed on one of the black stones in the Amphibians window.
Static method definitions are easier to find if they are put together near the beginning of
the class file, before any instance method definitions, but after any constructors. Here is
how the class method for BovverFrog is declared; we have omitted the comments for
brevity.

public static boolean isNextEmptyStoneBlack()

{

return BovverFrog.nextEmptyStone <= 11;

}

Notice how, just like class variables, class methods are declared using the keyword
static.

The method can be invoked on the class as follows:

BovverFrog.isNextEmptyStoneBlack();

Invocation of class methods
There is more than one way to invoke a class method such as isNextEmptyStoneBlack().
The obvious way, which you have already seen, is as follows:

BovverFrog.isNextEmptyStoneBlack();

This makes it immediately clear to the reader that a class method is being invoked. Of
course, as isNextEmptyStoneBlack() is a public class method, this would work from a
method of any class in the same package, or from any class that imported BovverFrog.

However Java allows you to write code to invoke a class method which looks like you are
invoking a class method on an instance of a class, for example the code:

BovverFrog grumpy = new BovverFrog();
grumpy.isNextEmptyStoneBlack();

will invoke the BovverFrog class method isNextEmptyStoneBlack(). In fact the Java
compiler produces bytecode which is the equivalent of

BovverFrog.isNextEmptyStoneBlack();

and it ignores the class of the object referenced by grumpy. Instead, the compiler looks
at the declared type of the variable (grumpy), and uses that declared type to determine,
at compile time, which method to call. Since grumpy is declared as type BovverFrog,
the compiler looks at the code grumpy.isNextEmptyStoneBlack() and decides it
actually means BovverFrog.isNextEmptyStoneBlack(). It doesn’t matter that the
object referenced by grumpy is an instance of BovverFrog as for static methods, the
compiler only uses the declared type of the reference.

For this reason this style of class method invocation is considered bad practice, as it makes it
look to the reader as if isNextEmptyStoneBlack()is a message that will lead to the invocation
of an instance method at run-time, although in fact it is an invocation of a class method.

Inheritance vs. visibility of class methods and class variables in
subclasses
Classes are not objects in Java, therefore inheritance of class methods and class
variables is not possible in the same way that instance methods and variables are
inherited. However Java does provide an approximation of inheritance for class
methods and variables, in that if they are declared as public or protected they are
visible from within the methods of any subclass. Furthermore, you can also use the
subclass name to qualify the class method or class variable. For example, given a
hypothetical class called SuperClass that defines a class method called foo(), and a
subclass of SuperClass called SubClass, then you can write code that looks like the
class method foo()is being invoked on the subclass as follows: SubClass.foo();.
However, once again, the Java compiler produces bytecode which is the equivalent of

SuperClass.foo();

For many everyday purposes this kind of behaviour looks much like inheritance, but
there are crucial differences that can lead to unexpected problems. For example,
problems can arise if you try to override a class method in a subclass. The compiler will
allow you to do this, but the method isn’t really overridden. Instead of overriding, the
result is something called hiding or masking whereby the method in the superclass is
hidden from the subclass. This can lead to highly confusing results in certain
circumstances, for example if the programmer writes code that looks as if it is invoking a
class method on an instance of a class.

It is beyond the scope of this course to map out these differences, but we can give a simple
set of guidelines for avoiding the resulting problems in the first place. Provided you

Unit 7 Code design and class members 38

3 Class methods and class variables 39

–

c

c

c

)

;

)
{

}

.

;

– you
.

observe these guidelines, you may if you wish think of class methods and class variables
as being inherited though you should be aware that in a strict sense this is misleading.

Our advice to you when using class methods and class variables, in Java, is as follows.

Only invoke class methods on the name of the class in which they are defined, never
on a subclass and never on the name of a variable.

Only access class variables by qualifying them with the name of the class in which
they are declared, never qualify them with the name of a subclass or the name of a variable.

Always give class methods and class variables names which are different from any
other names used in the class or any of its superclasses.

If you follow this advice you won’t go wrong with the useful fiction that class methods and
class variables in Java are inherited. Stray from this and you will find that your code will
exhibit behaviour that can be very confusing and hard to debug.

ACTIVITY 12

The class method isNextEmptyStoneBlack(has been added to the BovverFrog
class in Unit7_Project_12, and if you open that project the method can be tested in the
OUWorkspace. Open the Graphical Display and then execute:

BovverFrog.isNextEmptyStoneBlack()

Note the message answer displayed in the Display Pane. Now create eleven
bovverfrogs, like this:

for (int count = 1; count <= 11; count++

new BovverFrog();

Notice we are not bothering to assign the BovverFrog objects to variables; since we do
not want to use them again, there is no need. We are simply creating them to push the
next free stone off to the right. Because none of them are anchored by a reference, the
BovverFrog objects are garbage collected immediately, and do not show up in the
Amphibians window

Execute BovverFrog.isNextEmptyStoneBlack() again and note the message
answer shown in the Display Pane. You can confirm whether this message answer is
indeed correct by creating one more bovverfrog, assigning it to a variable like this:

BovverFrog tel = new BovverFrog();

and noting the colour of the stone on which it appears in the Amphibians window
may have to scroll this window to the right to see the bovverfrog

DISCUSSION OF
ACTIVITY 12

The first time you sent the isNextEmptyStoneBlack() message to the BovverFrog
class, the message answer should have been true, then after creating the eleven
bovverfrogs the message isNextEmptyStoneBlack() should have returned false.
Finally, when you created a twelfth bovverfrog and assigned it to tel, the bovverfrog
should have appeared on the first blue stone in the Amphibians window.

As a minor point about terminology, now that you have been introduced to class
methods and class variables, it is worth mentioning in passing that the term member is
sometimes used to cover all of the four following categories: class variables, class
methods, instance variables and instance methods.

40 Unit 7 Code design and class members

3.3
class

Adding a class variable and class method
to the Frog

In this subsection, you will add new class variables and class methods to the Frog
class. As a simple example, we will use a class variable frogCount to count the number
of instances of Frog that are created.

ACTIVITY 13

Open the project Unit7_Project_13, then open the editor on the Frog class.

After the first line defining the Frog class and immediately after its opening curly bracket,
start a new line to declare a class variable frogCount of type int. You should declare
this class variable to be private, and initialise its value to 0.

Next, after the constructor, create a class method with the heading:

public static int getFrogCount()

which should simply return frogCount.

Do not forget that both variable and method must be declared static.

Compile your modified Frog class.

Now in the OUWorkspace, try directly accessing frogCount by executing the following
statement:

Frog.frogCount;

What happens?

Now try invoking the class method getFrogCount() on the Frog class by executing the
following statement:

Frog.getFrogCount();

What happens?

DISCUSSION OF
ACTIVITY 13

The declaration of the class variable frogCount should look something like the
following:

private static int frogCount = 0;

Your class method getFrogCount() should look like the following:

public static int getFrogCount()

{

return Frog.frogCount;

}

Notice that frogCount is declared private and so any attempt to access the class
variable frogCount directly by executing the statement Frog.frogCount in the
OUWorkspace will fail, since you would be trying to access a private member from
outside the class or its instances (namely you are trying to access it from the
OUWorkspace). A typical error message given in the Display Pane would be as follows:

Semantic error: No static field or inner class: frogCount of class Frog

3 Class methods and class variables 41

However, the class method getFrogCount() is public, so the invocation of the class
method getFrogCount() on the class Frog is successful. Executing the statement

Frog.getFrogCount();

returns 0.

Now that you have successfully defined the class variable frogCount and the
asscociated getter method the next step is to use it to count the number of instances of
Frog that are created.

ACTIVITY 14

Open Unit7_Project_14 which includes the class variable frogCount and the class
method getFrogCount() in the Frog class. Open the OUWorkspace and the Graphical
Display. Modify the constructor Frog() so that the last thing it does is to increment the
class variable frogCount by 1, via direct access (remember the variable will be
accessible from within the class, even though it is private).

When you have compiled your new version of the Frog class in the OUWorkspace,
create a frog referenced by the variable jimi. Then invoke the class method on the Frog
class to check the new value of frogCount. Finally, create three more frogs, but this time
do not create any references to these frogs. (That is to say, you should use new to create
them, and the constructor to initialise them, but do not assign them to any variable –
allowing them to be garbage collected.) Then check the value of frogCount again.

DISCUSSION OF
ACTIVITY 14

In the constructor Frog() we can increment frogCount with the statement

Frog.frogCount = Frog.frogCount + 1;

Once the Frog class has been recompiled with this alteration, if you create a new
instance of Frog referenced by jimi, as follows:

Frog jimi = new Frog();

then when you execute

Frog.getFrogCount();

the return value should now be 1.

The counting works just as well when you try the following:

for (int i = 0; i < 1000; i++)

{

new Frog();

}

After this

Frog.getFrogCount()

will return 1001.

This is not the way that you would normally create instances of Frog – creating a frog
without assigning the new frog to a variable means that there is no reference to the newly
created object and the new instance will be lost. However, in this case it does not matter
that the new frog instances are lost because you are creating frogs just to count them.
What you are really doing is counting the number of times the constructor Frog() is run
– but that is just what we want.

42 Unit 7 Code design and class members

The class variable frogCount was intended to hold a count of instances of the Frog
class. In the next activity you will explore what happens when new instances of
HoverFrog are created.

ACTIVITY 15

Open the project Unit7_Project_15.

This includes the modified constructor for the Frog class. Then in the OUWorkspace

invoke the getFrogCount() class method on the Frog class to check the value of class

variable frogCount.

Create a frog and then check the value of frogCount again.

Create a hoverfrog and check the value of frogCount once more.

DISCUSSION OF
ACTIVITY 15

Initially the count should be zero. Now suppose we execute the following code.

Frog fry = new Frog();
HoverFrog hal = new HoverFrog();

Checking the value of frogCount now gives the value 2.

Frog.getFrogCount();

In the previous activity you may have been surprised to discover that creating a
hoverfrog resulted in the class variable frogCount of Frog being incremented – after all
frogCount was declared as private and therefore it is not directly accessible by the
HoverFrog class. So why has this happened?

The reason is that constructors are chained. When an object is created, the constructors
of its superclasses are always called. So, in the process of constructing a HoverFrog
object, Java will invoke the constructor from Frog.

Depending how you write the code, this invocation might be explicit – the first line of the
HoverFrog constructor is super() – or it might be implicit, supplied by Java behind the
scenes. Even if you do not write any constructor at all for HoverFrog, the rules of Java
dictate that one will be inserted automatically in the compiled code, and this supplied
constructor will still invoke the constructor Frog.

So whatever you do, in the process of creating a HoverFrog the constructor Frog() will
be executed and it will increment the frogCount.

For some purposes it is useful for classes and subclasses to share information in this
way – for example, for one purpose we might decide that hoverfrogs are a kind of frog,
so we would be happy for each new hoverfrog to be counted as a frog. However, for
some other purposes, we might not want to have HoverFrog instances affect the value
of frogCount – we might want the hoverfrogs to have their own separate count of
instances. How could we achieve this? We will consider one approach in the next
subsection.

Polymorphism, instance methods and class variables
If we require different behaviour depending on the class of an object the best approach
is almost always to involve instance methods in the solution, because different classes
can provide different implementations of the same method signature. Hence the
corresponding message becomes polymorphic – objects of different classes will

3 Class methods and class variables 43

.

Give)

s t by 1
)

class method class.

t) to
.

In g instance) to
({}

;

;

respond differently to the message. The clever idea in this case is that we continue to
use the class variable and method to keep count, but use an instance method to decide
whether the count should be incremented or not.

ACTIVITY 16

Open the project Unit7_Project_16

Frog a new class method incrementFrogCount(, with a void return value, which
directly increment frogCoun . Give Frog a new instance method
incrementInstanceCount(, with no argument or return value, whose effect is to
invoke the incrementFrogCount() on the Frog

Alter the Frog constructor Frog() so that it no longer directly increments the class
variable frogCoun . Instead, have it send the message incrementInstanceCount(
the newly created object, which can be referenced by this from within the constructor

HoverFro , override the inherited method incrementInstanceCount(
do nothing, i.e. the method should have no code within the enclosing braces) of the
method.

In the OUWorkspace, execute the following statements. What happens this time?

Frog fry = new Frog()
HoverFrog hal = new HoverFrog();
Frog.getFrogCount();
HoverFrog.getFrogCount()

DISCUSSION OF
ACTIVITY 16

Now checking the value of frogCount reveals that frogCount is only incremented when
Frog instances are created, not when Hoverfrog instances are created.

Of course, you could go further than this by giving the HoverFrog class its own separate
count of hoverfrogs. This could be done by creating in HoverFrog a new class variable
hoverFrogCount, and a new class method getHoverFrogCount(), together with a new
class method incrementHoverFrogCount() that increments hoverFrogCount by 1.
Then you would need only to modify the instance method incrementInstanceCount()
in HoverFrog to invoke incrementHoverFrogCount() on HoverFrog instead of just
doing nothing.

You can find the completed code for this activity in the project Unit7_Project_16_sol.

We shall now go on to explore some other examples of class variables and methods,
beginning with an example using class ‘variables’ which do not actually vary!

44 Unit 7 Code design and class members

3.4 Constants
A

keyword final n –
–

.

e
{

;
}

m
–

Now 8 –
parentheses –

.

e
a
–

.

a

c

c A
e

constant is a variable whose value is fixed and unchangeable. For example, the
number of legs on a spider is eight, so that, if we wish to model a collection of intact,
well-formed spiders, they will all, without exception, have eight legs. To represent this
sort of unvarying attribute or information, we use a class variable and add the Java

, which prevents anyone ever assigning a new value to it. By conventio
although Java does not enforce this constants are usually written using upper case
and the underscore character, as in the following example

public class LegsKnowledgeBas

public static final int SPIDER_LEGS = 8;
public static final int INSECT_LEGS = 6;
public static final int HUMAN_LEGS = 2

Notice that the code above constitutes an entire class, and its sole purpose is to perfor
a public service for objects of other classes to make available to them information
about how many legs spiders, insects and humans have. If an object of another class
needed to know the information, it would use the name of the class where the constant is
declared and the name of the constant, like the following:

int legs = LegsKnowledgeBase.SPIDER_LEGS;

legs will hold the value . Notice that this is not a method invocation there are no
instead the constant is directly accessed by its name, prefixed by the

name of the class it is defined in, with a dot between the two

Of course, we do not have to do things this way, with a special LegsKnowledgeBas
class. For example, if there was Spider class, we could have defined a class variable
within the Spider class instead and for many purposes, this might be the neatest
solution. Still, both approaches are used, and both can have benefits. By contrast, we
could do things without using a class variable at all. Each object that needed to could
remember the facts about spiders for itself. But this ‘instance variable based’ approach
has big disadvantages, which you may remember from the discussion of bovverfrogs

SAQ 11

What would be the disadvantages of an ‘instance variable based’ approach to storing
fact about spiders that we are certain (for the purposes of some model) will never vary?

ANSWER...

Storage is wasted by the duplication.

More importantly, the probability of error and inconsistency is increased.
programming error might cause one or more copies of the instance variable to hav
the wrong value.

Describing constants as one kind of variable may sound slightly strange from a common
sense point of view. After all, in ordinary English, variables and constants are quite
different things. However, in Java, constants are implemented as variables which
happen to have been declared as final to stop them varying. Thus, for Java purposes,
it makes perfect sense to think about constants as one kind of variable, otherwise many
general statements about Java variables would become messily cluttered by having to
mention constants specially.

?

SAQ 12

If we wanted to expand the legs knowledge base to include starfish (5-legged ones),
what extra line would we need to add to the class LegsKnowledgeBase

ANSWER...

public static final int STARFISH_LEGS = 5;

3 Class methods and class variables 45

We have been focusing on examples of class variables that happen to be declared as
constants (using the keywords static final), but it is also perfectly possible to make
an instance variable constant in a similar way, simply by marking it as final. However,
there is an important difference between a class constant and an instance constant. A
constant class variable has the same value for all instances of a class, whereas a
constant instance variable may well have different values for different instances. For
example, a constant instance variable could be declared and used to give each
Account a different accountNumber. This would have its value set when the account
was initialised, in the constructor, and could never be changed thereafter.

46 Unit 7 Code design and class members

4 variable
A review of the different kinds of

In this section we review the different kinds of variables used in the course.

All types of variable have the same purpose – to provide a name for a location which
holds a value, which can be either a primitive data value or a reference to an object.
Variables all work in essentially the same way but they differ in how and where they can
be used. You have used four sorts of variable so far (all of which can hold either kind of
value).

4.1 Local variables
Local variables are declared for the purposes of a single method, constructor or block
which is where their declarations are found. A new copy of a local variable is created
each time the method, constructor or block is executed, and is destroyed as soon as
execution is completed. Local variables are not accessible outside of the relevant
method, constructor or block in which they are declared.

4.2

4.3

Workspace variables
If a Java development environment provides a workspace, like the one in M255, there
will be special workspace variables. Workspace variables behave like local variables,
except that their lifetime lasts until you close or reset the workspace, rather than ending
when a particular block has finished executing.

Instance variables
Unlike local variables, instance variables are not declared within any method,
constructor or block, but as separate items in the class definition.

In terms of their usage, instance variables contrast even more sharply with local
variables. Instance variables are used in an object to refer to other objects or to hold
primitive values that make up its state. There is an individual copy of each instance
variable per instance of the class – each instance may have a different value for the
same instance variable compared with the other instances of the same class. An
instance variable is created and destroyed at the same time as the instance that
contains it. While its value may change during the lifetime of the object, the instance
variable itself has the same lifetime as the containing object – no shorter and no longer.
Notice that when an instance variable is destroyed, any object that it refers to may or
may not be destroyed – that depends on whether one or more other references to that
object still exist.

Even if an instance variable is private, it can still be directly accessed from any instance
method or constructor of that class. Much more surprisingly, if we have two instances of
the same class, and one has a reference to the other, then it will be able to directly
access the other’s instance variables, even if they are private. In other words, private
indicates that the instance variable is private to all instances of that class; instances of
other classes cannot access it directly; even an instance of a subclass that inherits a
private instance variable will be unable to access the inherited instance variable directly.

private is the most
restrictive level of access.
Instance variables may be
given more visibility by
defining their access as
package, protected or
public, in order of
widening permissiveness.

4 A review of the different kinds of variable 47

Normally you should expect instance variables to have setter and getter methods, so
that the instance variable is always set with a message-send such as

someObj.setSpeed(90);

or

this.setspeed(90);

rather than directly with a statement such as

myObj.speed = 90;

or

this.speed = 90;

Accessing a variable directly from a method is perfectly reasonable in small example
programs, but can be a dangerous habit in larger programs where many methods need
to access the same variable. The problem with direct access will arise if the program
grows and ever needs to be modified at some point in the future (for example, to make
some action occur whenever the value of variable is altered or accessed, or to change
the way in which it is stored). If the variable is accessed directly, then there will be no
alternative but to make changes in every method where the access takes place. This is
often laborious, and can be downright dangerous if one or more places are missed.

On the other hand, if the discipline has been adopted right from the start of accessing
variables only via their getter and setter methods, then any needed changes can be
limited to the setter and getter, however many methods may use the setter and getter.
This is why this course tends to discourage direct access to instance variables from
methods, except by at most one method that sets the value directly by assignment, and
at most one method that returns its value. Recall, however, that in the case of
constructors, direct setting of variables is preferred.

In fairness, to put the opposite view, in the case of very simple classes that are unlikely
to change, the increased flexibility comes at the cost of having to write the setters and
getters, and having code that you may consider takes marginally more effort to read and
write.

Hence, there is a trade-off between flexibility and directness. In different contexts,
different conventions are legitimately preferred. However, for the purposes of this course
we will expect getters and setters to be used as outlined above.

Inheritance vs. visibility
It is important to distinguish between inheritance and visibility. If an instance variable
has been declared as private, then it will not be directly accessible by instances of any
subclasses. However, this does not mean that the instance variable is not present in
instances of the subclass. This might sound like a meaningless distinction, but, in fact, it
is a very concrete issue. Subclasses always inherit any instance variables defined in
their superclasses (as can be proved by inspecting a hoverfrog in the OUWorkspace); it
is just that instances of a subclass cannot ‘see’ inherited instance variables that have
been declared as private. However, provided there are public or protected getter and
setter methods for the instance variable defined in the same class as the variable, then
these methods will be inherited by the subclass, providing indirect access to the
instance variable from instances of the subclass. This may sound somewhat
roundabout, but it can be very useful, as it could allow the original class to change the
way it stores the instance variable, without inconveniencing any subclasses which
access this state via the inherited getter.

e
no

before
– unless

48

There are two very common ways to become confused about the absence of instance
variables that you are convinced should be present. This typically happens when
creating a new class or when using a class for the first time. First, since instanc
variables belong to instances, there are copies of the instance variables until an
instance of the class is actually created. Second, since a static method can be executed

any instances exist, it follows that it is not possible for it to make use of instance
variables , of course, the static method first creates an instance of the class and
then it can access the copy of the instance variables belonging to the instance created.

Unit 7 Code design and class members

4.4 Class variables
Class variables, also known as static variables, are always declared using the
keyword static. Class variables represent the state associated with a class,
irrespective of whether any instances have been created, and irrespective of the state of
any instances that have been created. There is just one copy of each class variable per
class. Class variables, like instance variables, are declared as distinct items within the
class definition. They are usually initialised where they are declared.

A class variable is initialised at first use in a particular run of a program, and is destroyed
only when program execution ceases. This contrasts with an instance variable, which
exists only as long as something is referencing the object it belongs to.

Regardless of whether a class variable is private, any instance method or constructor
can access any class variable declared in its class. Class variables may be given more
visibility by defining them using a more permissive level of access modifier than
private. Like instance variables, they may have package (the default), protected,
private or public accessibility. For example, if a class variable is defined using the
modifier protected, then subclasses and instances of subclasses will be able to
access this class variable, as well as other classes in the same package. In this course
we only make use of public and private accessibility.

To access a class variable from outside its class its name must be qualified by the name
of its class. To access it from a different package we must qualify the name by the class
and the package. So if we had a package marine containing a class Octopus with a
public class variable noOfLegs, it would be accessed from within the Octopus class
and its subclasses by the name noOfLegs, from within the package marine by the name
qualified by class, Octopus.noOfLegs, and from outside the package by the doubly
qualified name marine.Octopus.noOfLegs.

The following tables summarise the different kinds of variables.

4 A review of the different kinds of variable 49

type

Local
s

executed.

Workspace

.

Instance
not within

.
created.

Class

.
s

Instance a this

same

d
and .

Class

.

e.

as d or

d or

Variable Where declared Where accessible When created When destroyed

In a method,
constructor or block.

Within the method,
constructor or block in
which declared.

Each time the method,
constructor or block i

When the execution of
method, constructor or
block is completed.

In the workspace. From any statement
executed in the
workspace.

When the variable
declaration is executed
in the workspace

When the workspace is
closed or reset.

Within the class
definition (but
any method constructor
or block)

See the next table. When the object in
which it is contained is

When the object in
which it is contained is
garbage collected
because it no longer
has a reference.

Within a class definition
(but not within any
method, constructor or
block) and declared as
static

See the next table. When the class is first
used in an executing
statement in the
workspace or any other
running program.

When the workspace is
reset or closed (more
generally when the
program in which it i

used ends).
When the class is re­
compiled.

Where accessible

1 From any instance method or constructor of the containing object (vi , and irrespective
of the privacy of the instance variable).

2 From any other object of the class, provided that object has a reference to the object
containing the instance variable, and irrespective of the privacy of the instance variable.
Instance variables may be given more visibility by using the access modifiers protecte

public

Inadvertent effects
May be hidden in an instance of the subclass by an instance variable of the same name
declared in the subclass.

1 From any class method, instance method or constructor of the defining class (irrespective of
the privacy of the variable). In such cases the variable can be used in that class’s methods
without qualification (prefixing with the class name), however, this is not recommended and
is considered poor style
If you wish to limit accessibility just to the defining class and its instances then the variable
should be declared as privat

2 If you wish a class variable to be accessible to a subclass the variable needs to be declared
protecte public. In such cases the variable can be used in methods of any

subclass without qualification (prefixing with the class name), however, this is not
recommended and is considered poor style.

3 If you wish a class variable to be accessible to any unrelated class then the variable needs to
be declared as protecte public and it must always be qualified by the class name
within the methods of these unrelated classes.

Inadvertent effects
May be hidden in a subclass by a class variable of the same name declared in the subclass.

50

Note that the lifetime and accessibility of variables should not be confused with lifetimes
and accessibility of objects to which they may refer, since there might be other
references to those objects.

Unit 7 Code design and class members

4.5 Method and constructor arguments
These are not generally spoken of as variables, but conceptually they are variables, and
their properties are very similar to those of local variables, as we will now summarise.

Arguments are:

c declared in methods or constructors;

c accessible only to the relevant method or constructor;

c created each time a method or constructor is executed;

c destroyed when execution of the method or constructor ceases.

5 General-purpose classes 51

5 General-purpose classes

The core of Java contains some important general-purpose classes which provide
publicly available class methods and constants for a range of common tasks. Some of
these classes are entirely static, and are written so that they cannot have subclasses,
and no objects of the class can ever exist. All the work is done by class methods. You
have seen some of these already in the course; for example, the System class contains
a static variable out, which refers to the standard output stream (in the OUWorkspace,
this is the Display Pane). The most common way to print out text from a Java program is
to include a statement such as

System.out.println("Frogs of the world unite!");

This sends a message to the object System.out telling it to print a line containing the
string that appears as the method argument.

At this stage you do not have to worry about the details of how to ensure that a class
remains wholly static, but if you are interested, here is how it’s done.

To stop a class having subclasses, we use the modifier final.

To stop a class having instances, we give it a private constructor, and then make a point
of not invoking the constructor from within any methods in the class itself. The constructor
cannot be invoked from other classes because they do not have access to it.

System is a good example of a general-purpose class that cannot have any instances.
However, it contains various useful static facilities such as System.out that you can use
from any Java program. This global accessibility is possible because System is defined
in java.lang, a package that is always accessible to every Java program. Such
facilities are all very well, but how are you supposed to know what facilities are provided
by such classes? In Unit 4 you explored the documentation for the OU Class Library
which contains classes such as OUDialog and OUColour. In the next activity you are
going to explore the documentation for the Java Class Libraries.

ACTIVITY 17

From the BlueJ Help menu, select Java Class Libraries. Selecting this option should open
your web browser to offer documentation on the Java Class Libraries.

Use the browser, as described in the Software Guide and Unit 4, and open the
documentation for the package java.lang.

1 	From the left-hand frame of the browser window select the System class. Once you
have done that you will see in the main frame of the window a description of its class
methods and class variables. Find the entry for the class variable out (it will be under
the heading Field Summary). What type is this class variable declared to be?

2 	Now take a look at the documentation for the Math class, which is also in the
java.lang package. You will notice that under the Fields heading, constants such as
PI are declared (by the way, do not worry if mathematics is not your strong point –
this example simply illustrates how class variables can be used to store useful
constants, and � is just an example of a constant widely used in mathematics).

Classes such as System and Math are always automatically available in any Java
program, since they are defined in java.lang, the only package automatically
accessible to every Java program (including the OUWorkspace).

;

PI
name

3

)

52

Execute the following statement in the OUWorkspace:

System.out.println(Math.PI)

Make sure that you type the class variable name in capitals, whereas the class
Math has only its initial letter capitalised). What value is returned?

Further exploration of the documentation of the Math class will show you that it also
contains static methods for a wide variety of mathematical functions. For example,
what does the class method max(do? Try executing

Math.max(42, 24);

Unit 7 Code design and class members

–

1 out m.

2

;

p

3

3)
:

42.

.

in the OUWorkspace what value is returned?

DISCUSSION OF
ACTIVITY 17

The class variable is declared as type PrintStrea

Execution of the following statement:

System.out.println(Math.PI)

will output the value of the number correct to 15 decimal places, like this:

3.14159265358979

The class method max(returns the largest number held by the two arguments. So
the statement

Math.max(42, 24);

returns the number

For more information about browsing Java Class Library documentation, see the M255
Software Guide

The above activity demonstrates how you can access a publicly accessible class
variable (for example Math.PI), by giving the name of the class, followed by a dot,
followed by the name of the variable. This class variable happens to refer to a primitive
value (of type double). But of course, a class variable can just as well refer to a full­

blown object. Indeed, there are several examples of class variables referring to
generally useful objects which you have already been using. For example, static
constants and methods are used to provide the colours and dialogue boxes that we
have been using. Consider the Frog class. Frogs have colours, but all kinds of graphical
objects need access to colours, and one simple way to make instances of colours
readily available is to define commonly used colours as class variables in some easily
accessible class, as you will see in the next activity where you revisit the documentation
for the OU Class Library which you first looked at in Unit 4.

ACTIVITY 18

In this activity we ask you to consider the following statement:

OUColour myColour = OUColour.GREEN;

Execute the above statement in the OUWorkspace (you do not need to open a project).

Inspect myColour.

Is GREEN an instance variable, instance method, class variable or class method?

How has GREEN been declared in the OUColour class? To answer this question you need
to look at the documentation for the OUColour class.

5 General-purpose classes 53

From the BlueJ Help menu, select OU Class Library. Selecting this option should open
your web browser to offer documentation on the OU Class Library.

From the list of classes in the left-hand frame, select OUColour and browse the
documentation in the main part of the browser window to discover exactly what GREEN is.

DISCUSSION OF
ACTIVITY 18

If you open an inspector on myColour and then double-click on the green rectangle that
is displayed in the inspector, you will see this (Figure 1).

Figure 1 The components of OUColour.GREEN

This reveals how every colour in Java is represented as a mixture of three numbers,
representing the amount of red, green and blue in the colour. The minimum value is 0
(thus there is no red or blue in OUColour.GREEN) and the maximum value is 255 (you
can see that OUColour.GREEN has as much green as a colour can get in Java).

Since the statement uses GREEN, not green(), GREEN must be a variable, not a method
and since OUColour is a class, not an object, GREEN must be a class variable. The fact
that GREEN is capitalised suggests that it is, furthermore, a constant.

The class documentation reveals that it is defined as follows:

public static final OUColour GREEN

GREEN has been defined as a class variable, denoted by the use of the keyword static.
Furthermore, GREEN has been defined as a constant, denoted by the keyword final.
Because GREEN is a constant, evaluating the expression OUColour.GREEN will always
return the identical colour object. However, the mere fact that a variable with a constant
value was used to refer to an object will not in itself make that object immune from
subsequent changes of state (for example, by sending it messages).

Fortunately, in the case of an instance of OUColour, there is no obvious message to send
to it to alter its state. This is as things should be, since we would not want the class
variable OUColour.GREEN to refer to an object that someone had somehow changed to
look red, for example.

As an aside, one point may seem slightly confusing at first – we have a static variable (in
this case a constant) GREEN that refers to an instance of the same class. This seems to
go against the general rule that class methods and class variables should be usable
without any instances of the class needing to exist. However, this general rule could be
stated a little more accurately (if less memorably) if we said instead that class methods
and class variables should be always usable without any explicit need to create any
instances of the class. There is nothing to stop a class being programmed to create one
or more instance of itself automatically when it is first used in a particular run of a
program.

54

;

using)

;

;
;

e fi

(a)

t
,

(c)

,)

(e)
.

Colours are (relatively speaking) fun and easy to use. You can create an instance of your
own colour, if you like, by mixing appropriate amounts of red, green and blue, as shown
in the following example.

OUColour myColour = new OUColour(70, 100, 121)

You could use an instance of a colour like this to visibly change the colour of a frog,
setColour(as follows (if you had a project containing the Frog class open).

OUColour myColour = new OUColour(70, 100, 121)
// you may be able to improve on this colour!
Frog vanGogh = new Frog()
vanGogh.setColour(myColour)

The last two activities above focused on class variables (including class constants),
rather than class methods. In the SAQ below you can review your knowledge of class
methods. If necessary, use the OU Class Library documentation, as previously
explained in Activity 18, to get more information about the relevant class.

SAQ 13

If you execute the statement OUDialog.request("What is your favourit sh?");

(a) What action results?

(b) What is the value returned?

(c) Is OUDialog a class or an object?

(d) Is request() an instance method or a class method?

(e) Where is OUDialog.request() accessible from?

ANSWER...

The effect of evaluating the statement

OUDialog.request("What is you favourite fish ?");

is to display a dialogue box requesting input.

(b) The value returned is a string, consisting of whatever the user entered into the inpu
box, or an empty string if the user didn’t enter any characters. (As a step on the way
an instance of OUDialog is created, but this is not what is returned.)

OUDialog is a class.

(d) Since OUDialog is a class, not an object request(must be a class method, not
an instance method.

OUDialog.request() is accessible from anywhere in any program which imports
the class OUDialog

Unit 7 Code design and class members

This use of a class method as a convenient way to create a new instance already tailored
for some specific purpose (in the case of OUDialog.request(), to prompt the user in a
certain way) is a common programming idiom. The general idea behind the idiom is that
one or more class methods should be provided specifically to create new instances of
that class. Typically, each such method returns an instance initialised in some particular
way. (In the case of OUDialog.request(), although the idea is to create a dialogue box
initialised in a particular way, a string is returned by the method invocation rather than
the dialogue box itself.)

This kind of idiom can be much more flexible than using constructors explicitly, since
any time you want a source of differently initialised instances you only need to create a

5 General-purpose classes 55

out
variable?

)

(f)

(a)
Boo

)).

(c)

(d)
m. A m –

out

(e)) m.

is a class instance
does not

) object

(f) is a
g

new class method. In the case of constructors, you can only have a single constructor of
a given signature, whereas you can have as many class methods with the same
argument types as you like, as long as you give the class methods different names.

In the following SAQ, use the Java Class Library documentation (if necessary) to help
you answer the questions.

SAQ 14

If you execute the statement System.out.println("Boo") ;

(a) What action results?

(b) What is the value returned?

(c) Is System a class or an object?

(d) Is a class, an instance variable, an instance method, a class method or a class

(e) Is println(an instance method or a class method?

Where is System.out.println() accessible from?

ANSWER...

The effect of evaluating the statement System.out.println("Boo") is to display
in the Display Pane.

(b) There is no message answer (the println(method is declared as void

System is a class. It is a subclass of Object. No instances or subclasses of it can be
created, but it has various useful class methods and class variables used for various
system purposes such as input and output.

System.out is a class variable of the System class that references an instance of
PrintStrea PrintStrea is an object used for managing text output you do
not need to know anything else about this class. The static variable is declared
as follows:

public static final PrintStream out

println(is an instance method of PrintStrea

System.out variable and it references an of another class. It
reference a class! (Classes are not objects, and hence a variable cannot

hold a reference that refers to a class.) Thus, in

System.out.println("boo")

the message println("boo" is being sent to the that the class variable
System.out references. For this reason, println() is an instance method.

System.out.println() is accessible from any class in Java, since System
class in java.lan , which is automatically accessible from any Java program.

56 Unit 7 Code design and class members

6 Summary

After studying this unit you should understand the following ideas.

c Work may be achieved in a Java program even if a message is not sent to an object
(although the sending and receiving of messages is the most common way of
carrying out operations).

c To achieve work in a program of any complexity objects will collaborate to interact
both directly and indirectly.

c If a method is overloaded or overridden, the JVM must choose one of several
methods when it encounters the corresponding message at run-time. The strategy
for doing this will differ depending on whether the methods are overloaded or
overridden.

c In the case of a message that corresponds to a number of overloaded
methods, it is the type of the message’s arguments at compile-time that
determines what method in the receiver’s class hierarchy is invoked at run­

time.

c In the case of a message that corresponds to an overridden method, it is the
class of the receiver at run-time that determines what method is invoked at
run-time.

c There are primarily four ways of distributing code among methods to organise a
sequence of actions:

c write the code in a single method;

c distribute the code between two or more methods of the same class;

c distribute the code between two or more methods of different classes;

c write a completely new class, whose methods would coordinate (orchestrate)
a sequence of actions involving objects of some existing class(es). An
instance of such a class is termed an orchestrating instance.

c Class variables and class methods are declared using the access modifier static.

c There is only a single copy of a class variable. A class variable exists irrespective of
whether any instances of the class have been created. If declared as private, a
class variable is only directly accessible by class methods, instance methods or
constructors of the defining class.

c Class methods are executed by invoking them, not on an object, but on the name of
the class itself. They can be invoked irrespective of whether any instances of the
class have been created.

c Class methods declared as private can only be invoked by class methods,
instance methods or constructors of the defining class.

c Class variables and class methods cannot be inherited.

c A constant is a variable whose value is fixed and unchangeable. Constants are
declared in Java with the final keyword.

Summary 57

c – ,
–

c

c ;

c

c

S

c

c

c

c
f

c

c

c ;

c

c final

c

c

Code refactoring the rewriting of code to improve its design and maintainability

without changing its functionality can be carried out according to three design
principles, namely:

eliminate duplicate code wherever possible;

ensure objects have responsibility for matters that concern them

actions in a single method should be, wherever possible, at a single level of
detail (that is focus in on activities or actions as tightly as possible).

The Java Class Library contains some entirely static classes that cannot be
subclassed. These classes contain general-purpose utility methods that can be
used by all Java programs.

LEARNING OUTCOME

After studying this unit you should be able to:

describe the various ways in which work gets done in a Java program;

use the design principles explained in this unit to select appropriate approaches to
organising sequences of actions;

explain the difference between overloading and overriding a method;

explain the circumstances in which it would be appropriate to write a new class of
object to orchestrate the coordination of a sequence of actions between objects o

some existing class(es);

explain the practical benefits of distributing responsibility for a complex sequence of
actions between objects of relevant classes;

begin to refactor code to achieve better design, remove code duplication and
improve maintainability;

declare and initialise class variables using the keyword static

write and invoke class methods;

use the keyword to define constants;

explain why classes such as System exist as purely static classes;

describe the different types of variables available in Java and explain how and
where they are used.

58 Unit 7 Code design and class members

Glossary

chained

.

A
a

not or m.

e A .
a class

n inheritance.
See .

A constant
final a

e fi c
a l

e

is
,

m

.

l final

a
r

– i.e.
.

member m member
, s, and

.

An e

.

Constructors are said to be chained, meaning that when an object is created,
the constructors of all its superclasses are always called, either explicitly or implicitly

class method class method is a method declared with the keyword static. Class
methods are associated with a class rather than with any of its instances. In general,
class method has no information about the existence of, or state of, any instances of its
class. Class methods are invoked directly on the name of the class, and not by sending
a message. In Java, classes (as opposed to their instances) are not objects, so class
methods are object-oriented and do not exhibit inheritance polymorphis

class variabl class variable is a variable declared with the keyword static
A class variable is associated with rather than with any of its instances. A class
only ever has one copy of each of its class variables. In Java, classes (as opposed to
their instances) are not objects hence class variables do not take part i

qualified for details of how class variables are accessed

constant is a variable whose value is fixed and unchangeable. Normally
the keyword is used to make a value into a constant. In addition, where only
single value is needed for a class, constants are typically declared as static. However,
static is not always used for constants, as sometimes a situation needs to be modelled
where each instance of a class has its own different constant value, such as a serial
number.

constant instance variabl Constants are usually declared as nal stati

variables. However, sometimes it makes more sense to define a constant as fina

instance variabl . See constant for more information.

design principle In contrast to a guideline or suggestion, the word principle
reserved for recommendations that apply universally or nearly universally. In this course
the ter design principle is applied to principles governing how code should be
organised. The authors reserve the right sometimes to violate design principles for
pedagogical reasons!

direct interaction Direct interaction is not a formal technical term, but a descriptive
phrase used to describe a situation where one object has a reference to another, and
this reference is used to affect the state or behaviour of the other object. Contrast with
indirect interaction

fina The keyword prevents a variable from ever having its value reassigned
once it has an initial value.

indirect interaction Indirect interaction is not a formal technical term, but
descriptive phrase used to describe a situation where one object affects the state o

behaviour of the other object, but without actually having a reference to that object
some intermediary object is used. Contrast with direct interaction

The ter is a convenient word sometimes used to cover all of the
four following categories: class variables class method instance variables
instance methods

orchestrating instance orchestrating instanc is a separate object used to tie
together the different parts of a complicated interaction that do not seem to belong to
any single one of the objects involved

6 Glossary 59

overload overloaded
s n

the order or type
.

.

override
with .

a
e

, or

this
must

Unit 6

e

visibility.

e
like

A method name is said to be when a class has more than one
method with the same name, but the methods differ in the number of argument , or i

of one or more arguments. Overloading should be contrasted with
overriding

overload-resolution When a method is overloaded, the compiler must decide which
method signature the JVM should use to select a method at run-time. The process of
picking the best match from a set of candidate methods is called overload-resolution

override If a method has the same name and the same arguments (and return type)
as an accessible method in a superclass, it is said to that method. Contrast

overloaded

qualified When accessing class variable, it is generally necessary to access it via
the name of the class using the dot notation (e.g. MyClass.myStaticVariabl). This is
described as using the qualified name of the class variable. This is not strictly
necessary within class methods instance methods constructors of the class that
defines the class variable, but it is good programming style and complements the use of

for accessing instance variables. Objects of other classes that might want to
access an accessible class variable qualify the variable with the class name.

refactoring Refactoring is when code is rewritten without changing its overall effect,
but for the purpose of improving its design, removing code duplication, or improving
maintainability. (See for an alternative definition.)

visibility An object may contain an inherited instance variable, but be unable to
access it directly because it was declared privat in a superclass. However, a public
accessor method declared in the superclass may allow the object to access this
variable indirectly. In such a situation, the variable is said to lack

workspace variable A Java development environment that provides a workspace, like
the one in M255, will have special workspace variables. Workspace variables behav

local variables, except that their lifetime lasts until you close or reset the
workspace, rather than ending when a particular block has finished executing.

C

60 Unit 7 Code design and class members

Index

chained 42

class methods 37

class variables 35, 48

constant 44

constant instance variable 45

D

design principle 17, 30

direct access to instance

variables 47

direct interaction 9–10

F

final 44

G
general-purpose classes 51

H

helper methods 17

hiding 38

I

indirect interaction 10

initialisation of class variables 36

J

Java Class Libraries 51

java.lang 51

L

local variables 46

M

maintainability 24

masking 38

member 39

N
native methods 7

O

orchestrating instance 19

overload-resolution 14

overloaded 13, 15

override 15

P
protected 48

Q

qualified 37, 48

R
refactoring 25

S

sorts of variable 46

static 36

static constants 52

static variables 48

System.out 51

V

visibility 48

W

workspace variable 46

