M255 Unit 6
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Subclassing and
inheritance

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.
Copyright © 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the
Copyright Licensing Agency Ltd of 90 Tottenham Court Road,
London, W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

ISBN 978 0 7492 5498 8
2.1

CONTENTS

Introduction 5
1 Exploring the inheritance hierarchy for the
amphibian classes 6
1.1 Why subclasses? 6
1.2 Exploring the behaviour of the Frog and
HoverFrog classes 8
1.8 The Object class and indirect inheritance 10
1.4 How the HoverFrog class is implemented 11
1.5 Access modifiers in Java 17
2 Constructors 19
2.1 Implementation of constructors and the role
of super () 19
2.2 Constructors and overloading 22
3 A subclass for Account 25
3.1 Creating a new class in BlueJ 25
3.2 Declaring instance variables and defining
accessor methods 26
3.3 Writing the constructors 28
3.4 Modifying the behaviour of the
CurrentAccount class 30
3.5 Additional behaviour for CurrentAccount 32
4 Revisiting the amphibian hierarchy 37
4.1 Capturing common behaviour: abstract classes 38
5 Subclassing, subtypes and substitution 42
6 An introduction to interfaces 47
6.1 Creating and implementing an interface type 48
6.2 Using an interface type 50
7 Summary 54
Glossary 56
Index 59

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

This unit builds on your study of Block |, where you were introduced to the important
ideas of object-oriented programming and where you began to learn about their
implementation in Java. In particular, the unit aims to extend your understanding of
inheritance and further explores the creation of new instances of a class and the way in
which these are initialised using constructors. We start by investigating an existing class
hierarchy — the various amphibian classes — and go on to guide you through the design
and implementation of a new class of your own. The practical work in the unit aims to
develop the programming skills you acquired in Units 4 and 5. It will give you your first
experience of writing a Java class from scratch and will provide an important foundation
for the programming that you will do for the remainder of the course. We complete the
unit by discussing some of the theoretical ideas associated with inheritance, and their
implications for programming in Java. The unit also introduces you to Java interfaces.

For a large part of this unit you will need to use the Blued IDE in conjunction with the
course text. It would therefore be helpful if you could study the unit while you have
access to your computer. It is very important that you carry out the activities, because
most of them involve aspects of programming that you will be using throughout the
remainder of the course. Section 3, which involves a lot of practical work, is likely to take
more time than other sections.

Unit 6 Subclassing and inheritance

Software objects can also
model roles, events, and
so on, but we are mainly
concerned with those that
represent tangible entities.

There are a number of
websites which provide
more details on the way in
which animals are
classified. If you are
interested you might like to
try searching on ‘animals’
and ‘classification’.

Exploring the inheritance
hierarchy for the amphibian
classes

We start this section by reviewing the idea of classification, and its advantages for
programming. You will then revisit the relationship between the Frog and HoverFrog
classes, and learn how they fit into the class hierarchy to which all Java classes belong.
Finally you will study the Java code for the HoverFrog class, paying particular attention
to those aspects specifically concerned with inheritance.

m Why subclasses?

In an object-oriented approach to programming, a class of software objects often
models the behaviour of an identifiable set of real-world objects and the attributes these
objects need in order to carry out that behaviour. Although our Frog objects are not
exactly real-world objects, they have clearly defined behaviour, which involves changing
their position and colour; the attributes they need to carry out this behaviour are colour
and position. The choice of the word ‘class’ to describe a collection of objects with
similar structure and behaviour is no accident. It mirrors the situation where real-world
entities are classified into different categories depending on their characteristics and
behaviour. Classification helps us to manage the complexity of the world by focusing on
the common characteristics of objects and situations. Red, green and blue are all in the
category ‘colour’; M150, M255 and M256 are all in the category ‘Open University
course’.

Exercise 1

Suggest a category for each of the following sets of entities.

(a) Car, bus, cycle, motorcycle

(b) Whale, cow, pig

(c) Worm, octopus, insect.

7o) (U1 o PSSR PPPPP
(a) Vehicle or form of transport

(b) Animal or mammal

(c) Animal or invertebrate.

Your answers might have been different, but equally correct.

Exercise 1 shows that it is possible for an object to be in more than one category (or
class). Our second suggestion for each of parts (b) and (c) provides a more specialised
class than our first. An octopus is an animal, but it is also an invertebrate (an animal
without a backbone); in fact, it's a member of an even more specialised class, mollusc.
Figure 1 contains a very small part of the standard classification of animals and shows
how the animals in Exercise 1 fit in.

1 Exploring the inheritance hierarchy for the amphibian classes

Animals
Invertebrates Vertebrates
Arthropods Molluscs Amphibians I\/Iamlmals Birds
Crustaceans Insects Snél Octopuses Primates Artiodlactyls Whales
Suidae Bovidae
Hogs Pigs Goats Cattle
Figure 1 Extract from the classification of animals (note that most categories in the figure are

incomplete in terms of their membership)

Members of the categories lower down the classification (the subclasses) have all the
defining characteristics of those in the categories above them — we can take these as
given — as well as some distinctive characteristics and behaviour of their own. So, for
example, all mammals feed their young with their own milk, but only artiodactyls are
‘even-toed’ and of those only bovines have a certain kind of horn. A subclass both
extends and specialises the behaviour of its superclass.

Our discussion so far has focused on the classification of already existing entities. The
approach taken to software classes has similarities with this process, but it is not exactly
analogous. In creating new software classes, we are extending the class hierarchy as
we go, by defining each new class as an extension of some existing class. So for
example having decided on the need for a class to represent hoverfrogs, we analyse the
attributes and behaviour required of HoverFrog objects, so as to decide how best to
incorporate a HoverFrog class into the existing class hierarchy.

As you have seen, instances of the HoverFrog class have both the attributes of the Frog
class (position and colour) and behave in a way that is, in many respects, the same
as that of Frog instances. Indeed they exhibit all the behaviour exhibited by Frog
objects, but they also have additional, specialised behaviour: they can move up and
down. As discussed in Unit 2, it is appropriate therefore to think of our mythical
hoverfrogs as a subclass of frogs. Java, in company with other object-oriented
programming languages, provides facilities for defining a new class as a subclass of an
existing class, and this is what the course team has done in the case of the HoverFrog
and Frog classes.

The conceptual advantage of subclassing — the process whereby a new class is
defined as a specialised type of some existing class — is that it enables us to reduce
complexity by focusing only on the distinctive characteristics of the more specialised
class. In a programming context there are also practical advantages. The most
important of these is that we are able make use of the work already done in
implementing the behaviour of the superclass. As you have seen, the methods
(behaviour) of one class are automatically available to (we say inherited by) its
subclass(es). Not only does this save us the work involved in redesigning and rewriting
program code, but it also reduces the amount of testing needed and minimises the
likelihood of errors. Furthermore, if changes are needed in an aspect of the behaviour
shared by a class and its subclass(es), only one class needs to be modified.

Up until this point we have
carefully and correctly
been referring to classes
with a full description, for
example ‘the HoverFrog’
class. This can become
very tedious, so we
sometimes shorten it to
the class name alone, as
in ‘the method for
HoverFrog’. Though this
shorthand is commonly
used, you should be
aware that it is not strictly
correct.

Unit 6 Subclassing and inheritance

It is a moot point whether
instances of the
HoverFrog class behave
in the same way as
instances of the Frog
class in response to a
message jump(), as
hoverfrogs cannot jump
once they are ‘above a
stone’ (though they jump
identically to frogs from
height zero). For the
purposes of our discussion
we will take the view that
both respond in the same
way.

Exploring the behaviour of the Frog and
HoverFrog classes

We will begin our study of the amphibian class hierarchy by revisiting the attributes and
behaviour of HoverFrog objects and reminding ourselves of the way in which these
relate to the attributes and behaviour of Frog objects.

SAQ 1

Here is a list of the messages we have defined for the Frog class: brown (), croak(),
getColour (), getPosition(), green(), home(), jump(), left(), right(),
sameColourAs (), setColour (), setPosition(), toString(). As you learntin Unit 2,
the HoverFrog class has all these messages in its protocol too. In addition, HoverFrog
objects can respond to the following messages: down (), downBy (), getHeight(),
setHeight (), up(), upBy().

(a) Which messages in the protocol of the HoverFrog class have the same names as
those for the Frog class and result in identical behaviour when sent to an instance of
either class?

(b) Are there any messages which when sent to an instance of HoverFrog result in
behaviour that is different from when the message is sent to an instance of Frog?
If so, which messages are they?

(c) From what you have learnt so far in the course, and from your solutions to parts (a)
and (b), write down a list of the methods that you think will need to be defined for the
HoverFrog class, and a list of additional attribute(s) that will be needed by the
HoverFrog class in order that the new behaviour can be provided.

ANSWER ...

(a) The following messages have the same names, and result in the same behaviour, for
both classes: brown (), croak(), getColour (), getPosition(), green(),
Jump (), left(), right(), sameColourAs(), setColour(), setPosition().

(b) HoverFrog instances behave slightly differently from Frog instances in response to
the messages home () and tosString(). In addition to returning to their original
position, HoverFrog instances will respond to a message home () by reverting to
their original height of 0, and in response to a message toString() they will return
a textual representation which includes details of their height.

(c) The methods that need to be defined for HoverFrog include all those that provide
new or modified behaviour, namely: down (), downBy, getHeight (), home(),
setHeight(), toString(), up() and upBy (). The additional instance variable
needed in order to implement the new and changed behaviour is height.

As a result of SAQ 1 we conclude that several new methods are needed for the
HoverFrog class, and that two methods may need some modification. We now look at
the specification for the Frog and HoverFrog classes.

ACTIVITY 1

Launch Blued and open the project Unit6_Project_1. In the main Blued window, select
Project Documentation from the Tools menu to generate the Javadoc documentation for
the project. When your web browser opens with the Javadoc documentation, click on the
HoverFrog link in the All classes frame at the left of the window. This results in the
documentation for the HoverFrog class being displayed in the main part of the window.

1 Exploring the inheritance hierarchy for the amphibian classes

Scroll down to the Method Summary for the class. Read through this section and make a
note of the methods listed.

Now click on the Frog link in the All classes pane, navigate to the Method Summary and
briefly read through the list of methods for that class.

DISCUSSION OF
ACTIVITY 1

The Method Summary for HoverFrog is reproduced in Figure 2.

Method Summary

woid

dowm ()
If'the height of the receiver is greater than 0 decrements the height of the recetver by 1, otherwise height remamns
unchanged.

woid

dovmBy (int stepChange)
Decreases the height of the receiver by the value of the argument stepChange.

getHeight [}
Returns the height of the receiver.

void|p 0

Resets the recetver to its home position and to a height of 0.

woid

setHeight (int aHeight)
Sets the height of the recetver to the value of the argument aHeight.

Zzring |t oString ()
Eeturns a string representation of the recetver

Flap i)
If'the height of the recetver is less than & increments the height of the receiver by 1, otherwise height remains
unchanged.

woid

upBy int stepChange)]
Increases the height of the receiver by the value of the argument step Change.

Figure 2 Javadoc Method Summary for the HoverFrog class

The Method Summary contains brief descriptions of all the methods corresponding to
the messages that were identified in part (c) of SAQ 1. Because Javadoc is meant to
provide information for other programmers wishing to use the class, private features are
not listed. As the only new instance variable has been defined as private, no list of fields
(instance variables) is shown as the documentation only shows public instance
variables. You can think of Javadoc as providing the ‘public face’ of a class. It shows all
the information needed by a programmer wishing to use the class, but reveals none of
the internal details.

The Javadoc documentation confirms that when defining a new class as a subclass of
an existing class, the only new methods that need to be provided are those that
implement new or different behaviour. The only instance variables that need to be
defined are those necessary to support that behaviour. In the next subsection you will be
looking at the Java code needed to define the HoverFrog class as a subclass of the
Frog class, but before doing that we will return briefly to the Javadoc information
provided for the HoverFrog class, and introduce you to another very important class.

Instance variables are
sometimes referred to in
Java as data members,
data fields or, as in
Javadoc, fields. The terms
‘data member and ‘data
field” are slightly broader in
meaning, as they include
data items which are not
instance variables. You
will learn about these later
in the course.

Unit 6 Subclassing and inheritance

Where the classes are
shown as hyperlinks their
documentation can be
accessed by clicking on
the link.

Generally, if we just say
that a class is a subclass
of another, we mean that it
is a direct subclass.

The class
OUAnimatedObiject has
been written by the M255
Course Team to provide
amphibian and shape
objects with graphical
representations.

If you are interested, the
documentation for
OUAnimatedObiject and
other classes in the OU
class library can be
obtained by selecting OU
Class Library from the
Tools menu in the main
BlueJ window (as you did
in Unit 4).

m The Object class and indirect inheritance

When you first looked at documentation for the HoverFrog class in Activity 1 you may
have noticed the following diagram at the very top of the window.

Class HoverFrog

java.lang.Object
L_java.util.observable

L ou. OUAnimatedObject
Frog

I—l-loverFrog

Figure 3 Inheritance hierarchy for HoverFrog, as shown in the Javadoc documentation

This diagram shows the complete inheritance hierarchy (or tree) for the class, including
classes provided by Java. Each L-shaped link indicates that the class below has been
implemented as a direct subclass of the class above it. So the HoverFrog class is
shown as inheriting directly from the Frog class. At the very top of the tree, is a class
called Obiject. The information preceding the class name tells the reader in which
library the class can be found: it is defined in the main Java language library. In fact,
Object is the progenitor (ancestor) of all other classes in Java. What the diagram as a
whole tells us is that:

> a class called Observable has been implemented as a direct subclass of Object;

> aclass called ouanimatedObject has then been implemented as a direct subclass
of Observable;

> the Frog class has been implemented as a direct subclass of OUAnimatedObject
(OUAnimatedObject is the direct superclass of Frog);

> the HoverFrog class has been implemented as a direct subclass of Frog (Frog is a
direct superclass of HoverFrog).

The corollary of the above information is that Frog is an indirect subclass of both
Object and Observable while HoverFrog is an indirect subclass of Object,
Observable and OUAnimatedObiject. Every class in Java (with the exception of Object
itself) is either a direct or an indirect subclass of Object. Conversely, Object is a direct
or indirect superclass of every other Java class.

As you would expect, a class inherits characteristics — both attributes and behaviour —
from all its superclasses, both direct and indirect. The Object class provides behaviour
that is common to all Java classes. If you look at the section following the Method
Summary for the HoverFrog class in the Javadoc documentation you will see a list of the
methods implementing this behaviour, as well as a list of the methods inherited from
Frog. The methods from the Object class may not mean very much to you at present,
but we will be making use of some of them later in the unit.

You can now close down your browser (though you may like to explore the
documentation a little further to see what it provides). If you are planning to study the
next subsection immediately, you should leave Blued running.

1 Exploring the inheritance hierarchy for the amphibian classes

m How the HoverFrog class is implemented

ACTIVITY 2

If necessary launch Blued and open Unit6_Project_2. Double-click on the HoverFrog icon
to look at its code in the editor. Scroll slowly through the class to get an overview of what it
contains.

DISCUSSION OF
ACTIVITY 2

You will see that the code declares the additional instance variable, height, and all the
methods listed in the Method Summary that we looked at in the previous subsection. You
may also have noticed that all these methods have the access modifier public. The
class also has a header and a constructor.

As this subsection is concerned with the techniques for implementing a subclass in
Java, the following discussion will focus mainly on the parts of the class definition that
are particularly relevant to programming for inheritance. Although we will be
reproducing all the relevant code in the course text, you may want to keep the class’s
definition open in the Blued editor, so that you can see how it all fits together.

In Java, to specify that some new class is to be a subclass of some existing class, the
class header includes the keyword extends followed by the superclass’s name. The
following line declares HoverFrog as a publicly available class, that extends Frog, i.e. it
is a subclass of Frog.

public class HoverFrog extends Frog

This line precedes the first opening brace. The first thing you would normally find inside
the braces for any class definition is the declaration of the variables for the class,
excluding any that have already been declared in its superclass(es).

For the class HoverFrog one additional instance variable, height, of the primitive type
int is declared.

private int height;

In any class definition, the declaration of variables is followed by the constructor (or
constructors). We will defer our discussion of constructors until Section 2, when we
explore their role and implementation in some detail. Next come the method definitions
for the class. For the HoverFrog class a number of methods are required to deal with the
fact that hoverfrogs can change their height: getHeight (), setHeight (), upBy(),
downBy (), down (), up(). As these methods do not use any new techniques, we will not
explore them further. However, you may wish to study their code for your own interest.
More significant are the two methods which were defined in the Frog class, but which
require slightly different behaviour for HoverFrog objects: home () and toString().
Defining a method with the same name and arguments (the same signature) as a
method in a superclass is called overriding.

Java does not insist on
instance variables being
declared at the start of a
class definition, but it's a
common convention to put
them there.

Unit 6 Subclassing and inheritance

How the method home () for HoverFrog is implemented

You have seen in activities in earlier units that the method home () for the HoverFrog
class does what the method home () in Frog does, but in addition it sets the height of its
receiver to 0. The method could therefore have been written as follows:

public void home ()

{
this.setPosition(1l);
this.setHeight(0);

}

Although this would work perfectly well, Java provides a more elegant way of including
the behaviour of a superclass in a method of its subclass, and one which better
expresses the fact that a method is extending the behaviour of an existing, inherited
method from the superclass. The first line of the method body above,
this.setPosition(1), is in fact exactly the same as the code in the method body for
the method home () of Frog. We can therefore replace this line by the statement:

super.home() ;

When the method home () for HoverFrog is executed, this line will result in the execution
of the method home () defined in the Frog class.

So the method home () for HoverFrog (excluding the initial comment) has been written
as:

public void home()
{
super.home();
this.setHeight(0);
}

More generally, like the pseudo-variable this, the pseudo-variable super is used in a
method to refer to the receiver, so that an object can send a message to itself. However,
while the use of this causes the Java Virtual Machine (JVM) to start its search for the
method corresponding to the message in the class of the receiver, the use of super
causes the JVM to start its search for the method in the superclass of the class
containing the method in which super appears. Not as you might think in the superclass
of the receiver.

This means that although the use of super often leads to the invocation of the method
defined for the direct superclass of the receiver, this is not always the case, as
demonstrated by the following example.

Consider the following class hierarchy:

ClassA
ClassB
ClassC

1 Exploring the inheritance hierarchy for the amphibian classes

ClassA and ClassB each have a method called methoda (), defined as follows:

/** method for ClassA */
public int methodA()
{

return 1;

/** method for classB */
public int methodA()
{

return 2;

}
ClassB also has a method, methodB(), defined as follows:

public int methodB()
{
return super.methodA() ;

}

Now consider a ClassC which is a subclass of ClassB and which does not override
either methodA () or methodB().

» When an instance of class ClassC receives a message methodA(), the result
returned is 2. As there is no methodA () defined for ClassC the method defined for
the receiver is the definition of ClassB, which returns 2.

» When an instance of class ClassC receives a message methodB(), the result
returned is 1. The use of the keyword super in the definition of methodB() causes
the execution of methodA () from the superclass of the class in which methodB() is
defined (i.e. ClassA), not from the superclass of the receiver (which would be
ClassB).

In the definition of home () the use of super has not saved us much work, as the code for
the superclass method which it uses is very simple. Nevertheless it makes clear the
inheritance of behaviour from the superclass, and reduces the likelihood of introducing
errors which could result from rewriting code already implemented for Frog.
Furthermore, if the home position of frogs were to be changed, say to 3, then this new
home position would automatically take effect for hoverfrogs, without the need for any
changes to the code of the HoverFrog class. As you work through the course, you will
see the power of super in supporting the reuse of much more complex methods.

Exercise 2

You might think that because HoverFrog inherits the method home () from Frog anyway,
we could just write the method home () for HoverFrog as:

public void home ()
{
this.home();
this.setHeight(0);
}

Can you see a problem with this?

The example has been
kept deliberately simple so
that you can concentrate
on the behaviour of super
rather than the behaviour
of the methods, which is
trivial.

Unit 6 Subclassing and inheritance

For a method to be
executed recursively
without causing infinite
recursion, it must include
code to ensure that it will
eventually stop calling
itself.

S0 (5111 o TR

If a HoverFrog object were to receive a message home () resulting in the execution of
the method body above, it would start by sending a message home () to itself — which
would involve sending a message home () to itself ... and so on! So the method home ()
would be executed again, and again, and again ... and execution would never get past
the first line of the method. Java will continually attempt to execute home () methods until
it runs out of memory. The process whereby a method invokes itself is known as
recursion, or a recursive method call. There are circumstances in which recursion is a
useful programming technique, but this is not one of them! By using the keyword super,
to force invocation of the method home () from the superclass, recursive looping can be
avoided.

How the method toString() in HoverFrog is implemented

As with home (), the method toString() in HoverFrog overrides the method in Frog.
We will start by studying the method in the Frog class, which introduces some elements
of Java that have not been discussed so far. Here is the method, the purpose of which is
to provide a textual representation of a Frog object.

/**
* Returns a string representation of the receiver
*/
public String toString()
{
return "An instance of the class " + this.getClass().getName()
+ ":position " + this.getPosition()
+ ", colour " + this.getColour();

SAQ 2

The method header for toString() has four components: public, String, toString
and (). Explain the purpose of each of these components.

ANSWER ...

> public is the access modifier which specifies which other classes have access to
the method (this is explained in Subsection 1.5).

> String is the return type of the method.
P toString is the name of the method.
» () is the argument list, which is empty in this case.

Now let us look at the method body. We know that the method returns an instance of
String, and you will recall from Unit 3 that + is the concatenation operator for String
objects. So all that the method toString() does is concatenate a number of strings to
form a single string containing the information necessary to describe the receiver of the
message, namely its class name and the names and values of its instance variables.
Three of the strings to be included are literals; they are explicitly specified and will be the
same every time the method code is executed. The other three components are strings
that will result from message-send expressions. We will consider them one at a time.

this.getClass().getName()

The first thing that happens here is that the receiver of the message toString() (an
instance of Frog or one of its subclasses) is sent a message getClass (). This is one of

1 Exploring the inheritance hierarchy for the amphibian classes

the messages that Frog inherits from the class Object. The message returns an object
which represents the run-time class of the receiver (not the actual class itself). This
object is then sent a message getName (), which returns the name of the class as a
String.

this.getPosition()

This message-send simply returns the position of its receiver. As you learnt in Unit 3, the
concatenation operator used with a variable that holds a value of the primitive type int
automatically causes the integer to be converted to an instance of String.

this.getColour();

In this case the colour of the receiver is initially returned. However when the + operator is
used to concatenate an object with a string, the JVM will automatically invoke the
method toString() for that object — in this case to return the colour as a String.

You are now going to define a method toString() for HoverFrog.

SAQ 3

What additional behaviour do you think will need to be added to the method
toString() for HoverFrog?

ANSWER .

It will need to retrieve the value of the height variable, add this to the string that would
be returned by a Frog object with the same position and colour, and then return the
complete string.

Exercise 3

Without looking at the code for the method tostring() in the HoverFrog class, but
using its method home () as a model, see if you can write (on paper) a method
toString() for the HoverFrog class. Your method should include an initial comment
and method header, and should make use of super. (This is a bit tricky, so do not spend
too much time on it.)

ST o] [(1) o FE TR
Here is our method:

/**
* Returns a string representation of the receiver
*/
public String toString()
{
return super.toString() + ", height " + this.getHeight();
}

Your initial comment may not have been exactly the same as ours, but you should have
used the comment style above, to ensure that the information is automatically picked up
by Javadoc.

The method header will be exactly the same as for Frog. The message-send
super.toString() causes the method tostring() defined for the Frog class to be
executed. This will return a string of the form: "An instance of the class HoverFrog:
position aNumber colour aColour", where aNumber and aColour are replaced by
the actual position and colour of the receiver. We then need to concatenate this string
with a string providing information about the height of the receiver.

Unit 6 Subclassing and inheritance

SAQ 4

Suppose we want to define a new public class, ClassB, as a subclass of an existing
class, ClassA. What would be the Java class header for ClassB?

AN S E R
public class ClassB extends ClassA
SAQ 5

Suppose that ClassA and ClassB (as described in SAQ 4) both contain the definition of
a method doSomething(). The code for doSomething() in ClassB is as follows.

public void doSomething()
{
super .doSomething () ; // line (1)
this.doSomethingElse(); // line (2)
}

Suppose now that an instance of ClassB, referenced by myB, is sent the message
doSomething().

(a) Which object(s) do super and this reference at run-time?

(b) When the code super.doSomething() is executed, in which class would the JVM
start looking for the method doSomething()?

(c) When the code this.doSomethingElse() is executed, in which class would the
JVM start looking for the method doSomethingElse()?

ANSWER ...

(a) They both reference the receiver of the doSomething() message — namely the
object referenced by myB (an instance of ClassB).

(b) It would bypass the method doSomething() in ClassB and start looking for a
method doSomething() in ClassA, the superclass of the class implementing the
method in which super.doSomething() appeared. (If there were no method
doSomething() in ClassA, it would look in the superclass of ClassA, and so on up
the class hierarchy).

(c) It would start looking in the class of the receiver, the object referenced by myB. If no
such method existed in ClassB(), it would look in the definition of ClassA(), and so
on up the class hierarchy.

Exercise 4

(@) A method called staggerRight () is required for Frog objects. In response to a
message staggerRight () the receiver should move right twice, jump, then move
left one stone. The following two versions of staggerRight () are under
consideration.

1 public void staggerRight()
{
this.setPosition(this.getPosition() + 2);
this. jump();
this.setPosition(this.getPosition() - 1);

1 Exploring the inheritance hierarchy for the amphibian classes

2 public void staggerRight ()
{
this.right();
this.right();
this. jump();
this.setPosition(this.getPosition() - 1);
}
Which of (1) or (2) do you think best fits the specification for staggerRight ()?

(b) Righty is a subclass of Frog in which the method right () is overridden as follows.

public void right()
{
super.right();
super.right();
}

For each of the implementations (1) and (2) of staggerRight () given above, what is
the final position of wittgenstein after the following is evaluated?

Righty wittgenstein = new Righty();

wittgenstein.staggerRight();
In view of this answer, which of the two implementations of staggerRight () do you
think defines the most ‘appropriate’ behaviour for instances of Righty?

ST o] [(1) o FAE TR

(a) Version two fits the specification best. When making decisions about the
implementation of a method you need to bear in mind the possibility that the
methods executed as part of the body of the method being written may be
overridden by a subclass. The specification for the method staggerRight ()
distinguishes between ‘moving right’ and ‘moving left one stone’. A subclass of Frog
might override its inherited method right (), so that ‘moving right’ entailed
something other than moving one stone, in which case it would be more appropriate
for the subclass to use its own method right () rather than simply incrementing its
position.

(b) For implementation (1), the final position would be 2 (the instance would move two
positions to the right, then one to the left); for implementation (2) it would be 4 (four
positions to the right then one to the left). As argued in part (a), the second version
of staggerRight () gives the most appropriate behaviour, as we would expect an
instance of Righty to move two places to the right in response to each message
right().

The next section explores the role and definition of constructors, after which you will be
in a position to create a new class of your own, but before leaving this section we briefly
discuss the role of access modifiers in Java.

m Access modifiers in Java

In the Java code that you have studied so far, all the instance variables and methods of

classes have been declared as having a particular level of ‘access’, usually public or

private. In Java, access modifiers, as these labels are called, define the extent to

which program components — variables, methods, even classes — can be accessed by

other parts of the program. Access control provides programmers with a tool for Access modifiers cannot

enforcing data hiding and so safeguarding the integrity of data. Java provides four be applied to local
variables or arguments.

Unit 6 Subclassing and inheritance

You may be puzzled by the
fact that a class can be
accessible to the class
that defines it. This is
because it is possible to
define a class (known as
an inner class) in another
class. However this is
beyond the scope of this
course.

levels of access which can be applied to variables, methods and classes when they are
defined:

> private: accessible only from within the instance methods of the class which
defines them:;

» protected: accessible from within the instance methods of the class which defines
them; from instance methods of any subclasses of that class (regardless of where
they are used) and from the instance methods of classes that are in the same
package (library of related classes);

P public: accessible to all classes of objects in the system;

P if the programmer does not specify an access modifier the access defaults to
‘package access’ which provides access to the instance methods of the class that
defines it and to the instance methods of the other classes in the package that
contains that class, but not to subclasses of that class which are in a different
package. If we were listing the levels of access in order from the most to the least
restrictive, ‘package access’ would come between private and protected.

We will not be creating our own packages in M255, and will not need to deal with
protected or package access in detail, though we will be using packages provided by
the Java system. We are simply mentioning all four levels of access in case you
encounter references to these in the Java documentation.

To use access modifiers effectively the designer of a program needs to have a very clear
idea in advance of the role that different classes will play in the system, as restricted
access may cause unanticipated problems later in the development process. For
example, an instance of an unplanned subclass (or any other subclass for that matter!)
will not be able to execute inherited methods declared as private in its superclass.
In order to avoid problems of this nature as we build on our classes, in M255 we will
generally be making all our methods public, at least in the early stages of the course.

However, you will have noticed that we have designated our instance variables as
private. This does not prevent other classes from getting or changing their value, as
we have provided publicly available getter and setter messages for each instance
variable, but it does serve to protect their integrity. Suppose, for example, that we had
made the instance variables of the Frog class public, thus allowing them to be
accessed directly (without using the getter and setter methods). This would enable
objects of other classes to change the value of a Frog object’s position or colour
variable without also informing any observing user interface that a change had
occurred. This would result in a situation where a user interface no longer reflected the
true state of the instance. By forcing users to modify the instance variables of objects via
their public setter methods, we ensure that this access is properly managed.

Another reason for restricting access to methods and variables is simply to hide them
away. It may be that a method is needed only to carry out a subtask for some other
method in the same class, such as performing a calculation, or checking some user
input against details held on file. There is no reason for objects of other classes to
access such methods, which are sometimes referred to as helper methods, and it is
safer if they are prohibited from doing so. If objects of other classes have access to
unnecessary details of implementation there is a temptation for these classes to be
written in an implementation-dependent way, i.e. in a way which relies on this detail. This
imposes constraints on the original class, which cannot be modified without the risk of
causing dependent classes to stop working.

2 Constructors

Constructors

Unit 4 introduced you to constructors as a way of initialising newly created objects.

In this short section we explain a little more about the role and implementation of
constructors, so as to equip you with the tools and understanding you will need to write
constructors of your own.

You will recall from earlier units that a new instance of a class can be created and
initialised by invoking the constructor for the class, preceded by the Java keyword new.
For example, to create a newly initialised instance of the Frog class referenced by the
variable aFrog, we would write:

Frog aFrog = new Frog() ;

As explained in Unit 3, the operator new first creates a Frog object and the code of the
constructor Frog () is then executed to set the instance variables of the new Frog object
to their initial values (1 and OUColour .GREEN).

When Java encounters new it expects a constructor to follow and constructors can only
be used in conjunction with the operator new. A newly created instance of a class does
not necessarily need to be assigned to a reference variable, of course; it can also be
used as a message argument, or in any other situation where an object of that type is
required. In the following message-send, for example, an existing instance of Frog,
referenced by the variable kermit, has its colour instance variable set to the same
value as that of a newly initialised Frog object.

kermit.sameColourAs(new Frog())

Implementation of constructors and the
role of super ()

All classes must have at least one constructor, though they may define more than one,
as you will discover later in the unit. So how do you write the code for a constructor? The
constructor for the Frog class, which is reproduced below, will serve as an example.
/**
* Constructor for objects of class Frog which initialises
* colour to green and position to 1
*/
public Frog()
{
super();
this.colour = OUColour.GREEN;
this.position=1;

}

At first glance, the code for a constructor looks much like that for a method, but the role
of a constructor is rather different. Most significantly, the execution of a constructor does
not result from a message being sent and, as you have already seen, a constructor must
always be preceded by the keyword new. The syntax for a constructor differs from that of
a method in a number of ways.

Unit 6 Subclassing and inheritance

Exercise 5

Study the header of the constructor for the Frog class and identify three ways in which it
differs from all the method headers that you have seen so far.

S To] (1) (o] o U ESERER
P> It has the same name as the class.

» The name of the constructor starts with an upper-case letter, unlike method names,
which conventionally start with a lower-case letter. (This is a consequence of it
having the same name as the class, of course, as class names start with upper-case
letters!)

» It has no return type.

These three features are characteristic of all constructors.

Now let us explore the constructor body. As explained in Unit 4 the second and third
lines of code initialise the instance variables defined for the newly created object. Frog
objects have two instance variables, colour and position, and these are set to
OUColour.GREEN and 1, respectively. The first line of code is:

super();

You saw earlier in the unit that the keyword super in a method body represents the
receiver of the message which follows it, as in the example super.home (). But in the
constructor code no message name is given, and super is followed directly by an
argument list (), albeit an empty one in this case. So what is going on? In Java super
has more than one purpose. Here it is being used as an instruction to execute the
constructor with no arguments from the direct superclass of the class being defined, so
that any instance variables inherited from the direct superclass are initialised. All
constructors must start by executing a constructor from their direct superclass. If the
programmer omits to include code to do this, Java will call the zero-argument
constructor of the superclass by default. But we strongly encourage you to include
explicit code, so as to remind yourself of the automatic initialisation of variables from
the superclass.

As all constructors invoke the zero-argument constructor of their direct superclass, a
superclass constructor will, in its turn, invoke the zero-argument constructor of its
superclass, and so on up the hierarchy to Object, thus ensuring that instance variables
inherited from both direct and indirect superclasses are initialised. The process whereby
constructors use super () to invoke each other up the hierarchy is known as
constructor chaining. After super () a constructor should include code to initialise the
instance variables particular to the class being defined, or to initialise inherited instance
variables in a way which differs from their initialisation in the superclass.

The constructor for the Frog class has no arguments, but many constructors do, as you
will see when we write a new constructor for the Account class. In the case of the Frog
constructor no arguments are needed, as all instances of the Frog class are initialised to
have the same state.

We have said that if the programmer fails to write a constructor, Java will supply a default
constructor at run-time, which will execute the constructor of the superclass. It will also
set any additional instance variables to default values of the appropriate type, known as
the standard default values. For primitive types the default values provided are false
(for Booleans) and 0 or 0.0 (for numeric types); for object types Java assigns a
standard default value of null, a Java keyword indicating that the variable does not
currently hold a reference to any object. But default initialisation is rarely adequate. For

all practical purposes you should assume that a constructor must be provided by the
programmer for every class.

However to aid the programmer, when you create a class in Blued, the class template
includes a default constructor which simply invokes super ().

Exercise 6

Without looking at the code in Blued, write (on paper) a constructor for the HoverFrog
class. Remember that HoverFrog instances are initialised in the same way as Frog
instances, but that in addition their height variable is set to 0. You need not include an
initial comment.

ST o) [0 (1) o FAE TR

public HoverFrog()
{
super () ;
this.height =0;
}
This is very similar to the constructor for Frog (). The call to super () here will cause the

constructor for the Frog class to be executed, which will in turn execute the constructor
for OUAnimatedObiject, and so on up the class hierarchy.

You have now learnt everything you need in order to define a simple class as a subclass
of an existing class. The box below gives an outline of what is required, using the
HoverFrog class as an example.

Defining a subclass

Specify that the class is a subclass of an existing class using the Java keyword We have omitted initial
comments from the
methods in this outline, but
you should always include
them when defining

extends:

public class HoverFrog extends Frog

Declare any additional instance variables needed by the new class: methods in BlueJ —not
least so that their
. . e specification is picked up
private int height by Javadoc.

Modify the constructor for the new class, provided by the class template, to initialise
the instance variables:

public HoverFrog()
{

super();
this.setHeight(0);
}

Define any completely new methods for the class (i.e. methods which do not appear
in the superclass).

For HoverFrog these are getHeight (), setHeight (), down(), up(), upBy(),
downBy ().

Unit 6 Subclassing and inheritance

Define any methods that override inherited ones, i.e. methods which have the same
name and arguments as methods in the superclass, but which implement different
behaviour. These methods may (but do not always) invoke the method from the
superclass, using the keyword super.

public void home ()

{
super.home() ;
this.setHeight(0);

}

public String toString()

{
return super.toString() + ", height " + this.getHeight();

m Constructors and overloading

In Section 3 you will apply what you have learnt to implement a new class as a subclass
of Account, but first we will revisit the constructor for the class Account, and introduce
you to the important new concept of overloading.

Defining an additional constructor for Account

Here is the existing constructor for the class Account.

/**
* Constructor for objects of class Account
*/
public Account()
{
super(); // optional
this.holder ="";
this.number ="";
this.balance =0.0;
}

The constructor for Account is very similar to those for Frog and HoverFrog. As with
those classes we have arranged for all the instances of the class to be initialised in an
identical manner. All newly initialised instances of the Frog class have colour set to
green and position set to 1. All newly initialised instances of the Account class have
balance set to 0.0, and holder and number set to empty strings. Our initialisations for
Account objects, although ensuring that values of appropriate types are provided, are
not a very good representation of the behaviour of accounts in the real world. When
opening a bank account, it is usual to allocate an account number and the name of the
account holder at the time the account is created; very often an initial deposit is required
too. These will clearly differ from account to account, so it would be convenient if we had
a constructor which was flexible enough to use different initialisation values for different
Account objects.

2 Constructors

SAQ 6

From your study of methods, what do you think could be added to a constructor so that it
could be used to initialise Account objects differently on different occasions?

ANSWER ..

Adding arguments would enable a constructor to use different initialisation values on
different occasions.

Just as methods are often defined to have arguments, so are constructors. In fact,
constructors without arguments are, if anything, the exception. Here is a constructor with
arguments for the class Account.

/**
* Constructor for objects of class Account which sets the values of
* the holder, number and balance of the receiver to the
* arguments holderName, accountNumber and anAmount respectively.
*/
public Account (String holderName, String accountNumber, double anAmount)
{
super(); // optional
this.holder = holderName;
this.number = accountNumber;
this.balance = anAmount;

In this version of the constructor the three instance variables are initialised to the values
provided via the arguments.

Exercise 7

Why do you think that we have chosen to implement the number instance variable,
representing the account number, as a string rather than an integer?

ST 0] 11111 o T

Although an account number is made up of numeric characters, its role is that of an
identifier rather than a number. It is unlikely that it will be used in calculations, so it is
more appropriate to implement it as a String object. When displaying or printing out
numbers, most programming languages omit leading zeros, so that an account number
such as 002356 stored as an int would be incorrectly displayed as 2356. This problem
would not arise in the case of a String, where all the characters would be preserved.

Exercise 8

Write down a Java statement to declare a variable, anAccount, of type Account and
assign to it a newly created instance of the Account class.

The new account should have holder set to "Josie Bloggs", number setto "121244"
and balance set to 500.0.

Unit 6 Subclassing and inheritance

As you have already
learnt, the combination of
a method’s name and the
number and types of its
arguments is known as its
signature. For a given
class, a method can be
uniquely identified by its
signature.

S0 (5111 o TR

Account anAccount = new Account ("Josie Bloggs", "121244", 500.0);

Did you remember to include the quotation marks around the strings?

ACTIVITY 3

Open Unit6_Project_3 in BlueJ and make a copy by selecting Project | Save As from the
menu bar and rename the project as Unit6_MyAccounts. The new project name should
appear at the top of your Blued window. Open the editor on the Account class and add
the new constructor (shown just below the answer to SAQ 6) directly after the existing
constructor. (Do not delete the existing constructor.) Compile the class and then generate
project documentation for the class to check that both constructors are listed.

Now open the OUWorkspace and use each constructor to create a number of instances
of the Account class, assigned to variables of the appropriate type. Inspect the Account
objects to see if their instance variables are initialised in the way you expect. Satisfy
yourself that the accounts you have created with the new constructor respond correctly to
other messages in the protocol of Account.

DISCUSSION OF
ACTIVITY 3

You should have found that the modified Account class containing the two different
constructor definitions compiled successfully, and that both constructors could be used
to create Account objects which responded in the same way to all the messages in the
protocol of the class.

If you plan to continue working without a break, keep the Unit6_MyAccounts project
open in Blued, as you will be using it in the next section. If you could not get your project
to work as expected, you can catch up in Activity 4 by using Unit6_Project_4 which
includes both constructors.

Itis the norm in Java (and some other object-oriented languages) to have more than one
constructor, with different numbers of arguments — none, one, two, three or more — or the
same number of arguments but with different types. Programmers creating instances of
the class can choose the constructor which best suits their purpose. Similarly it is
possible for a class to have two or more methods with the same name but different
numbers or types of argument. We have already seen an example of this in the Frog
class, which has two sameColouraAs() methods, with the following signatures:

sameColourAs (Frog)
sameColourAs (Toad)

The situation where a class has two or more constructors or methods with the same
name but different signatures, is known as overloading. In such a situation, it is the
number and types of the actual arguments provided which determines which
constructor or method is executed. You will learn more about overloading in Unit 7.

3 A subclass for Account

A subclass for Account

Now that you have seen what is involved in defining a simple subclass, and in writing
constructors, we can return to the class Account for which you are going to define a
subclass called CurrentAccount. Current accounts will allow their holders to be
overdrawn up to a specified credit limit, and will have a PIN number for security. The
class will have all the instance variables and methods of the Account class, but will have
two additional instance variables (representing the credit limit and the PIN number),
some additional behaviour, and one or more methods that behave differently from the
method with the same name in the Account class. This section will guide you through
the implementation of the new class by way of a number of practical activities. Writing
the CurrentAccount class will be a fairly lengthy process and you may wish to break off
from your studies between activities or during a particular activity. If you do this, make
sure that you save the work you have completed so far, by selecting Project | Save from
the Blued menu. If, at the end of a particular activity, you plan to continue working
through the section, you should keep your current project open in BlueJ.

m Creating a new class in BluedJ

ACTIVITY 4

If you successfully completed Activity 3, open your Unit6_MyAccounts project in BlueJ.
(Otherwise, use Unit6_Project_4 which contains the code from the previous activity.)

1 Regenerate the documentation for the project and scroll through the Constructor and
Method summaries for the class Account to remind yourself of its constructors and
methods. If you are using Unit6_MyAccounts you should ensure that you have added
the additional constructor discussed in Subsection 2.2.

2 Select the main Blued window and click the New Class button. A window will open
with a number of radio buttons and a prompt for the name of the class. Enter
CurrentAccount into the text box, make sure that the top radio button (Class) is
selected, and click Ok. A rectangle representing the new class should appear in the
main BluedJ window.

3 Double-click on the CurrentAccount icon to open the editor. You will see that the
editor provides you with a template for a new class. Replace the commented section
at the top of the page with a short description of the class, together with your name
and the version number and date. Complete the class header:

public class CurrentAccount // etc.

to indicate that this class will be a subclass of Account, and then click the compile
button at the top of the window. If the class compiles correctly, you will get a message
in the small pane at the bottom of the editor window which reads: Class compiled —
no syntax errors, confirming that you have not introduced any errors!

4 Regenerate the project documentation and check that all the methods inherited from
Account are available.

Unit 6 Subclassing and inheritance

DISCUSSION OF
ACTIVITY 4

The required class header is:

public class CurrentAccount extends Account

It must be exactly like this to ensure that your class inherits all the necessary instance
variables and methods from Account, so even if your class compiled with a different
header go back and correct it. Once you have the correct class header, you should be
able to see from the project documentation that CurrentAccount inherits all the
behaviour of Account.

If you need to take a break at this stage, make sure that you save your project by
selecting Project | Save from the Blued menu bar before leaving your computer or
closing down Blued.

We are now going to lead you through the completion of the class. After completing
each stage you should compile the class to ensure that your code is syntactically correct
and consistent so far. You might also want to create one or more instances of
CurrentAccount in the OUWorkspace to check that the code executes without
problems and implements the intended behaviour. Remember that syntactically correct
code does not guarantee problem-free execution and that code can execute correctly
without achieving the expected results.

Declaring instance variables and defining
accessor methods

ACTIVITY 5

If you successfully completed Activity 4 using your Unit6_MyAccounts project, carry on

using that, otherwise open Unit6_Project_5 to which we have added the code from the

previous activity.

1 Here is a declaration for the additional instance variables needed for instances of the
CurrentAccount class. Add these to the class in the place specified in the template.
Then check that the class compiles.

private double creditLimit;
private String pinNo;

2 Now write getter and setter methods for both new instance variables to match the
initial comments and method headers given below. Add the methods, including the
comments, to your class, checking that it compiles without errors after the addition of
each new method.

/**
* Returns the creditLimit of the receiver
*/

public double getCreditLimit ()

/**
* Sets the new creditLimit of the receiver to the
* argument alLimit
*/

public void setCreditLimit(double alLimit)

3 A subclass for Account

/**
* Returns the pinNo of the receiver
*/

public String getPinNo()

/**
* Sets the new pinNo of the receiver to the argument aPin
*/

public void setPinNo(String aPin)

DISCUSSION OF
ACTIVITY 5

1 As usual, we have made the instance variables private so that instances of other
classes can access them only by using publicly available messages. We need only
define the two variables specific to the CurrentAccount class as the other three —
holder, number and balance — will be inherited from the Account class.

2 Here is our code for the getter and setter methods (excluding the initial comments):

public double getCreditLimit ()
{

return this.creditLimit;

public void setCreditLimit(double alimit)
{

this.creditLimit = aLimit;

public String getPinNo()
{

return this.pinNo;

public void setPinNo(String aPin)
{
this.pinNo = aPin;
}
Your methods should have been very similar, if not identical, to ours. Note that these

methods are for illustrative purposes only, in the real world getting and resetting a PIN
number would require a number of security checks!

SAQ 7

In the CurrentAccount class we have declared the instance variable pinNo as being of
type string. Can you think why we have done this rather than declaring it as type int?

ANSWER .

In the real world, PIN numbers can begin with a zero, for example 0987. If we declared
the instance variable pinNo to be an int rather than a String, instances of
CurrentAccount would not be able to have PIN numbers beginning with zero.

Unit 6 Subclassing and inheritance

m Writing the constructors

When you create a new class, Blued provides a zero argument default constructor,
consisting simply of the code super ().

SAQ 8

If a CurrentAccount object were created using this default constructor, what initial
values would be assigned to the instance variables holder, number, balance,
creditLimit and pinNo?

ANSWER ...

The inherited instance variables, holder, number and balance would be initialised to
mromeand 0.0, respectively, as for instances of Account. The two new instance
variables would be initialised with the standard default values: 0.0 for creditLimit and
null for pinNo. In the next activity you will modify the constructor for CurrentAccount
to ensure that both the additional variables are correctly initialised.

ACTIVITY 6

Either using your Unit6_MyAccounts project, or Unit6_Project_6 to which we have added
the code from the previous activity, modify the constructor for the CurrentAccount class,
to initialise creditLimit to 0.0 and pinNo to "0000", after the call of super().

Hint. You may wish to refer to the constructor for HoverFrog discussed in Subsection 2.1.

Check that your modified class compiles without errors.

DISCUSSION OF
ACTIVITY 6

Here is our modified constructor:

/**
* Constructor for objects of class CurrentAccount.
*
/
public CurrentAccount ()

{

super () ;
this.creditLimit =0.0;
this.pinNo = "0000";

}

We are using ‘pattern’ here in a very broad sense, applicable to all aspects of
programming. The term is also used more specifically to refer to specific classes
designed to address a particular kind of programming problem.

This uses the same pattern as that employed by the constructor for the HoverFrog
class. Recognising and reusing patterns in the structure of code is an important part of
programming, and is of particular value when you are learning to program.

3 A subclass for Account

SAQ 9

Now that you have modified the constructor, you can create properly initialised
instances of CurrentAccount and explore their behaviour by sending them messages.

Write down all the messages to which you expect CurrentAccount instances to
respond at this stage.

ANSWER ..

getHolder (), setHolder (), getNumber (), setNumber (), getBalance(),
setBalance(), getCreditLimit (), setCreditLimit (), getPinNo(), setPinNo(),
credit(), debit(), transfer().

At this stage instances of the class can respond to all the same messages as instances
of its superclass. (It can also respond to messages for which methods are defined in its
indirect superclass, Object — but we did not expect you to include these.) If you could
not remember all the messages from the protocol of Account, you could have looked
them up in the project documentation for Account or CurrentAccount.

ACTIVITY 7

Here is an additional constructor for the CurrentAccount class, similar to the second
constructor defined for the Account class, but with two additional arguments
representing the credit limit and the PIN number.

/**
* Constructor for objects of class CurrentAccount, which
* sets the values of holder, number, balance, creditLimit
* and pinNo to the arguments holderName, accountNumber,
* anAmount, alimit and aPin respectively
*/
public CurrentAccount (String holderName, String accountNumber,
double anAmount, double alimit, String aPin)

super (holderName, accountNumber, anAmount) ;
this.creditLimit = aLimit;
this.pinNo = aPin;

}

Either using your Unit6_MyAccounts project, or Unit6_Project_7 to which we have added
the code from the previous activity, add this constructor to the CurrentAccount class
directly after the first constructor and recompile the class.

You are now well on the way to completing your new class. To check that everything is
going to plan, create a couple of new instances of CurrentAccount in the OUWorkspace
(one using each constructor) and assign them to appropriately declared variables.
Inspect the instances to check that their instance variables have been initialised in the
way you expect. Then send them the messages listed in SAQ 9 to check that they all
work.

Are there any messages that do not correctly implement the behaviour of current
accounts, as briefly described in the opening paragraph of Section 3?

_ Unit 6 Subclassing and inheritance

DISCUSSION OF
ACTIVITY 7

This new constructor follows a similar pattern to the constructors you have seen so far. The
first line of code is slightly different in that it causes the JVM to execute a superclass
constructor with arguments. The three inherited instance variables are initialised by the
superclass constructor, leaving initialisation of the remaining two variables to this constructor.

If you have followed all the stages above, and have not introduced any syntax errors into
your class, you should find that you are able to send all the messages to your
CurrentAccount objects without causing any errors. However, two of the messages do
not work as required for current accounts. Because holders of current accounts are
allowed to go overdrawn, the methods debit () and transfer () need to allow this. We
will remedy this in the next subsection.

Modifying the behaviour of the
CurrentAccount class

ACTIVITY 8

For this activity, use either your own Unit6_MyAccounts project, or Unit6_Project_8 to
which we have added the code from the previous activity

1 Holders of current accounts are allowed to withdraw up to the combined total of their
balance and their credit limit. So, for example, if | have 350.50 in my current account,
and a credit limit of 500.00, | can withdraw up to 850.50. Add a new method to your
class, called availableToSpend(), which calculates and returns the maximum
amount available for withdrawal from a current account. Here is the initial comment
for the method.

/**

* Calculates and returns the amount available to spend,

* the total of the receiver’s balance and creditLimit

*/
Recompile your class and test your method by sending some
availableToSpend() messages to instances of CurrentAccount with different
balances. Compiling and testing your code after each modification will make it much
easier for you to identify any errors.

2 Once you are satisfied that your method availableToSpend () is working correctly,
add to your class a debit () method which should have a single double argument. For
current accounts, the amount that can be debited depends not just on the balance of the
account, but also on the total amount available for withdrawal, so your method will need
to execute availableToSpend () as part of its code. Your debit () method should
return true or false, depending on the success of the transaction, and you should
include an initial comment. Once your method compiles successfully, declare, in the
OUWorkspace, a variable of type CurrentAccount and assign to it a CurrentAccount
object. Test that debit () works correctly by sending debit () messages to the
CurrentAccount object in situations where the amount to be debited is:

» less than the balance;

» greater than the balance but within the credit limit;
» equal to the combined balance and credit limit;

» greater than the combined balance and credit limit.

3 A subclass for Account

3 Now send some transfer () messages to transfer money between two current
accounts and check that they work correctly in situations similar to those outlined in
part 2. Can you explain why transfer messages work correctly, even though you have
not overridden the method transfer() in CurrentAccount?

DISCUSSION OF
ACTIVITY 8

1 Here is our method availableToSpend() (excluding the initial comment).

public double availableToSpend()
{

return(this.getBalance() + this.getCreditLimit());
}

There are other versions that would work using direct access of instance variables,
but that is discouraged in M255.

2 Here is our method debit () for CurrentAccount.

/**
* If the amount available to spend (the balance and the creditLimit)
* is greater than or equal to the argument anAmount, the balance of
* the receiver is debited by anAmount and the method returns true.
* If the amount available to spend is less than the argument
* anAmount, the method simply returns false.
*/
public boolean debit (double anAmount)
{
if (anAmount <= this.availableToSpend())
{
this.setBalance(this.getBalance() — anAmount) ;
return true;
}
else

{

return false;

}

This method is very similar to its counterpart in the Account class. The only
difference is that the amount to be debited is compared with the total available for
withdrawal, rather than just the balance.

Note this is an example of a method that overrides an inherited method without
using super in its first line to cause the execution of the inherited method

(i.e. super.debit (anAmount)). This is because we do not want the behaviour of the
overriding method to include the behaviour of the method defined in the superclass.

In a real banking system it might be decided to make availableToSpend() a
private helper method, accessible only to instances of CurrentAccount. As
explained earlier we will be making most of our instance methods public, so as to
allow more scope for extending our classes.

3 You should have found that transfer () messages now work correctly. This is
because transfer () uses debit() to check whether there are sufficient funds for
the transfer to take place. Now that debit () has been overridden and behaves
appropriately for the CurrentAccount class there is no need to make any
modification to transfer ().

Unit 6 Subclassing and inheritance

Note that although the code for transfer () has been defined in the Account class,
when a message transfer () is sent to an instance of CurrentAccount, the code
this.debit (anAmount) that appears in the method transfer() causes the
debit () method in CurrentAccount to be executed because the JVM will start the
search in the class of the receiver of the message debit (), which is
CurrentAccount.

You have now created a fully working CurrentAccount class. This may be the first class
that you have ever written from scratch, and, if so, it has probably taken you some time to
get all the code working. However, you should have noticed that we were able to save a lot
of effort by building on the code that had already been written. In guiding you through the
implementation of the class, we have encouraged you to make maximum use of existing
methods from the Account class, and even where you have needed to write additional
code, it has followed patterns that you have seen in other classes. This is a strategy that you
should aim to adopt as you continue working through the course — reuse existing classes
and methods where possible, copy or adapt well-tried patterns otherwise. It is very rare that
you will need to work out how to solve a programming problem entirely from scratch.

Additional behaviour for
CurrentAccount

Before leaving the CurrentAccount class we will discuss three further methods. These
will provide additional functionality to instances of the class and give you the opportunity
to revise some of the ideas you learnt earlier in the course. The first of these,
checkPin(), is a method to check a PIN number entered by the account holder against
the PIN stored in the account. (The way in which the PIN is entered need not concern
us.) If the string entered by the user, which will be passed as an argument to the
method, matches the stored PIN, the method returns true; otherwise it returns false.

SAQ 10

What should be the return type of the method checkPin()?

ANSWER ...
The method should return a value of the primitive type, boolean.

SAQ 11

(a) Suppose you create two String objects, aString and bString, as follows:
String aString = new String("hello");
String bString = new String("hello");
What values will be returned by each of the following two lines of code when they are
executed?
aString.equals(bString);
aString == bString;
(b) Suppose now that you execute the following statement:

aString = bString;

What values will be returned by each of the following two lines of code when they are
executed?

aString.equals(bString);
aString == bString;

3 A subclass for Account

ANSWER . L

(a) The message expression aString.equals(bString) will return true because
asString and bString reference objects of the same class with the same state.

The message expression aString == bString will return false because aString
and bstring do not refer to the same instance of String, they have been created
as distinct objects.

(b) The message expression aString.equals(bString) will return true because
aString and bString still refer to objects of the same class with the same state
(actually it's the same object!).

The message expression aString == bString will return true because we have
set the two variables to refer to the same instance of String.

When comparing two strings to see if they have the same state you should always
use the method equals().

ACTIVITY 9

Either using your Unit6_MyAccounts project or Unit6_Project_9 to which we have added
the code from the previous activity, write the method checkPin (). Here is the initial
comment and method header.

/**
* Returns true if the pinNo of the receiver matches the
* argument aPin, false otherwise.
*/

public boolean checkPin(String aPin)

DISCUSSION OF
ACTIVITY 9

Here is our code for the method checkPin().

public boolean checkPin(String aPin)

{

return this.getPinNo().equals(aPin);

As explained in Unit 5 the role of equals() is to compare two objects and check that
they are ‘equivalent’. This is generally interpreted to mean that they are instances of the
same class, with the same state (that is, with instance variables set to the same values or
referencing objects with the same state). In the case of the method checkPin(), the
message equals () will check that pinNo and aPin are of the same class (in this case
String), that they have the same number of elements (in this case four) and that they
contain the same characters in the same order. If all these conditions are met the
method will return true, otherwise it will return false.

The method equals () should not be confused with the == operator, which, for objects,
tests whether two variables reference the same object.

Our next method for the CurrentAccount class will display some of the details of a
current account.

Unit 6 Subclassing and inheritance

ACTIVITY 10

Either using your Unit6_MyAccounts project or Unit6_Project_10 to which we have added
the code from the previous activity, write the method displayDetails() for
CurrentAccount. The method should take no arguments and should return nothing.
The body of the method should simply print to the Display Pane (using
System.out.println()) the values of the receiver's holder, number and balance
instance variables. Here is the initial comment and method header.

/**
* Prints to the Display Pane the name, number and the balance
* of the receiver.
*/

public void displayDetails()

Once you have got your method to compile, regenerate the project documentation for the
project and check that it shows both the constructors and all the methods for
CurrentAccount.

DISCUSSION OF
ACTIVITY 10

Here is our version of the method displayDetails().

public void displayDetails()

{
System.out.println("Name: " + this.getHolder());
System.out.println("Account No: " + this.getNumber());
System.out.println("Balance: " + this.getBalance());

}

The method constructs the necessary output strings by using the concatenation
operator. The methods getHolder () and getNumber () return strings. As with the
primitive type int, the concatenation operator will cause Java to perform an automatic
conversion of the double value returned by getBalance(), SO no explicit type
conversions are necessary.

In implementing the checkPin() method for CurrentAccount the code made use of an
equals() message to test whether two String objects were equivalent. All objects
inherit equals() from the class Object, however this inherited method just tests for
object identity (i.e. returns true if the receiver and the argument are the same object),
just like the == operator. In the string class this inherited method has been overridden
to return true if the receiver and the argument have the same state, i.e. if they both hold
the same characters, in the same order. In the final activity in this section you will define
equals () methods for the classes Account and CurrentAccount. The next SAQ and
activity will lead you through the implementation of this method for Account.

SAQ 12

Two instances of the class Account are referenced by myAccount and yourAccount.

(a) Write down a Java expression which will evaluate to true if the balances of the two
accounts are the same, and false otherwise.

(b) Write down a Java expression which will evaluate to true if the two accounts have
the same account number, and false otherwise.

(c) Write down a Java expression which will evaluate to true if the balances and the
account numbers of the two accounts are the same, and false otherwise.

3 A subclass for Account

ANSWER .

(a) myAccount.getBalance() == yourAccount.getBalance()

The values of any two primitive types (such as double) can be compared using the
== operator.

(b) myAccount.getNumber () .equals(yourAccount.getNumber ())

As you saw in the previous subsection, the states of two String objects can be
compared using the message equals(). In this case, an equals() message with a
string argument that represents the account number of yourAccount, is sent to the
string that represents the account number of myAccount.

(C) myAccount.getBalance() == yourAccount.getBalance()
&& myAccount.getNumber () .equals(yourAccount.getNumber())

As you learnt in Unit 3, two Boolean expressions can be combined to create a
compound expression using the logical operator &s.

The answers to SAQ 12 show you how the values of the balance and number instance
variables of two Account objects can be compared for equality. When writing an
equals () method for the Account class we would also need to compare the values of
the receiver and argument’s holder instance variable.

ACTIVITY 11

For this activity, use either your own Unit6_MyAccounts project or Unit6_Project_11 to
which we have added the code from the previous activity.

Open the Account class in the Blued editor.
Here is the initial comment and header for a public method equals () for the Account class.

/**
* Returns true if receiver is equivalent to (has the same
* state as) the argument anAccount, false otherwise.
*/

public boolean equals(Account anAccount)

Write the equals () method for the Account class using the expression given in part (c)
of the answer to SAQ 12 as your starting point.

Once you have got the class to compile successfully, create some instances of Account
in the OUWorkspace and check that your method works correctly.

DISCUSSION OF
ACTIVITY 11

Here is our solution (excluding the initial comment).

public boolean equals(Account anAccount)
{
return this.getBalance() == anAccount.getBalance()
&& this.getNumber () .equals(anAccount.getNumber())
&& this.getHolder().equals(anAccount.getHolder());
}

The method body differs from the expression given in the answer to SAQ 12 in that we
have added a check on the equality of the holder instance variables and returned the
result of evaluating the complete expression.

We can now make use of the method equals() in the Account class defined in
Activity 11 to define a method equals() for CurrentAccount.

Unit 6 Subclassing and inheritance

ACTIVITY 12

For this activity, use either your own Unit6_MyAccounts project or Unit6_Project_12 to
which we have added the code from Activity 11.

Open the CurrentAccount class in the Blued editor.
Here is the header for a method equals() for CurrentAccount.
public boolean equals(CurrentAccount anAccount)

Write the code for this method. You will first need to send an equals() message to
super, With anAccount as the argument to check the inherited instance variables
(holder, number and balance) for equality. Once that is done you can then compare the
pinNo and creditLimit of the receiver and argument for equality.

Test your method in the OUWorkspace with a number of pairs of CurrentAccount
objects.

DISCUSSION OF
ACTIVITY 12

Here is our solution.

/**

* Returns true if receiver is equivalent to (has the same

* state as) the argument anAccount, false otherwise
*/
public boolean equals(CurrentAccount anAccount)
{
return super.equals(anAccount)
&& this.getCreditLimit () == anAccount.getCreditLimit()
&& this.getPinNo() .equals(anAccount.getPinNo());
}

In case you have had difficulty with this activity, we have provided a complete
implementation of the class CurrentAccount in the project Unit6_Project_12_50l.

4 Revisiting the amphibian hierarchy

Revisiting the amphibian
hierarchy

When we discussed the amphibian classes in Section 1, we avoided any mention of the
Toad class. Yet it is quite clear that Toad objects share many of the characteristics of
Frog and HoverFrog objects. In particular, instances of Toad have exactly the same
attributes (instance variables) as instances of Frog and share much of the same
behaviour. Would it have been possible to implement Toad, like HoverFrog, as a
subclass of Frog, thus saving ourselves some coding work, and making clear the
similarities between the two classes? In this section we examine further the similarities
and differences of the various amphibian classes with a view to incorporating the Toad
class into the same hierarchy as Frog and HoverFrog. We will start by considering the
question posed above: would it be possible to implement Toad as a subclass of Frog?
Let us address this question by first reminding ourselves of the criteria by which we
decide whether a new class should be implemented as a subclass of an existing class.

Generalising from the discussion of the Frog and HoverFrog classes in Unit 2, we can
say that it is appropriate to develop a new class as a subclass of an existing one if the
new class needs to have all the features of the existing class, but extends or modifies it
in some way. It might add extra instance variables or methods, or redefine (override) one
or more of the existing methods so that they respond in a different manner. (Of course, it
could be a combination of such changes.)

The key point to note is that a subclass will inherit everything in its superclass — it can
add things and it can change things but it cannot choose not to inherit a particular
feature it does not require.

Both the inheritance relationships that we have already discussed in this unit, Frog/
HoverFrog and Account/CurrentAccount, meet the criteria discussed above.

Exercise 9

Using the criteria outlined above, consider whether the Frog class is an appropriate
superclass for the Toad class.

S Y0) V1170) o WO

You should have concluded that this would not be appropriate. Although most of the
criteria are met, instances of Toad class do not respond to the message jump(). As
subclasses inherit all the methods from their superclasses, it would only be possible to
create a subclass of Frog which could not respond to a jump () message if jump() was
declared as private in the Frog class. However, if jump() was declared as private,
HoverFrog objects would then lose the ability to respond to jump() messages!

Unit 6 Subclassing and inheritance

Capturing common behaviour: abstract
classes

So how else could we implement the two classes to capitalise on their common
behaviour? In terms of the criteria to be considered, we could implement Frog as a
subclass of Toad, adding the method jump () and overriding the methods 1eft() and
right (). But although our limited implementation of frogs and toads will allow us to do
this, it would not be a very good solution. Intuitively we know that a frog is not a special
kind of toad, any more than a toad is a special type of frog. The course team has
deliberately limited the behaviour of both classes, so as to keep the examples simple.
But as toads have warty skins, we could, for example, have provided our Toad class with
an instance variable called numberOfWarts, together with some associated methods.
We would then have been faced with a situation where each of the Frog and Toad
classes had some feature not shared by the other class.

So although Frog and Toad classes have a huge amount in common, neither is really an
appropriate subclass of the other. Frogs and toads are two specialised types of the
same generic type, amphibian, rather than one of them being a specialised type of the
other. In fact we have been referring to instances of the Frog, Toad and HoverFrog
classes as amphibians since the start of the course. It seems that what is needed is
some kind of Amphibian class from which the Frog and Toad classes could inherit the
attributes and behaviour that they have in common. If we were to define Amphibian as a
direct subclass of OUAnimatedObject, and both Toad and Frog as direct subclasses of
Amphibian, we would have the inheritance hierarchy shown in Figure 4.

Object
Observable
M255AnimatedObject
Amphibian
Toad Frog

HoverFrog

Figure 4 Suggested hierarchy for Amphibian objects, introducing a class Amphibian

In fact most of the classes shown in the animal classification in Figure 1 are analogous to
abstract rather than concrete classes.

As amphibian is a generic term encompassing a number of particular types of
amphibian, the concept of an Amphibian class is an abstraction, a convenient way of
bundling together characteristics that are common to actual types of amphibian (in the
same way that mammal is a way of encapsulating the common characteristics of a
number of actual animal species). Most of the classes we use in our programs represent
the part of the world we are interested in simulating — for example, Frog, Account.
These are known as concrete classes and we create instances of these classes. We
would not want to create any Amphibian objects, but it is often convenient to have
abstract classes which will have no instances, but which specify the behaviour common
to a number of concrete classes.

4 Revisiting the amphibian hierarchy

An abstract class defines a common message protocol and a common set of
instance variables for its subclasses. Java allows us to designate a class as abstract,
and the compiler will then bar us from creating any instances of that class.

In order to redesign our amphibian hierarchy to include an abstract Amphibian class,
we must first identify the common message protocol and the common instance variables
of the Frog and Toad classes.

ACTIVITY 13

Open Unit6_Project_13 and open the editor on both the Frog class and the Toad class.
Study the method summaries for the Frog and Toad classes, and identify the following.

1 The instance variables that are common to both the Frog and Toad classes.
2 The methods that have the same signatures and code for both classes.
3 The methods that have the same signatures but different code.

DISCUSSION OF
ACTIVITY 13

1 There are two instance variables, position and colour, which are declared
identically in both classes.

2 The methods with identical signatures and code are: brown(), croak(),
getColour(), getPosition(), green(), setColour (), sameColourAs() (two
methods), setPosition(), toString().

3 The methods with identical signatures, but different code are: home (), 1eft(), and
right().

The two instance variables common to both classes identified in part 1 of Activity 13 and
all the methods identified in part 2 of Activity 13 can simply be moved out of Frog and
Toad and into the abstract class, Amphibian, from where they will be inherited by the
Frog and Toad classes. This process, not only makes for a better class hierarchy but
also contributes to our general strategy of reuse.

What happens to the methods which have the same signatures but different code?
We want both Frog and Toad to implement these methods, but each class to do so in its
own way. To ensure that this happens, we must:

» define these methods as abstract methods in the abstract class;
» override them in each concrete class so as to provide the behaviour appropriate to
that class.

You will see what all this looks like in our new class hierarchy, which we have
implemented in project Unit6_Project_14.

ACTIVITY 14

Open Unit6_Project_14 and have a look at the way the various classes are displayed in
the main BlueJ window. You can see that the arrows between the classes reflect the
modified inheritance hierarchy, and that the Amphibian class is labelled to show its
abstract status. Now open the Amphibian class in the Blued editor to look at the code.
There are a number of features of particular interest.

» The abstract nature of the class is specified in the class header using the Java
keyword abstract:

public abstract class Amphibian extends OUAnimatedObject

Unit 6 Subclassing and inheritance

> The instance variables and methods common to both direct subclasses (Frog and
Toad) are defined in the abstract class. Note that we have only included a single
method sameColourAs(), and that this has a formal argument of type Amphibian.
We will return to this in Section 5.

» The constructor does nothing other than invoke the default constructor from its
superclass. This does not mean that an abstract class could not contain code to
initialise instance variables; it's just that, in this case, the instance variables in the
direct subclasses are initialised differently.

» We have introduced three abstract methods: 1left (), right () and home (). As with the
class header, these are labelled with the Java keyword abstract. They have no method
bodies, as these will be supplied by the concrete subclasses. Note also the semicolon at
the end of each method header. (We have defined our abstract methods directly after the
instance variables for convenience, but they could be anywhere in the abstract class.)

Now briefly look at the code for the Frog and Toad classes. You will see that:

» both class headers have been modified to reflect the fact that the classes now extend
the Amphibian class;

> the classes define only those methods that are declared as abstract in Amphibian
and those that define behaviour that is particular to the class being defined (in this
case, jump() in the Frog class).

There is one additional difference, which is not specifically related to the fact that
Amphibian is an abstract class. Because the colour and instance variables are now
declared in 2mphibian, and are private to that class, we need to use their setter methods
to initialise them in the constructors of the Frog and Toad classes.

All methods defined as abstract must be defined in every direct subclass of an abstract
class, unless it too is an abstract class.

The implementation of HoverFrog is not affected by our new design. It is still a direct
subclass of Frog, inheriting the same instance variables and methods as before, though
some of these are now defined in Amphibian() rather than Frog().

The redesign of a class hierarchy to better reflect the similarities and differences of
behaviour in a number of interrelated classes is termed refactoring. The term is also used
more generally for factoring methods to remove duplicate code (as you will see in Unit 7).

It is important to be aware that in Java a class declared as abstract can never have
instances, even if it has a constructor (or constructors) containing explicit initialisation
code. In order to create an object we must use a concrete, i.e. a non-abstract, subclass
such as Frog or Toad. We describe this by saying that an abstract class cannot be
instantiated. You will learn more about abstract classes in Unit 7.

SAQ 13

The variables ferdie, tanya and horatio reference instances of Frog, Toad and
HoverFrog, respectively. For each of the following message-sends, state which class
contains the code for the method which is executed at run-time.

a) ferdie.right()
b

(
(b) tanya.home()
(c) horatio.left()
(d) ferdie.setPosition()
(e) horatio.toString()
(f) ferdie.jump()

(

g) horatio.home()

4 Revisiting the amphibian hierarchy

ANSWER .

(a)

(b)

(c)

Frog — although specified in Amphibian, right() is an abstract method which is
overriden in each of its direct concrete subclasses.

Toad — home () is also specified as an abstract method in Amphibian, and so is
overridden in the Toad class.

Frog—left() is specified as abstract in Amphibian. It is overridden in the concrete
class Frog, and needs no further overriding as instances of HoverFrog respond to
left () messages in the same way as instances of Frog.

(d) Amphibian — setPosition() is defined as a concrete method in Amphibian. As all

its concrete subclasses and indirect subclasses respond to a message
setPosition() in the same way, there is no need for any of the subclasses to
override it.

HoverFrog — although the method toString() is defined in Amphibian and
inherited unchanged by Frog, it needs to be overridden for HoverFrog to take into
account the additional instance variable height.

Frog — there is no method jump() in Amphibian.

HoverFrog — the abstract method home () from Amphibian is overridden in Frog(),
but must then be overridden again in HoverFrog to set the height instance variable
to 0.

Unit 6 Subclassing and inheritance

Subclassing, subtypes and
substitution

We hope that this unit has convinced you how inheritance makes an important
contribution to the production of Java code that is clear, concise and error free. We have
concentrated on the reuse of existing methods in the definition of new classes. This short
section, which consists mainly of practical activities, will enable you to explore the
implications of subclassing on instance variables. It also provides an opportunity for you
to experiment with instances of the classes that you have been studying in earlier
sections.

General note on the activities in this section

All the activities use the same Blued project, Unit6_Project_15. For each activity we have
provided a file containing code for you to execute in the OUWorkspace. You will find
these files, which are named to match the associated activities (Unit6_Activity_15.txt,
Unit6_Activity_16.txt, and so on), in the Unit6_Project_15 folder. To open the file for an
activity you need to be in the OUWorkspace and then select Open from the File menu.
The file browser will open, by default, in the folder containing the files for the current
project. Select the required file and click Open to load the contents of the file into the
OUWorkspace.

Each file contains a number of variable declarations, followed by a sequence of
assignment and message-send statements. We have also added some comments,
enclosed by /* and */. Some of the statements in the code are purposefully invalid
Java, which will produce error messages. You should therefore ensure that for each part
of each activity you select and execute only the lines of code specified in this text.

You may also want to open a Graphical Display window, so that you can observe the
behaviour of amphibian objects created and manipulated by the code.

After completing each activity you should reset the OUWorkspace by selecting Reset
OUWorkspace from the Action menu.

We suggest that you work through all the activities in the section in a single sitting, if
possible.

ACTIVITY 15

Open Unit6_Project_15, which contains all the Amphibian and Account classes that you
have studied or modified in the unit so far, and from the OUWorkspace open
Unit6_Activity_15.txt which contains the code for this activity. Select and execute the first
four lines of code which declare the variables. Then attempt to execute, one statement at
a time, the lines of code which follow the comments labelled (a), (b), (c) and (d). After
attempting to execute each statement make a note of the results, and of any error
messages that appear in the Display Pane. The results will be clearer if you clear the
Display Pane after each execution.

Once you have tested all four statements, study the statements and see if you can draw
any general conclusions.

5 Subclassing, subtypes and substitution

DISCUSSION OF
ACTIVITY 15

(a) The code executed and the variable freda now references a HoverFrog object. It is
legal for an instance of HoverFrog to be assigned to a variable of type Frog.

(b) The code caused an error. The error message indicated that the types on either side
of the assignment operator are incompatible. Assigning an instance of Frog to a
variable of type HoverFrog is illegal.

(c) The code executed and the variable myAccount now references a CurrentAccount
object. It is legal for an instance of CurrentAccount to be assigned to a variable of
type Account.

(d) The code caused an error. Assigning an instance of Account to a variable of type
CurrentAccount is illegal.

Activity 15 has shown that:

» it is legal to assign an object to a variable declared to be of the type of its direct
superclass;

» it is illegal to assign an object to a variable declared to be of the type of its direct
subclass.

ACTIVITY 16

From the OUWorkspace open Unit6_Activity_16.txt. Attempt to execute the code in
parts (a) to (f), one part at a time, and make a note of the results, including any error
messages that appear in the Display Pane. Can you draw any general conclusions?

DISCUSSION OF
ACTIVITY 16

(a) The code executed and the variable amy appeared in the Variables pane. It is legal
to declare a variable of type Amphibian, even though Amphibian is an abstract
class.

(b) The code caused an error. Java will not allow you to create an Amphibian object.

(c) The code executed. It is legal to assign an instance of Frog to a variable declared
as type Amphibian.

(d) The code executed. It is legal to assign an instance of Toad to a variable declared
as type Amphibian.

(e) The code executed. It is legal to assign an instance of HoverFrog to a variable
declared as type Amphibian.

(f) The program would not execute due to incompatible types. It is illegal to assign an
instance of Toad to a variable declared as type Frog.

Activity 16 has shown that:

» it is possible to declare variables of an abstract type, but it is not possible to create
objects of an abstract class;

> it is legal to assign an object to a variable declared as the type of its superclass,
even if that superclass is abstract;

> itis legal to assign an object to a variable declared as the type of one of its indirect
superclasses as well as its direct superclass;

> it is illegal to assign an object to a variable of a type that is not the type of the
object’s class or not the type of a direct or indirect superclass, even if the types
share a common superclass.

Unit 6 Subclassing and inheritance

ACTIVITY 17

From the OUWorkspace open Unit6_Activity_17.txt. You might also want to open the
Graphical Display so that you can observe the behaviour of the amphibian objects
manipulated as part of the activity. Execute the first five code statements which declare
and initialise some variables. Then attempt to execute the code in parts (a) to (c), one
complete part at a time. Make a note of the results, including any error messages that
appear in the Display Pane. Can you draw any general conclusions?

DISCUSSION OF
ACTIVITY 17

(a) The code executed and set the colour of the HoverFrog object referenced by
hercules to blue, the colour of the HoverFrog object referenced by houdini. Itis
legal to provide an instance of HoverFrog as an argument to a method defined as
having an argument of Amphibian class.

(b) The code executed and set the colour of the HoverFrog object referenced by
hercules to brown, the colour of the Toad object referenced by titan. It is legal to
provide an instance of Toad as an actual argument to a method defined as having a
formal argument of type Amphibian.

(c) The code executed and successfully transferred 200 from the Account object
referenced by myAccount to the CurrentAccount object referenced by
yourAccount. It is legal to provide an instance of CurrentAccount as an actual
argument to a method defined as having a formal argument of type Account.

From Activity 17 we can conclude that it is legal to supply as a method’s actual argument
an object which is a direct or indirect subclass of the type specified by the formal
argument, even if that formal argument is of an abstract type.

This explains why it was possible to replace the two methods with the headers
public void sameColourAs(Frog aFrog)

and
public void sameColourAs(Toad aToad)

from the Frog and Toad classes by the single method
public void sameColourAs (Amphibian anAmphibian)

in the Amphibian class.

It would not be legal to supply, as a method’s actual argument, an object whose class is
a superclass of the formal argument. (Just as it is not legal to assign to a variable an
object whose class is a superclass of the variable’s declared type.)

ACTIVITY 18

Load the code from Unit6_Activity_18.txt into the OUWorkspace. Attempt to execute the
code in parts (a) and (b), one complete part at a time, and make a note of the results,
including any error messages that appear in the Display Pane. Can you draw any
conclusions?

5 Subclassing, subtypes and substitution

DISCUSSION OF
ACTIVITY 18

(a) The code executed and the colour of the HoverFrog object referenced by freda
was successfully set to red.

(b) This should have produced an error, but because of a peculiarity of the
OUWorkspace the code has worked and the HoverFrog object referenced by
freda now has height set to 4.

The OUWorkspace’s Java interpreter is erroneously using the class of the object
referenced by the variable freda (which is HoverFrog) to determine what
messages are valid, rather than the declared type of the variable freda (which is
Frog). The Blued Java compiler correctly determines what messages are valid
based on the type of the variable, therefore the compiler would reject the statement
with the error message:

cannot find symbol - method setHeight()

as the method setHeight () is not part of the protocol of Frog. Try adding the
following method to the Frog class to see for yourself:

public void test()

{
Frog freda = new HoverFrog() ;
freda.setHeight(4);

}

It is hoped that this peculiarity of the OUWorkspace can be fixed in a future release.
This activity has shown that although we can legally assign an object to a variable

declared as one of its superclasses, the Java compiler will only allow that object to
execute methods which are defined for the declared type of the variable.

Generalising from the results in Activities 15 to 18, we can conclude that where a Java Not all classes in Java can
program expects an instance of a particular class, it is legal to substitute an instance of have subclasses, but we
. o . - . . . will not pursue that here
its subclass. This is termed substitutability and an object of a class is said to be

substitutable for an object of any of its superclasses. In Unit 2 you learnt that methods

with the same signature, to which more than one class can respond, are called

polymorphic methods. What we have been describing in this section are polymorphic

variables; that is, variables that can take on different forms at different times (the literal

meaning of polymorphism is ‘having many shapes’). In Java, most variables of object

types are potentially polymorphic, as most classes can have subclasses. On the face of

it, this property of variables may seem almost obvious. After all, instances of a class are,

generally speaking, instances of their superclasses: a HoverFrog is a type of Frog, a

CurrentAccount is a type of Account. However, although it is legal for a variable to

reference an object of one of its subtypes, the compiler will not allow it to be used to

execute a method (or access a variable) of the subclass that is not specified for objects

of the declared type.

Substitutability is a powerful feature of inheritance which can contribute significantly to
one of our core goals — reuse. For example, you saw how the method sameColouras ()
defined with a formal argument of type Amphibian worked perfectly well with actual
arguments which were Toad and HoverFrog objects. In Section 6 you will learn about a
feature of Java that relies fundamentally on the concept of substitutability.

Unit 6 Subclassing and inheritance

Exercise 10

The method transfer (), which is defined in the Account class, has the following
signature:

public boolean transfer (Account toAccount, double anAmount)
This method is not overridden in CurrentAccount.

Suppose that myAccount and yourAccount reference instances of the classes Account
and CurrentAccount, respectively. Part (c) of Activity 17 demonstrated that the property
of substitutability would allow you to make a transfer such as the following:

myAccount.transfer (yourAccount, 500.00) ;

This means that you can use the method transfer () to make a transfer from an
Account object to a CurrentAccount object. The method transfer () can also be used
to make a transfer from an instance of CurrentAccount to an instance of Account, as in
the following statement:

yourAccount. transfer (myAccount, 500.00);
Explain why this second statement is legal in Java.

ST 01 (5111 o TR

CurrentAccount is a subclass of Account and therefore inherits its method
transfer (). So it's perfectly all right to send a transfer message to an instance of
CurrentAccount. The account argument provided is an instance of Account, as
specified in the method signature.

6 An introduction to interfaces

An introduction to interfaces

So far in this unit we have concentrated on the specialisation of one class by another,
with instance variables and methods being inherited or overridden. In this context, the
instances of the related classes share instance variables and behaviour. But suppose
we have a situation where a number of otherwise unrelated objects need to understand
a shared set of messages, in circumstances where none of their actual instance
variables or method code are the same. The sole common factor may be the group of
messages that they must all respond to, and each class involved may already belong to
a different inheritance hierarchy. We give a description of such a scenario.

Imagine that there is a class MetOffice, which simulates meteorological offices
responsible for sending messages about the weather to objects of many different
classes. The details of the class MetOffice need not concern you for the time being, but
you can assume that it has no interest whatsoever in the objects to which it sends
messages, or in any aspect of their behaviour other than their ability to understand
messages about the weather. To keep things simple we will assume that there are only
two such messages, rain() and sun (). What particular objects do in response to these
messages will vary depending on their class.

Suppose also that there is a class WeatherFrog, which has the behaviour of a normal
Frog and in addition can receive weather forecasts. The response of a WeatherFrog

when sent the message rain() might be to tell its fellow frogs to take shelter. Instances
of other classes might respond very differently to a message rain(). If we had a class
Daisy, for example, its instances might respond by closing their petals; Duck objects

might quack with enthusiasm, and so on.

The programming of the class MetOffice will be simplified greatly if it can assume that
the objects that want to receive its messages (we could call them its clients), have
rain() and sun() messages in their protocols. Making them all inherit from a common
superclass would not be a good idea, because although they share a need to receive
weather reports, in all other respects they may well be quite different. What sort of
superclass would group ducks with daisies, for example? Obviously WeatherFrog
should be a subclass of Frog, and this rules out inheritance from any other class as Java
does not allow a class to inherit from more than one class.

The approach we have taken in this unit so far does not cater well for the situation we
have just outlined, where nothing of the actual implementation may be held in common.
Instead a somewhat different mechanism is required, provided by Java in the form of a
programming structure called an interface.

Basically, an interface specifies a list of methods that a group of unrelated classes
should implement, so that their instances can interact together by responding to a
common subset of messages. Whoever draws up the list does not know, or need to
know, how the instances of different classes will actually respond to the messages, so
the interface provides only the method headers, not any method code — rather like the
abstract methods you saw in Section 5.

The word ‘client’ is used
in a number of similar, but
not identical, ways in
computing to indicate a
software or hardware
entity that uses a service
provided by some other
piece of software or
hardware, which is known
as a server.

The word ‘interface’ is
used in a number of
different contexts in
programming. You have
already come across the
interface of a class — the
messages to which its
objects can respond — and
graphical user interfaces.
The Java keyword
interface is yet another
use, though it has some
similarities with the use of
the term interface to
describe an object’s
protocol.

Unit 6 Subclassing and inheritance

The Java syntax for an
interface requires us to
write each method header,
followed by a semicolon.
Since there is no body to
the methods (these will be
supplied by the client
classes) no braces, {},
are needed.

Creating and implementing an interface
type

Any class wishing to implement a particular interface must declare that it will implement
that interface in its class header. It does this by using the Java keyword implements,
followed by the name of the interface. You will shortly see some examples of this.
Implementing an interface is a bit like making a contract — once a class signs up, it is
committed to providing code for all the methods listed in the interface. If it were possible
to leave any of them out, instances of the server class (in our example the MetOffice
class) might broadcast a message to all its clients, only to find that it was not understood
by all of them! This is precisely what an interface is designed to avoid.

To see how this works in practice the next two activities will lead you through the
definition of a WeatherClient interface and the WeatherFrog class.

ACTIVITY 19

Open Unit6_Project_16 in Blued. The project already includes the Amphibian classes, as
well as a class MetOffice, a Daisy class (a very simple class) and an incomplete
WeatherFrog class. The project will not yet compile as the Daisy and MetOffice classes
both need to use the WeatherClient interface, which we have not yet implemented.

Click the New Class button and enter the name WeatherClient into the text box. Make
sure that the radio button labelled Interface is checked, then click the button labelled Ok.
The icon for the interface, suitably labelled, will appear in the main BlueJ window.

(It might look as if it is already connected to other classes in the project, which is not the
case. Drag it to a space of its own.) Now open the editor on WeatherClient. You will see
that it already includes a header indicating that it's an interface, rather than a class. Copy
the following two lines (which specify the headers of methods that classes which
implement the interface must define) into the body of the interface.

public void rain();
public void sun();

You should now be able to compile the whole project, even though we have not yet
implemented all the code we need.

DISCUSSION OF
ACTIVITY 19

An interface is not a class and will have no instances of its own, and so it has no instance
variables and no constructor. In fact it is an error to specify either instance variables or
constructors for an interface.

To keep our example simple we have used methods with no arguments or return values.
But it would be perfectly in order for methods in an interface to declare these if required.

Once the whole project has been compiled, the BluedJ window should show a dashed
line with an inheritance-type arrow linking the class Daisy t0o WeatherClient. This style
of arrow models implementation of an interface in UML.

Leave Unit6_Project_16 open, as you will be using it for the next activity.

6 An introduction to interfaces

Next we need to complete the code for the MetOffice client classes. Here is the code we
have written for Daisy (a simple class which does nothing except listen for weather
messages). Daisy is declared as implementing WeatherClient, which means it must
provide code for the methods rain() and sun() specified in that interface. It needs no
instance variables and its constructor will simply invoke the constructor from its
superclass which is Object.

public class Daisy implements WeatherClient
{
/**
* Constructor for objects of class Daisy
*/
public Daisy()
{

super() ;
}
/**
* Causes the receiver to print "Opening" to the standard output
*/

public void sun()
{
System.out.println("Opening") ;

/**
* Causes the receiver to print "Closing" to the standard output
*/
public void rain()
{
System.out.println("Closing");

ACTIVITY 20

You are now going to complete the WweatherFrog class, which both extends its direct
superclass (Frog) and simultaneously implements an interface. Here is its class header.

public class WeatherFrog extends Frog implements WeatherClient

Open Unit6_Project_16 if it is not already open. Complete the class header for the
WeatherFrog class as given above. Then try to compile the class. This will result in an
error message telling you that you must override the method sun (). Remember that a
class that implements an interface contracts to implement all its methods!

Now define the methods sun() and rain() for WeatherFrog, according to the
specifications given in their initial comments in the implementation window. Neither
method returns a value. Compile your code to check that you do not have any syntax
errors. The class will inherit all its instance variables and methods from Frog and needs
only a default constructor.

Unit 6 Subclassing and inheritance

DISCUSSION OF
ACTIVITY 20

Here is our code for the two methods (excluding the initial comments).

public void sun()
{
this.setColour (OUColour.YELLOW) ;
this. jump();
this. jump();
System.out.println("Sun on the way - you can come out now") ;
}
public void rain()
{
this.setColour (OUColour.BLUE) ;
this.croak();
System.out.println("Rain on the way — under a lilypad everyone!");

}

Leave the project open if you plan to proceed to the next activity.

m Using an interface type

So how do we use instances of classes that implement an interface? If we declare an
instance of such a class, that instance will respond normally to all the messages in its
protocol, including those that have been defined to meet the requirements of the
interface. The following lines of code, for example, will have exactly the response you
would expect:

WeatherFrog wendy = new WeatherFrog() ;
wendy.sun() ;
wendy.rain();

But this is not why we created an interface — we want to avoid the need for our MetOffice
class to know anything about the classes of its clients. To see how this works you need to
study the code for the MetOffice class. Here it is.

public class MetOffice

{
// instance variables, all of type WeatherClient
private WeatherClient clientl;
private WeatherClient client2;

/**
* Constructor for objects of class MetOffice.
* Initialises the two instance variables to reference
* the instances of client classes, given as the arguments.
*/
public MetOffice(WeatherClient wClientl, WeatherClient wClient2)
{
super ()
this.clientl = wclientl;
this.client2 = wclient?2;

6 An introduction to interfaces m

/**

* Causes the receiver to issue weather reports to client objects
*
/

public void weatherReport()

{

clientl.sun

(
clientl.rain
client?2.sun(

n

client2.rain();

}

In the MetOffice class we have declared an instance variable to reference each client A collection object is one
object. Both these instance variables have been declared to be of the interface type thﬁt Ca’l‘).hO'd f(”umt_’lfr of
WeatherClient. MetOffice does not care in the least what class of object these f::af,: ;’bg‘i,‘i‘i;)”;’;ig,;

instance variables will reference at run-time, just that they implement the interface classes later in the course.

WeatherClient. (In a real-world application a single instance variable would probably
be used, one that would reference some kind of collection object, such as an array, so it
would not be necessary to specify the number of clients or give them individual variable
names.) When an instance of MetOffice is created, its constructor will assign the objects
that have been used as its arguments to the instance variables clientl and client?2
(as you will see below). The MetOffice class also needs one or more methods which will
enable its instances to respond to messages requesting weather reports. Our method
weatherReport (), which is just for demonstration purposes, reports both sun and rain
at the same time! In reality an instance of MetOffice would need to check the actual
state of the weather and respond accordingly.

The mechanisms here are a little complex so we summarise the process so far.

When a MetOffice instance is created, the constructor is passed, as its actual
arguments, two objects about which it knows nothing except that they are instances of
classes which implement the WweatherClient interface. These objects are substituted
for the formal arguments of the interface type.

MetOffice has an instance method weatherReport () which in turn sends the
messages sun() and then rain() to each of the clients in turn. Although the actual
class of these objects is unknown, they are guaranteed to understand both the
messages, because they implement the WeatherClient interface.

In the next activity you will create an instance of the MetOffice class, with instances of
Daisy and WeatherFrog as its clients, and request a weather report.

ACTIVITY 21

Open Unit6_Project_16 and the OUWorkspace. You might also want to open a Graphical
Display window to observe the behaviour of the WeatherFrog object.

First execute the following code to create instances of WeatherFrog and Daisy
referenced respectively by the variables wendy and dorian:

WeatherFrog wendy = new WeatherFrog() ;
Daisy dorian = new Daisy();

Next create an instance of MetOffice, with its instance variables referencing the two
clients created above with the code:

MetOffice bracknell = new MetOffice(wendy, dorian);

Unit 6 Subclassing and inheritance

Finally send a message to the MetOffice object, requesting a weather report:
bracknell.weatherReport();

Observe the output in the Display Pane.

DISCUSSION OF
ACTIVITY 21

You should have seen the following output in the Display Pane.

Sun on the way — you can come out now
Rain on the way —under a lilypad everyone!
Opening
Closing
If you have the Graphical Display window open, you will also see that the visual changes

in the WeatherFrog object reflect its responses to the messages sun() and rain().
Each object has interpreted the messages rain() and sun() in its own way.

SAQ 14

What term can we use to describe methods with the same signature, but different
behaviour when invoked on different classes?

ANSWER ...

The methods are polymorphic. In our example, the methods sun() and rain() (and
their corresponding messages) are polymorphic.

In invoking the constructor for the MetOffice class we have been able to substitute
actual arguments which are objects of the Daisy and WeatherFrog classes for formal
arguments declared as type WeatherClient, demonstrating that method arguments of
an interface type support substitution. Because they can refer to different types of
object these method arguments (and indeed variables declared of some interface type)
are also polymorphic. In fact, the concepts of substitutability and polymorphism are
core to the whole idea of interfaces.

We could easily add any number of other classes which implement the WeatherClient
interface, and the MetOffice would be able to communicate with instances of those
classes in a similar manner. When programmers write interfaces, they generally will not
have knowledge of all the classes that might eventually implement them. All kinds of
implementing classes may be written in the future by other programmers. This creates
no difficulty at all. Provided the implementing classes stick to the contract of the
interface by supplying code for all the methods, everything will work perfectly.

Exercise 11

If in the future we added an extra method windy () to the WeatherClient interface, what
problem would be caused?

S0 (11T o T

It would break the contract with any class that already implements the original version of
the interface. The class would no longer comply with the interface, because it would not
implement windy (), and so it would suddenly stop working. An interface should never
be enlarged, because doing so will make existing programs fail unexpectedly.

6 An introduction to interfaces

If you consult other sources of information on Java, you may find that interfaces are
mentioned as a way of implementing multiple inheritance. Although it is possible for a
class to implement one or more interfaces in addition to extending a superclass,
interfaces are not classes and they provide a very limited form of ‘inheritance’ compared
with the extension of a superclass by a subclass.

For example:
» the classes that implement an interface may have little in common with each other;

» the implementing classes inherit no instance variables and no behaviour, only a set
of method headers.

The key feature of interfaces is their support for abstraction — the way in which they allow
separation of the specification of behaviour (provided by the method headers) from its
implementation (provided by its implementing classes). It is only the specification that is
‘inherited’. They therefore contribute very little to reuse, as the programmer still needs to
fully implement all the methods.

In their support for abstraction, interfaces have some similarities with abstract classes,
but, as you have seen, they do not operate as a conventional part of a class hierarchy,
unlike abstract classes.

Unit 6 Subclassing and inheritance

Summary

In this unit we have developed the ideas surrounding inheritance, which is a core feature
of an object-oriented approach to software development. You have seen how
subclassing can help manage complexity, and how inheritance can cut down on the
work involved in writing and maintaining software, and help to guard against errors.
When deciding on a class structure there are often choices to be made and we have
provided you with some simple criteria to consider when deciding on the
appropriateness of a subclass/superclass relationship. You have been introduced to
Java interfaces, as a way of dealing with the situation where a number of disparate types
of object need to respond to a common subset of messages.

Underlying both the effective use of inheritance and the implementation of interfaces is
the notion that the class which inherits from a superclass or implements an interface has
certain similarities with that superclass or interface. This leads to the important principle
of substitutability, whereby an instance of a subclass, or a class implementing an
interface, can be substituted for an instance of the superclass or the interface.

The unit has also discussed the role of constructors in the initialisation of variables

In the practical work for this unit, you have learnt about and practised some of the
programming techniques involved in defining subclasses and in implementing and
using a Java interface. You have learnt about overriding and overloading, and seen that
both variables and methods in Java can be polymorphic. More generally the unit should
have consolidated and developed your Java programming skills and given you the
confidence to implement simple classes and methods.

A recurring theme of the unit has been the importance of reuse in software development
by:
P> creating classes as an extension of other classes;

P> using the existing instance methods of a class, by sending the corresponding
messages to this or super, when defining new methods;

> applying or adapting established coding and design patterns.

LEARNING OUTCOMES

Having studied this unit you should be able to:

» explain the principles of inheritance and its importance in object-oriented software
development;

v

list the criteria to be taken into consideration when deciding whether to implement a
class as a subclass of some other class;

describe the role of an abstract class in providing a common message protocol;
explain the role of constructors in the creation and initialisation of objects;
explain the difference between overriding and overloading;

discuss briefly polymorphism in relation to variables and methods in Java;
explain the principle of substitutability and describe some of its advantages;
describe the role of Java interfaces;

VVVYyVYVYVYY

write simple methods, constructors and classes in Java, making appropriate use of
language features designed to support inheritance;

v

recognise opportunities for the reuse of existing methods and techniques in your
programming;

» identify common errors in your code with the help of the error messages produced
by Blued and the OUWorkspace;

» use the Blued environment to:
» explore the Javadoc documentation for a class;
» compile classes;
» add classes to a project;
» develop a class from scratch.

Unit 6 Subclassing and inheritance

Glossary

abstract class A class that defines a common message protocol and common set of
instance variables for its subclasses. In Java an abstract class cannot be instantiated.

abstract method A method declared as abstract. Abstract methods have no bodies.
They must be implemented in any concrete subclasses of the class in which they are
specified.

access modifier One of three Java keywords (public, private, protected) which
specify the visibility of variables and methods.

cast A way of modifying the type of a variable or expression ‘on the fly’.

class header The line in a class definition which provides crucial information such as
its name, access modifier, name of a class from which it extends and name(s) of any
interface(s) it implements. Example usage:

public class WeatherFrog extends Frog implements WeatherClient

client (class) In programming, an object of such a class uses a service provided by
an object of some other class.

common message protocol A set of messages shared by a number of classes. Often
used to describe the set of messages provided by an abstract class for its subclasses.

concrete class A class which is not abstract; a class for which instances can be created.

constructor chaining The process whereby constructors use super () to invoke each
other up the inheritance hierarchy.

data field A synonym for instance variable — and as you will learn in later units, it is also
a synonym for class variable.

data member See data field.

direct subclass A class is a direct subclass of another class if it is directly below that
class in the class hierarchy. In Java a class extends the class of which it is a direct
subclass.

direct superclass A class is a direct superclass of another class if it is directly above it
in the class hierarchy. In Java a class extends its direct superclass.

field See data field.

helper method A method which carries out some subsidiary task, such as a
calculation, for another method. Helper methods would normally be private.

implement In software development, to write the program code for some task or
specification.

implements A keyword in Java used in a class header to specify that the class
implements a particular interface. Example usage:

public class SomeClass implements SomeInterface

indirect subclass A class is an indirect subclass of another class if it inherits from that
class via one or more intermediate classes.

7 Glossary

indirect superclass A class is an indirect superclass of another class, if it is above it in
the class hierarchy but not directly above it.

inheritance A relationship between classes by which they are organised into a
hierarchy. Classes lower in the hierarchy are said to inherit all the methods and variables
from classes higher in the hierarchy (though they may also define additional methods
and variables).

initialisation The setting of variables — both variables of primitive types and instance
variables of objects — to appropriate values following their creation.

instance method The code that is executed as the result of a message being sent to
an object.

instantiate Create an instance (of a class). In Java this must be a concrete class.
Abstract classes and interfaces cannot be instantiated.

interface (Java specific) An interface specifies a list of methods that a group of
unrelated classes should implement, so that their instances can interact together by
responding to a common subset of messages. An interface only lists method headers
(no method code), cannot declare any instance variables and cannot be instantiated.
Classes implementing an interface must provide implementations for all the methods
specified by that interface.

local variable A variable declared inside a method body, and whose scope is
restricted to that method.

method header The line of code which precedes a method body and contains, at a
minimum, the return type, name and argument list of the method. It may also include
access modifiers and other information about the method.

new Java operator used in the creation of a new instance of a class.

null A special value in Java which indicates that a variable of an object type does not
currently hold a reference to an object.

Object Top-level class in Java. Every class in Java is either a direct or an indirect
subclass of Object.

overloading A method is said to be overloaded when there are other methods,
defined in the same class, or inherited from some superclass, with the same name but a
different method signature, i.e. different types and/or numbers or arguments.

overriding The process of redefining (replacing) a method inherited from a superclass
S0 as to cause it to have different behaviour. A method which overrides a method from a
superclass has the same signature as the superclass method.

pattern In programming, an established and well-tried approach, technique, algorithm
or coding idiom that can be used as a model. (In object-oriented programming, pattern
is also used to refer to particular named design structures involving a number of classes
and modelling a solution to a common software design problem.)

polymorphic method A method with the same signature as some other method, but
which defines different behaviour. For example the method home () defines different
behaviour for Frog, Toad and HoverFrog objects.

Unit 6 Subclassing and inheritance

polymorphic variable A variable which can reference objects of different types. In
object-oriented languages, all variables declared of some object type or interface type
are potentially polymorphic as they can be used to reference objects which are
subclasses of that declared type or objects whose class implements that interface.
See substitution.

private In the case of instance methods and instance variables, a Java access
modifier restricting access to instance variables or methods to instances of the class
that declares them.

public In the case of instance methods and instance variables, a Java access
modifier which allows access to instance variables or methods from instances of any
other class.

recursive method A method which calls itself as part of its method definition. This can
lead to indefinite looping when an attempt is made to execute the method.

refactoring A technique whereby code is rewritten, without changing its overall effect,
for the purpose of improving its design by removing code duplication. The term can be
applied to big changes to code whereby a whole class hierarchy is altered, for example
by the introduction of an abstract class, or to relatively small changes to a single class
by factoring out duplicated code that appears in the class’s methods into other helper
methods.

standard default value The default values provided by Java to newly created
variables.

subclass A subclass is any class which, when taking part in an inheritance
relationship with another class, is the class to inherit functionality. In Java all classes
except Object are subclasses of some other class.

subclassing A technique for defining a class as a subclass of an existing class.

substitutability The principle in object-oriented programming whereby, wherever the
system expects an object of type X, an object of class Y can always be substituted
instead, where class Y is a subclass of X, or where class Y implements an interface of
type X. See substitution.

substitution The technique of providing an instance of one class in a situation where
an instance of a different class is expected. In Java, an object can be assigned to a
variable whose type has been declared as some superclass of the object, or which has
been declared as an interface type which that object’s class implements. Similarly, an
object can be used as an actual argument to a method where the formal argument’s
type has been declared as some superclass of the object, or which has been declared
as an interface type which that object’s class implements.

super The pseudo-variable super is used within a method to refer to the receiver, so
that an object can send a message to itself. However, while the use of this causes the
JVM to start its search for the corresponding method in the class of the receiver, the use
of super causes the JVM to start its search for the method in the superclass of the class
containing the method in which super appears.

super() Used within a constructor to invoke the constructor without any arguments in
the direct superclass.

this A pseudo-variable which, in a method or constructor, acts as a reference to the
object which is executing that method or constructor, so that the object can send a
message to itself.

Index

Index

A
abstract class 39

abstract method 39
access modifiers 17
Account 22,25
availableToSpend() 30
C

checkPin() 32

class header 11
classification 6-7
common message protocol 39
concrete class 38
constructor 19
constructor chaining 20

CurrentAccount 25, 30

D
data field 9

debit() 31

direct
subclass 10
superclass 10

E
extends 11, 21

F
fields 9

H
helper method 18

|
implements 48

indirect
subclass 10
superclass 10

inherit 7
instantiate 40

interface 47

Javadoc 8

L
local variable 17

M
method header 14

Method Summary 9

N

new 19

null 20

O
Object 10

overloading 24

overriding 11

P
package access 18

pattern 28, 32

polymorphic
method 45, 52
variable 45, 52

private 18
protected 18

public 18

R
recursion 14

recursive method 14

refactoring 40

S
standard default value 20

subclass 7, 10
substitutability 45, 52
substitution 52

super 19
T
this 12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

