
5Unit
Dialogue boxes,
selection a teration

Object-oriented
programming with Java

M255 Unit 5

nd i

UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008.

.2006, 2008 The Open UniversityªCopyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

1 ISBN 978 0 7492 5497

2.1

CONTENTS

Introduction 5

6

1.1 7

1.2 OUDialog 7

1.3 OUDialog.alert() 8

1.4 OUDialog.confirm() 12

1.5 OUDialog.request() 14

1.6 16

1.7 17

21

2.1 if 21

2.2 24

2.3 31

33

3.1 33

3.2 34

42

4.1 42

4.2 for loops 44

4.3 e loops 52

60

Glossary 62

Index 63

1 Dialogue boxes

Class methods

The class

The class method

The class method

The class method

Request dialogue boxes with an initial answer

Converting between data types

2 Conditions and selection

statements with simple conditions

Comparing values

Handling the output of the Cancel button

3 Boolean expressions

Simple comparisons

Boolean operators

4 Iteration

Examples of loops

whil

5 Summary

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

In everyday life you often come across statements such as:

If it is raining then we go to work by car; otherwise we walk.

This is called conditional selection. It says that if something is true then we shall do one
thing else we shall do another thing.

Similar choices occur frequently in computer programs. For instance, you might be
prompted for confirmation that you wish to proceed with an action, such as deleting a
file. Your response – whether you click the OK button or not – will determine what the
program does. Or, as another example, you might wish to withdraw money from a cash
machine. The banking system must then decide whether to meet your request or not,
based on whether you have enough funds in the account.

Conditional selection is a fundamental structure in all programming. In software,
decisions like those described above are represented by conditions which work out to
Boolean values, either true or false. Which course of action is followed – i.e. what
code is executed – will depend on this value.

A second fundamental programming structure is repetition, also called iteration or
looping. Like conditional selection, repetition is also common in everyday life. We might
want to print off 50 copies of a document. Or we might want to go on serving customers
while there are still people waiting in a queue.

Examples of iteration from programming are scanning the characters in a string one by
one to determine if they are vowels, or repeatedly reading the next line of text from a file
until the end of the file is reached.

In a program, iteration might involve incrementing a counter each time an action is
repeated and testing the counter to see if the required number of iterations has been
completed. Or it could involve checking, before the next iteration, that some condition is
still true.

In this unit we also introduce class methods and dialogue boxes. Dialogue boxes are a
common and familiar way for a program to interact with a user. It is with dialogue boxes
that we shall start as you will be using them throughout this unit.

6 Unit 5 Dialogue boxes, selection and iteration

1 Dialogue boxes

So far in the course, although you have been able to display output, you have not been
able to write Java code which allows true two-way interaction with the user.

The class OUDialog (note the American spelling) provides facilities both for giving
information to the user (output) and for obtaining information from the user (input) using
dialogue boxes.

Java provides a much more general form of dialogue box, but the set of dialogue boxes
in the class OUDialog is designed to be easier to use than the more general form.

Dialogue boxes are not the only way of obtaining input from users – or of displaying
output, of course – but they are popular with users and, as you will see, quite friendly for
the programmer to work with.

Dialogue boxes come in many forms: some just ask the user to click on a button, while
others may require the user to enter something from the keyboard or make a choice
between yes and no.

You may have seen Java dialogue boxes already. They are used to report some kinds of
error that occur when you use the BlueJ environment. Here is what we got when we
pressed the New Class... button in a BlueJ project window and then deliberately left the
class name blank.

Figure 1 A dialogue box produced in BlueJ

The OUDialog class we shall be using provides three different flavours of dialogue box:

alert – displays a message

confirm – displays a question and asks the user to click Yes or No

request – asks the user to type something into the dialogue box’s input box.

Each of these types of dialogue box is modal, that is, one which will not allow you to
interact with another part of the program or system until you have responded to it by

clicking one of the buttons presented.

These three kinds of dialogue box are found in other programming languages, not just

Java.

This section begins with a look at class methods. We then look in detail at how the class

methods in OUDialog are used.

1 Dialogue boxes 7

1.1 Class methods
Classes, as well as defining instance methods, can also define class methods. These
are methods that can be executed irrespective of whether any instances of the class
have been created. Statements that result in class methods being executed look very
like statements that result in an instance method being executed. For example:

(a)	 SomeClass myVar = new SomeClass();
myVar.doSomething();

ultimately results in the instance method doSomething() being executed.

(b)	 SomeClass.doSomething();

results in the class method doSomething() being executed.

The difference between the two is as follows. In (a), myVar is a variable that references
an object and myVar.doSomething() is a message-send that ultimately results in a
doSomething() method being executed. When a message-send is compiled, the
compiler produces bytecode that at run-time passes the receiver and the message to
the JVM (Java Virtual Machine). It instructs the JVM to find out the class of the receiver
and to search for a method that matches the message’s signature (starting from the
receiver’s own class and then searching up the inheritance hierarchy until the method is
found). When the method is found, the JVM then invokes that method, with the receiver,
so that within the method the receiver can be referenced by the pseudo variable this.

In (b), SomeClass.doSomething() is not a message-send, even though it may look like
one. SomeClass is not a variable that references an object; it is the name of a class. Only
objects can be sent messages and, in Java, classes are not objects. In Java, when we
are talking about class methods, classes are more like traditional function or procedure
libraries. Code such as SomeClass.doSomething() is taken by the compiler and
translated into much simpler bytecode that instructs the JVM at run-time to go directly to
the class SomeClass and invoke the method doSomething().

Hence in this course we describe code such as SomeClass.doSomething() in terms
such as ‘the method doSomething() is invoked on the class SomeClass’, whereas we
describe code such as myVar.doSomething() in terms such as ‘the message
doSomething() is sent to the object referenced by myVar’.

You will learn much more about class methods in Unit 7. For now all you need to
remember is that to invoke a class method you simply write the class name followed by
the class method using the now-familiar dot notation. Class methods are quite common
in object-oriented languages, such as Java. One of the things they are often used for is
providing general utilities, and the dialogue boxes provided by the class OUDialog are a
good example.

1.2 The class OUDialog
OUDialog has class methods with the following headers:

static void alert(String prompt)

static boolean confirm(String prompt)

static String request(String prompt)

static String request(String prompt, String initialAnswer)

Note the Java keyword static, which indicates that a method is a class method. Class
methods are also called static methods.

8 Unit 5 Dialogue boxes, selection and iteration

This looks like a message­
send, but is not because
OUDialog is a class, not
an object.

To display an alert dialogue box you would write a statement like this:

OUDialog.alert("Dialogues are very useful!");

When this is executed an alert box pops up to display some information and stays there
until the user clicks the OK button. Other OUDialog class methods expect the user to
enter a response, which is used as the method’s return value. The return value can be
stored in a variable for use subsequently.

Here is an example showing an OUDialog class method being invoked and the answer
being assigned to a variable. Apart from the fact that in this case the method is a class
method, the pattern is just like any other example where a return value is assigned to a
variable for subsequent use.

boolean answer;
answer = OUDialog.confirm("Is this a class message?");

We shall explain all this in more detail below. The examples in this subsection are just to
show how straightforward invoking class methods is in practice.

Note that if we use the term ‘method’ on its own we normally mean instance method.
When we mean class method we shall always be specific.

1.3 The class method OUDialog.alert()
This class method in OUDialog has the signature alert(String). It takes a String
argument, which is displayed in a modal dialogue box. As its name implies, it is often
used when alerting the user to something they need to be aware of. For example,
executing

OUDialog.alert("Remember to save your file before exiting");

results in the dialogue box shown in Figure 2.

Figure 2 A dialogue box produced using OUDialog.alert()

To dismiss the dialogue box, you must click the OK button. This method requires nothing
else from the user; it does not return a value, and no further action takes place after OK
has been clicked.

9

SAQ 1

Write down a statement that when executed displays the following dialogue box.

1 Dialogue boxes

Figure 3 Another dialogue box produced using OUDialog.alert()

ANSWER...

OUDialog.alert("This is my first dialogue box");

d)

Exercise 1

)

//2
//3
//4

.

object ".

(").

)

now ".

Note that, although the metho alert(may often be used to issue a warning, it can be
used to display any text whatsoever that the programmer chooses.

Explain how each line of the following sequence of statements is executed, and sketch
the dialogue box that results from execution of the complete sequence. (Line numbers
are provided for reference.)

This exercise makes use of the message toUpperCase(which, when sent to a string,
returns a string consisting of the original string all in upper case.

String name; //1
name = "Patrick";
name = name.toUpperCase();
OUDialog.alert("The name was " + name);

Solution...

Line 1 declares a variable of type String whose identifier is name

Line 2 makes the variable name reference the String "Patrick

Line 3 makes the variable name reference the new String object returned when the
object referenced by name "Patrick) is sent the message toUppercase(

Line 4 uses the method alert(of the OUDialog class with the argument resulting from
concatenating "The name was " with the object referenced by name, which from line 3 is

"PATRICK

The dialogue box produced looks like this.

Figure 4 Dialogue box displaying code in upper case

10 Unit 5 Dialogue boxes, selection and iteration

There is no project for this
activity.

If an empty string had been assigned to name in line 2 of the code in Exercise 1, the
statement sequence (given below) would have resulted in the dialogue box shown in
Figure 5.

String name;

name = "";

name = name.toUpperCase();

OUDialog.alert("The name was " + name);

Figure 5 The dialogue box that would result if name were assigned an empty string

ACTIVITY 1

Launch BlueJ and open the OUWorkspace.

In the workspace practise using OUDialog.alert() by executing statements with a
variety of string arguments. Some suggestions are given below but obviously you can
make up your own.

OUDialog.alert("My name is Bond. James Bond.");
OUDialog.alert("Cannot accept a number larger than 100");
OUDialog.alert("stop".toUpperCase() + "!");
OUDialog.alert("500");

DISCUSSION OF
ACTIVITY 1

Note that you were able to display the String object "500". Remember that strings can
contain a variety of different characters – not just alphabetic characters – and that a
string consisting of numeric characters, such as "500", is not the same as the number
500.

Remember too that a ‘warning’ produced by the OUDialog method alert() is just
displayed text and has no other effect. For example, it does not actually stop users
entering whatever they please. If you wanted to restrict the range of numbers a user
could input, you would have to write other code to enforce this.

1 Dialogue boxes 11

ACTIVITY 2

This activity will give you further practice in using the method alert(). For this and
subsequent activities we advise you to write down the answers on paper before launching
BlueJ.

In order to test your solutions open Unit5_Project_1 and the OUWorkspace.

1 Write a single statement which, when executed, will display ‘My name is Methuselah’ Please note that here (as

in a dialogue box. in other parts of the unit)
the single quotes around a

2 Write a single statement which, when executed, will convert the string "Flood sentence merely indicate

Warning!" to upper-case letters and display it in a dialogue box.	 what words the dialogue
box should display – the

3 Add a single statement to the end of the code below so that it will display ‘I am quote marks themselves

studying M255’ in a dialogue box. Your expression should make use of the two do not form part of the
desired display.

variables aMessage and courseCode.

String aMessage;

String courseCode;

aMessage = "I am studying ";

courseCode = "M255";

4 	Modify the two assignment statements in step 3 above so that your dialogue box will
display information about the courses you plan to study next year. (If you have not
thought about this yet, just make up something.)

5 	In the BlueJ window double-click the Account class to open the editor.

Now define two new instance methods for the Account class which will display the

values of the variables holder and balance in dialogue boxes. Here are the method

headers and initial comments for the methods. Make sure to include some explanatory

text in your dialogue boxes, using concatenation. Using the + operator will automatically

take care of converting the numerical balance into a suitable string representation.

/**

*Displays the holder of the receiver in a dialogue box.

*/

public void displayHolder()

/**

*Displays the balance of the receiver in a dialogue box.

*/

public void displayBalance()

Once you have successfully recompiled the Account class, test your new methods in

the workspace by creating an instance of the Account class, setting its holder and

balance, then sending it the messages displayHolder() and displayBalance().

DISCUSSION OF
ACTIVITY 2

1 	To produce the required dialogue box you would need to execute a statement like:

OUDialog.alert("My name is Methuselah");

2 	The single statement which will display ‘Flood Warning!’ in upper-case letters is:

OUDialog.alert("Flood Warning!".toUpperCase());

3	 You were asked to extend the given statement sequence, so that execution would
produce a dialogue box with the text ‘I am studying M255’. The code you need to add is:

OUDialog.alert(aMessage + courseCode);

4

5

/**

*/

{
;

}

/**

*/
)

{
;

}

/**

*/

{
;

}

r
local

12

To display information about the course you plan to study next year, you would need
to change the two assignment statements to something like:

aMessage = "Next year I plan to study ";
courseCode = "M256";

The statement

OUDialog.alert(aMessage + courseCode);

will remain the same.

This was our solution:

*Displays the holder of the receiver in a dialogue box.

public void displayHolder()

OUDialog.alert("The holder is " + this.getHolder())

*Displays the balance of the receiver in a dialogue box.

public void displayBalance(

OUDialog.alert("The balance is " + this.getBalance())

You may have used local variables in your methods. For example:

*Displays the holder of the receiver in a dialogue box.

public void displayHolder()

String theHolder = this.getHolder()
OUDialog.alert("The holder is " + theHolder);

Using local variables to hold intermediate results in a method can make the code
easier to read. Variables declared inside a method, like theHolde in the code
above, are to the method, cannot be accessed from outside it, and exist only
for as long as the method is executed.

Unit 5 Dialogue boxes, selection and iteration

1.4 The class method OUDialog.confirm()
The method confirm() takes a string as an argument, usually a question such as ‘Do you

really want to delete this file?’.

Like alert(), the string argument of confirm() is displayed in a modal dialogue box

but, instead of OK, there are two buttons, labelled Yes and No.

For example, execution of

OUDialog.confirm("Are you over 16 ?");

results in the dialogue box shown in Figure 6.

1 Dialogue boxes 13

Figure 6 An example using OUDialog.confirm()

To dismiss the dialogue box, you must click either the Yes button or the No button. A
confirm dialogue box returns a Boolean value. Clicking on Yes returns the value true
and clicking on No returns the value false. Depending on what value is returned, the
program can choose between alternative courses of action.

ACTIVITY 3

If it is not already open, launch BlueJ and open the OUWorkspace.

In the workspace practise using confirm(). Try examples like the following, executing
them one at a time:

OUDialog.confirm("Ready to start?");
OUDialog.confirm("Have you won the lottery yet?");
OUDialog.confirm("Do you really want to delete the file "

+ "diary.txt?");

In each case try both the Yes and No buttons and observe the textual representation of
the method’s return value shown in the Display Pane.

There is no project
associated with this
activity.

DISCUSSION OF
ACTIVITY 3

You should have observed that when the Yes button is clicked, true is returned as the
method’s return value, and when the No button is clicked, false is returned.

One of the statements above is longer than the physical line, which raises the question
of how you should lay it out. If a statement has to be split across two or more lines, you
should aim to make the statement as easy as possible for a reader to understand. It
should be made obvious that the line is split.

There are some things you cannot do. One is that you cannot have a break between
lines in the middle of a string. For example this is not permissible:

OUDialog.confirm("Do you really want to delete
the file " + "C:\my projects\diary.txt?");

Also, you cannot break an identifier. For example, this is illegal:

OUDialog.con
firm("Do you really want to delete the file " + "diary.txt?");

However, breaks may be placed elsewhere. One common practice is to break a line
before an operator such as + and to indent the new line, for example:

OUDialog.confirm("Do you really want to delete the file "
+ "C:\my projects\diary.txt?");

.

f Unit 8.

14

Breaks may also be placed after a comma (which is not inside a string). If in doubt,
remember that the main criterion is readability, so try to place line breaks at a point that
makes the structure of the statement clear

We shall look at formatting of code in more detail in Section 1 o

Unit 5 Dialogue boxes, selection and iteration

1.5 ()The class method OUDialog.request
d) confi or

e)
as a object.

e
a

)

" would
e.

SAQ 2

)

Whereas the metho alert(returns no value and rm() returns either true
fals , the method request(asks the user for input and, if OK is clicked, returns
whatever is in the input box String

For example, executing

inputName = OUDialog.request("Hi! What is your name?");

will produce the dialogue box shown in Figure 7 (assuming inputNam has been
already declared as String variable).

Figure 7 An example using OUDialog.request(

If you were to type ‘Marta Friedman’ and click OK, the String "Marta Friedman
be returned and assigned to the variable inputNam

The dialogue box in Figure 8 is produced as a result of executing the class method
request(. What is returned if OK is clicked?

Remember that single
quotes in normal text are
just being used to mark
the words to be displayed,
and do not form part of the
display themselves.

Figure 8 An example using OUDialog.request()

ANSWER...

Clicking OK with ‘left’ in the dialogue box results in the String object "left" being returned.

1 Dialogue boxes 15

.

) null.

"" will

o is always l
e

answer 0

e " ".
e to " " 1 0

.

SAQ 3

)

"".

It is important to understand what happens when the Cancel button is clicked in a
dialogue box such as the one above, and how this differs from clicking OK with an
empty input box

If Cancel is clicked, then the method request(will return the value

On the other hand, if OK is clicked when the input box is empty, an empty string
be returned.

Note that there is a very big difference between null and an empty string. An attempt to
send any message t null illegal, whereas the empty string has the ful
protocol of String objects; for example, it responds to the messag length() with the

as expected.

It is also important not to confuse an empty string with one containing a single spac
If you send the messag length() the answer will be , not , so there is no doubt
of the difference between the two

What would be the return value from the method request(in SAQ 2 if instead of
entering some characters in the input box the user had left it blank before clicking OK?

ANSWER...

If the input box had been left blank, the method’s return value would have been an
empty string,

You have learnt that unless Cancel is clicked, the method request() returns a string.
(Remember that if Cancel is clicked null is returned.) If the input box is left blank this
will be an empty string, but regardless of whether or not the string is empty, it is likely
that it will be required for use later in the program (even the fact that a string is empty
may be important information) and the program will therefore need to ensure that it is
referenced by some variable.

ACTIVITY 4

By combining different methods from the protocol of OUDialog you can code a two-way
interaction with the user.

Suppose you want to give the user the option of entering a name that the program will
then display in upper case. The class method request() can be used to prompt the user
for a name. The string which is returned must then be sent an appropriate message to
produce the upper-case version. Then the method alert() can be used to display the
upper-case version of the name, concatenated with the string "The name given was ".

Open the OUWorkspace in BlueJ.

Complete the sequence of statements below by replacing the comments with suitable code:

// Declare name as a String variable.
name = // Insert code which generates a request dialogue box.
name = name.toUpperCase();
// Display name in upper case in a dialogue box.

Try out your solution in the workspace.

16 Unit 5 Dialogue boxes, selection and iteration

ACTIVITY 4

;

t

;

:

"
;

a

DISCUSSION OF

Our code is given below:

String name
name = OUDialog.request("Hi! What is your name ?");
name = name.toUpperCase();
OUDialog.alert("The name given was " + name);

The identifier you choose for a variable does not affect the way in which the code is
executed, though you should try to use something informative. An equally good identifier
in this case would have been inpu . The following code would have resulted in exactly
the same actions:

String input;
input = OUDialog.request("Hi! What is your name?");
input = input.toUpperCase();
OUDialog.alert("The name given was " + input)

The code could also be written without a variable

OUDialog.alert("The name given was
+ OUDialog.request("Hi! What is your name?").toUpperCase())

Although the layout helps to clarify the structure of the code, this is harder to understand
than the earlier version. It is often clearer to break up a single complex statement into
number of simpler statements.

Note how the variable
name is used first to refer
to the string returned by
the method request(),
and then to the string of
upper-case characters
that is returned from the
message
toUpperCase().

1.6
answer
Request dialogue boxes with an initial

Another class method of OUDialog has the signature request(String, String). This
method is similar to the method request() given earlier, which had the signature
request(String). However, as indicated by its signature, this method has two
arguments. The second argument lets the programmer provide a default input by giving
an ‘initial answer’ which will be returned if the user simply clicks OK without typing in the
input box.

For example, executing

OUDialog.request("What is your name, Elvis or Buddy?", "Elvis");

would result in the dialogue box shown in Figure 9.

Figure 9 An example using OUDialog.request(String prompt, String initialAnswer)

–
–

17

The dialogue box suggests that you type Elvis or Buddy (and provides a default input,
Elvis, for you). Anything you type in response to the question and it could be neither
Elvis nor Buddy but something entirely different will be the answer. If you click OK
straight away the answer will be ‘Elvis’.

1 Dialogue boxes

SAQ 4

Write down a statement that produces a dialogue box asking users whether they are
using a PC or a Mac, and offers the default answer ‘Mac’.

ANSWER...

OUDialog.request("What type of computer are you using,PC or Mac ?","Mac");

1.7 Converting between data types
The ,

) a

SAQ 5

?

)
) int.

OUDialog class methods introduced above all take String objects as arguments

and both request(methods return a value that is String object. You may be
wondering if OUDialog methods can be used only with strings or whether, for instance,
numeric data types can also be used with dialogue boxes. They can, but before you can
do this we need to explain about conversion between types.

What do you think would happen if you tried to execute the following statement

OUDialog.alert(100);

ANSWER...

If you tried to execute OUDialog.alert(100 it would generate an error message, as
the method alert(expects an argument of type String, not of type

The first problem we shall solve is how numerical data can be displayed in a dialogue
box. You saw in Unit 3 that the concatenation operator + for String has the convenient
property that if one of its operands is a String, then the other operand will be
automatically converted into its String representation, whatever its type.

For example:

int num;

num = 10;

OUDialog.alert(num + " green bottles");

puts up the expected dialogue box.

Figure 10 An int is converted to its String equivalent

;

;

) .

int
int

;

)
float, , n and

a

).

– into
a

int e
int.

r –
– d .

corresponding int value r class,
with .

;

int value .

Example

int
r:

;

;

18

This works equally well with other numerical types, for example:

OUDialog.alert("Pi is approximately " + 3.141592653589793)

But what if there is no explanatory text and we want to display a number on its own?
Well, we might concatenate it to an empty string:

OUDialog.alert("" + 42)

This does what is wanted but is not exactly elegant! A better solution is to use the utility
method valueOf(provided by the class String

Just like the OUDialog methods this utility is a class method. You invoke it on the String
class itself, with the value you want converted as an argument. The value returned
will be the String representation of the , and can be used as the argument in an
OUDialog message. For example:

int num;
num = 42;
OUDialog.alert(String.valueOf(num))

In fact valueOf(works with any primitive data type; there are multiple versions, each
one accepting a different type of argument, such as double boolea

returning an appropriate String representation.

This takes care of how to start with a number and produce a string to be shown in
dialogue box. If there is explanatory text the conversion will be automatic; in the rare
cases where there is no text we can use valueOf(

But how about the opposite problem how to get a number the program via a
dialogue box? The return value from the dialogue box will be String, and you cannot
just assign this to a variable of type . If you attempt to do so an error will occur. So w

need a way to get from the String to the equivalent

There is an Intege class that (amongst other things) provides a utility once again a
class method for exactly this purpose. The method is calle parseInt()

As an example of its use, suppose you want to convert the string "1905" to the
1905. You use the parseInt() method of the Intege

"1905" as an argument

Integer.parseInt("1905")

This will return the 1905

The following code will accept a string via a dialogue box, convert it to its
equivalent and assign the result to the variable inputNumbe

int inputNumber
String inputString;
inputString = OUDialog.request("Please enter a number")
inputNumber = Integer.parseInt(inputString);

Unit 5 Dialogue boxes, selection and iteration

Do not confuse the class
Integer with the primitive
data type int. There is a
close relationship between
them, which we will
explore later in the course,
but they are not the same
thing.

SAQ 6

?

".

What is the result from executing the statement String.valueOf(100);

ANSWER...

The result from executing the statement String.valueOf(100); is the string "100

1 Dialogue boxes 19

Building on the solution to SAQ 6, the statement

OUDialog.alert(String.valueOf(100));

would display the following dialogue box.

SAQ 7

int age

age.

Exercise 2

age.

;

.

;

;
;

Figure 11 A dialogue box displaying a number as a string

Suppose that your age, expressed as a number, is held by the variable . Write
down a single statement which displays ‘My age is xx’ in a dialogue box, where xx is the
number held by

ANSWER...

OUDialog.alert("My age is " + age);

Complete the following code so that it prompts a user for their age and assigns the
response to the variable

String ageString
int age;
ageString = // Insert code which displays a request dialogue box.
age = // Convert ageString to an int

Solution...

String ageString
int age;
ageString = OUDialog.request("Please enter your age")

age = Integer.parseInt(ageString)

The string which is to be converted to an int must represent an integer. If the user
enters something like ‘fred’ or ‘M255’ that cannot sensibly be converted to a number,
then the method parseInt() will be executed with an inappropriate argument and an
exception will occur. Exceptions are a way programs indicate that something
unexpected has occurred and normally result in the code ceasing execution.
Exceptions will be explained in Subsection 3.2 of Unit 8.

20

SAQ 8

effect.

– –output.

1

‘ ’ a
y

‘Labour’

2

.

o

+

Combine the code in Exercise 2 above into a single statement which achieves the same

ANSWER...

int age = Integer.parseInt(OUDialog.request("Please enter your age"));

A common notion in computing is that all computations reduce to input process
Of course this supposes a broader interpretation of the terms ‘input’ and ‘output’ than just
interaction with a human user via a keyboard/mouse and a screen! But here are two
cases that follow the narrower interpretation.

Open the OUWorkspace in BlueJ.

In the Code Pane write and test some code which is to be used as part of a survey of
how people voted in the last election. Your code should put up a dialogue box
displaying the message Which party did you vote for? and assign the answer to
variable called part . You can save the researcher time by providing one likely
response, say , as the initial answer in the input box.

This next part of the activity gives you practice in using a number of the methods and
techniques that you have learnt. In the workspace write code that prompts the user for
their year of birth, works out their age in years and then outputs the age in another
dialogue box

In order to avoid dealing with the complication of which day of the year they were born
on, you can assume that the calculation takes place at the end of whatever year it is
when you read this activity.

You will need to use appropriate OUDialog class methods to perform the input and
output. You will also need to use Integer.parseInt() to convert the string input t
an integer, because you need to do arithmetic with it; and you should also use one or
more variables. Conversion of the age to a string representation will happen
automatically if you include suitable text in the output and use the operator.

DISCUSSION OF

Unit 5 Dialogue boxes, selection and iteration

ACTIVITY 5

ACTIVITY 5
1 The code required to read in the voting survey data is:

String party;

party = OUDialog.request("Which party did you vote for?", "Labour");

2 Here is some code for calculating someone’s age from their year of birth.

int yearOfBirth;

int age;

int currentYear = 2006; // Use an appropriate value here.

String input;

input = OUDialog.request("What year were you born?");

yearOfBirth = Integer.parseInt(input);

age = currentYear - yearOfBirth;

OUDialog.alert("You are " + age + " years old!");

Many different solutions would work equally well!

2 Conditions and selection 21

2 Conditions and selection

Here we will outline some situations in which the course of action is determined by a
Boolean expression. Whether the Boolean expression evaluates to true or false
determines what program statements get executed. A Boolean expression used in this
way is termed a Boolean condition, or simply a condition. We shall first look at if
statements with simple conditions, and then proceed to construct composite conditions
for if statements.

2.1 if statements with simple conditions
Imagine you are conducting a survey and you are asked to keep a count of those
persons of age 40 and over. Assuming a variable fortyAndOver of type int which
records the count has already been declared and initialised elsewhere, the following
code does the job.

boolean result;
result = OUDialog.confirm("Are you 40 or over?");
if (result)
{

fortyAndOver = fortyAndOver + 1;
}

The statement fortyAndOver = fortyAndOver + 1; will be executed only if the return
value from the method confirm() is true.

If you also need to keep a separate count of those under 40, then (assuming the int
variable underForty has also been declared and initialised) the code required is this:

boolean result;
result = OUDialog.confirm("Are you 40 or over?");
if (result)
{

fortyAndOver = fortyAndOver + 1;

}

else

{

underForty = underForty + 1;

}

The two kinds of condition selection above illustrate the two forms of an if statement.
The first form is the if-then statement; the second, closely related, is the
if-then-else statement. The structures are named after the Java keywords involved,
if and else – the ‘then’ is implied.

The if-then statement has the form:

if (condition)

{

then statement block

}

Although then is not
actually a Java keyword
we will leave it in code
styling when referring to a
statement block, to
indicate we are talking
about a section of code.

22 Unit 5 Dialogue boxes, selection and iteration

Here condition must be Boolean – it must be an expression that evaluates to either
true or false. It must also be enclosed between parentheses, (and) – if these are left
out Java will report an error.

If the condition evaluates to true the then statement block will be executed,
otherwise it will not. A statement block consists of one or more statements enclosed
between braces, { and }. Bundling statements together in a block makes them into a
unit that will be selected, or not selected, as a whole, so the if-then statement can
control whether a whole section of code is executed or not.

Note that what we have described, an if-then statement, is a statement that contains
other statements within it. This nesting of statements within statements is common.

When the statement block has executed or not as the case may be, the flow of program
execution will pass on to whatever code follows the if-then statement.

The if-then-else statement has the form:

if (condition)

{

then statement block

}

else
{

else statement block

}

If the condition evaluates to true, the then statement block is executed. Otherwise, it
evaluates to false and the else statement block is executed.

When either the then or the else statement block has been executed, the flow of
program control will pass on to whatever code follows the if-then-else statement.

Where a statement block contains only a single statement it is permissible to leave the
braces out. However, we strongly advise against doing so, because it frequently leads to
program bugs which are hard to detect. Here is an example of what can go wrong.

Suppose the if-then statement at the start of the section were written without braces,
like this:

boolean result;
result = OUDialog.confirm("Are you 40 or over?");
if (result)

fortyAndOver = fortyAndOver + 1;

Now the programmer decides that it would be a nice gesture to display a message ‘Life
begins at forty’ whenever the person concerned is forty or over. So an extra line of code
is added:

boolean result;
result = OUDialog.confirm("Are you 40 or over?");
if (result)

fortyAndOver = fortyAndOver + 1;
OUDialog.alert("Life begins at forty");

To everyone’s surprise, when the code is run, the message ‘Life begins at forty’ is
displayed for everyone, regardless of age. This has happened because, in the absence
of braces, only the statement immediately following if (condition) is controlled by the
condition. The next statement after that - OUDialog.alert("Life begins at forty");
– is executed irrespective of whether the condition is satisfied or not.

2 Conditions and selection 23

Once the two statements are enclosed in a block, the code will perform as intended, as
shown below:

boolean result;

result = OUDialog.confirm("Are you 40 or over?");

if (result)

{

fortyAndOver = fortyAndOver + 1;

OUDialog.alert("Life begins at forty");

}

Another easy mistake to make is to place a semicolon, for example, after the condition:

boolean result;

result = OUDialog.confirm("Are you 40 or over?");

if (result);

{

fortyAndOver = fortyAndOver + 1;

}

This time fortyAndOver gets incremented whatever the age! The reason is that Java
reads the semicolon as the end of a then statement block with nothing in it, like this:

if (condition) empty statement here;

{

fortyAndOver = fortyAndOver + 1;

}

Now it does not matter whether condition is true or not. All the condition holds
sway over is whether or not the empty then statement block is ‘executed’. Either
way, program control then moves on normally and executes whatever comes after the
if-then statement, which happens to be the block containing
fortyAndOver = fortyAndOver + 1.

Example

This example uses an if-then-else statement in combination with both input
from the user and output to the user. We give two versions. Both versions do
exactly the same thing: the only difference is that the first version makes use of
variables to store intermediate results, whereas the second version does not.

First version

boolean result;

String output;

result = OUDialog.confirm("Does two and two make four ?");

if (result)

{

output = "right.";

}

else

{

output = "wrong.";

}

OUDialog.alert("You are " + output);

{
;

}

{

}

24

Second version

if (OUDialog.confirm("Does two and two make four ?"))

OUDialog.alert("You are right.")

else

OUDialog.alert("You are wrong.");

Unit 5 Dialogue boxes, selection and iteration

Exercise 3

Taking the example above as a guide, write code that uses OUDialog.confirm() to
produce a dialogue box containing the text ‘Click a button’ and then reports to the user
which button has been selected. (You may find it useful to introduce variables to store
intermediate results as shown above.)

Solution...

if (OUDialog.confirm("Click a button"))

{

OUDialog.alert("Yes clicked");

}

else

{

OUDialog.alert("No clicked");

}

Here is another version, which uses variables to store intermediate results:

boolean result;

String button;

result = OUDialog.confirm("Click a button");

if (result)

{

button = "Yes clicked";

}

else

{

button = "No clicked";

}

OUDialog.alert(button);

2.2 Comparing values
Note that it is generally not possible to determine the value of a Boolean condition
(which will be either true or false) simply by reading the program code. In other
words, you cannot determine it statically. The result can only be determined dynamically
– by executing the code.

For example, you cannot tell what the answer returned as a result of executing
OUDialog.confirm("Click a button") will be until the dialogue box has been

The confi or e
if

–

d

d

e

;
)

{
;

}

{

}

SAQ 9

d.

)
{

;
}

{

}

Exercise 4

d)

/**

.
*/

produced and a button has been clicked. Indeed, if the answer were known in advance
there would be no need to include the dialogue box in the first place!

OUDialog method rm() conveniently returns either true fals and you can
make direct use of this value in an statement. However, things are generally less
straightforward. Usually you want to make a selection which depends on a comparison
between values whether one variable has the same value as another, is different, is
larger, is smaller, or some combination of these.

Suppose, for example, that you wanted to password protect some sensitive online
information. Users would have to enter their password into a dialogue box, and the input
string would be compared with the stored password. Suppose that the user input is
assigned to the String variable passwordEntere and that the stored password is
"FirstOfMay". The condition to verify the password can be written as the Java expression:

passwordEntered.equals("FirstOfMay")

If the String object referenced by passwordEntere has exactly the same sequence
of characters in the same order as the message argument "FirstOfMay" the message
answer is true, otherwise it is fals . The code required is:

String passwordEntered = OUDialog.request("Enter your password.")

if (passwordEntered.equals("FirstOfMay")

OUDialog.alert("Welcome.")

else

OUDialog.alert("Access denied.");

Rewrite the example above without using the local variable passwordEntere

ANSWER...

if (OUDialog.request("Enter your password.").equals("FirstOfMay")

OUDialog.alert("Welcome.")

else

OUDialog.alert("Access denied.");

Suppose that a new message, calle simplyRed(, is required in the protocol of the
Frog class. Here are the initial comment and method heading.

* If the colour of the receiver is red, move the receiver
*right twice; if not move the receiver right once

public void simplyRed()

Write down (on paper) the code for the method.

2 Conditions and selection 25

The message equals()
for the class String was
introduced in Section 2 of
Unit 3.

26 Unit 5 Dialogue boxes, selection and iteration

/**

.
*/

{
)

{

}

{

}
}

Exercise 5

) t
n if

/**

*

.
*/

)
{

{
;

;
}

{

}
}

>= in
Unit 3.

Solution ..

* If the colour of the receiver is red, move the receiver
*right twice; if not move the receiver right once

public void simplyRed()

if (this.getColour().equals(OUColour.RED)

this.right();
this.right();

else

this.right();

In this exercise you will look in detail at the method debit(of the Accoun class. In the
code for this method you can see an example of the use of a statement. Examine the
code and write down an explanation of the way in which the method achieves the effect
desired. (You can imagine that you will be posting your explanation to a FirstClass
conference in response to a query from another student.)

* If the balance of the receiver is equal to or greater than the
* argument anAmount, the balance of the receiver is debited by the
* argument anAmount and the method returns true.

* If the balance of the receiver is not equal to or greater than the
* argument anAmount, the method simply returns false

public boolean debit(double anAmount

if (this.getBalance() >= anAmount)

this.setBalance(this.getBalance() - anAmount)
return true

else

return false;

You met the operator
Subsection 2.1 of

t o e.
s if

e

27

Solution...

Our explanation of how the method works is as follows.

If the balance is greater than or equal to the amount to be withdrawn then the expression
this.getBalance() >= anAmoun evaluates to true; otherwise it evaluates t fals

The debit is carried out only if there are sufficient funds, and the method answer true
this is the case and fals otherwise.

2 Conditions and selection

In the next activity you will need to test whether an integer is odd or even. You can test
whether an integer x is odd using an expression such as x % 2 == 1, where % is Java’s
remainder (or modulus) operator. This expression evaluates to true if x is odd, and
false otherwise.

ACTIVITY 6

Launch BlueJ and open Unit5_Project_2. Double-click on the Frog class to open the
BlueJ editor.

Write a method oddRightTwo() for the Frog class which moves a frog right twice if it is
currently in an odd position. If the current position is even, then the frog should not be
moved but a suitable message should be output in a dialogue box.

When you have written your method, compile the Frog class. Now open the
OUWorkspace. From the Graphical Display menu select Open to make the Amphibians
window visible.

Now create an instance of Frog in the workspace and send it the message
oddRightTwo(), observing what happens in the Amphibians window. Then change the
frog’s position so that it is at an even position and re-send the message, checking that the
behaviour is as intended.

DISCUSSION OF
ACTIVITY 6

Here is our solution:

/**

* Causes the receiver to move two positions to the right

* if the position of receiver is odd; otherwise produces a

* warning dialogue box.

*/

public void oddRightTwo()
{

int currentPos;

currentPos = this.getPosition();

if (currentPos % 2 == 1)

{

this.right();

this.right();

}

else

{

OUDialog.alert("Position is not odd.");

}

}

You met the operator % in
Subsection 2.1 of Unit 3.

The equality operator ==
was introduced in
Subsection 2.1 of Unit 3.

28 Unit 5 Dialogue boxes, selection and iteration

Alternatively you can do without the local variable currentPos that is used above to
remember the current position.

/**

* Causes the receiver to move two positions to the right

* if the position of receiver is odd; otherwise produces a

* warning dialogue box.

*/

public void oddRightTwo()

{

if (this.getPosition() % 2 == 1)

{

this.right();

this.right();

}

else

{

OUDialog.alert("Position is not odd.");

}

}

ACTIVITY 7

Open Unit5_Project_2. Double-click on the Frog class to open the BlueJ editor.

1	 Write a method rightIfGreen() that moves a Frog object three times to the right or
left, depending on whether the frog is green or another colour. If the frog is green then
it should move to the right three times; if it is another colour it should move three times
to the left. When you have written your method compile the Frog class.

Now open the OUWorkspace. From the Graphical Display menu select Open to make the
Amphibians window visible.

2 	Create an instance of Frog in the workspace and send it the message
rightIfGreen(), observing what happens in the Amphibians window. Then change
the frog’s colour and re-send the message, checking that the behaviour is as
intended.

DISCUSSION OF
ACTIVITY 7
1 	Here is our solution:

/**
* Increments position of receiver by 3 if colour of receiver
* is green else decrements position of receiver by 3.
*/
public void rightIfGreen()

{

if (this.getColour() == OUColour.GREEN)

{

this.right();

this.right();

this.right();

}

2

2 Conditions and selection 29

else
{

this.left();

this.left();

this.left();

}
}

We used the following code in the OUWorkspace to check that rightIfGreen()
works as intended:

Frog sam = new Frog();

sam.rightIfGreen();

sam.brown();

sam.rightIfGreen();

ACTIVITY 8

Open Unit5_Project_2. Double-click on the Frog class to open the BlueJ editor.

1 	Write a method extremeLeft() which answers true if the position of a Frog object
is 1 and false otherwise. When you have written your method compile the Frog
class.

2 	Now open the OUWorkspace, making sure that Show Results is ticked. Create an
instance of Frog in the workspace and send it the message extremeLeft(),
observing what appears in the Display Pane. Then move the frog one step to the right
and re-send the message, checking that the message answer has changed
appropriately.

3 	So far you have tested your Frog methods on Frog objects, but of course the
methods are inherited by HoverFrog and so should work equally well with
HoverFrog objects. To check that this is the case, create an instance of HoverFrog
and carry out some tests with it as you did with the Frog object.

DISCUSSION OF
ACTIVITY 8
1 	Here is our solution:

/**

* Answers true if the position of the receiver is 1;

* otherwise answers false.

*/

public boolean extremeLeft()

{

return(this.getPosition() == 1);

}

30 Unit 5 Dialogue boxes, selection and iteration

The following also works, but is less elegant:

/**

* Answers true if the position of the receiver is 1;

* otherwise answers false.

*/

public boolean extremeLeft()

{

if (this.getPosition() == 1)

{

return true;

}

else

{

return false;

}

}

Because the condition already evaluates to either true or false, you can return it
directly. It may take you a little while to feel confident that the first version is correct.
The longer solution is acceptable, although we would encourage you to move
towards the more compact approach.

2 We used the following code, executing it line by line:

Frog les = new Frog();

les.extremeLeft(); // Display Pane displays 'true'

les.right();

les.extremeLeft(); // Display Pane displays 'false'

3 We used the following, with the same results as in part 2 of the activity.

HoverFrog hf = new HoverFrog();

hf.extremeLeft();

hf.right();

hf.extremeLeft();

ACTIVITY 9

In this activity you are asked to write code using dialogue boxes to convert a name, input
by the user, into all upper-case or all lower-case letters, and then display the converted
version. Here is the specification for the code.

c First the user is prompted to input their name. This name is then displayed and the
user is asked to confirm that they want it converted to upper-case letters.

c If Yes is clicked, the name is output in upper-case letters.

c If No is clicked, the user is next asked to confirm that they want the name converted to
lower-case letters.

c If Yes is clicked at this stage, the name is output in lower-case letters.

c If No is clicked, no further action is taken.

2 Conditions and selection 31

From BlueJ’s Tools menu, open the OUWorkspace. Copy the partial solution below into toUpperCase() and

the Code Pane and complete the code where indicated. You will need to use the toLowerCase() were
introduced in

message toLowerCase(), which can be sent to a String object in order to convert it to Subsection 2.3 of Unit 3.
lower-case letters. Execute your code to test that it works correctly.

String input;
input = OUDialog.request("Please type in your name.");
if (OUDialog.confirm("Your name is " + input + ". Convert it to upper case?"))
{

OUDialog.alert("Your name in upper case is " + input.toUpperCase());
}
else
{

// Insert code here to handle the case where the user clicks No.
}

DISCUSSION OF
ACTIVITY 9

Here is our solution:

String input;

input = OUDialog.request("Please type in your name.");

if (OUDialog.confirm("Your name is " + input + ". Convert it to upper case?"))

{

OUDialog.alert("Your name in upper case is " + input.toUpperCase());
}
else
{

if (OUDialog.confirm("Convert it to lower case?"))
{

OUDialog.alert("Your name in lower case is " + input.toLowerCase());
}

}

This example shows how an if statement can contain another if statement so that
more than one condition can be checked.

2.3 Handling the output of the Cancel button
Before going on we shall look briefly at how to handle the situation where a user presses
the Cancel button in a dialogue box. The methods
OUDialog.request(String prompt) and
OUDialog.request(String prompt, String initialAnswer) produce dialogue
boxes which contain two buttons – an OK button and a Cancel button. You may recall
that clicking the Cancel button results in null being returned.

Consider the following scenario: a user of a word-processing program has requested a
file save, and a method request(String prompt, String initialAnswer) is used to
prompt for the file name. The existing file name is given as the initial answer. The user
has various courses of action to choose from. They can click OK and save the file under
its existing name or they can replace the default name by a new one and click OK.

32 Unit 5 Dialogue boxes, selection and iteration

On the other hand, they may decide not to save the file after all, and click Cancel. This
will return null, as you have seen. If the program blindly proceeds to treat this like any
other message answer, it will attempt to save the file with null as the file name. This
obviously makes no sense and in fact an exception would occur, as you will learn in
Section 1 of Unit 12.

What ought to happen if Cancel is clicked? There are various possibilities but clearly the
most sensible is to not save the file and to notify the user that this is the case. You need
some code that will detect if null is returned and take the appropriate action. Here is
some Java code that achieves this.

String filename;

filename = OUDialog.request("Please specify file name", "currentName");

if (filename == null)

{

OUDialog.alert("File not saved.");

}

else

{

/* ToDo: Code to check that the filename entered is valid and
* if so save the file under that name would go here
*/

}

Note that you are not in a position to write the last part of the code yet, since you have
not learnt about files, so for now we have just written a comment showing that something
still needs to be done and indicating what. Later in the course you will be in a position to
write the code.

3 Boolean expressions 33

3 Boolean expressions

So far all our conditions have either taken a Boolean value returned by a dialogue box
and used it directly, or involved a limited range of comparisons, such as whether two
things are equal, or whether one number is greater than another. To write more versatile
code you need a wider range of different comparisons between values.

You also need to be able to combine two or more conditions into a single compound
condition which can be evaluated to yield an overall true or false. For example, you
might want frogs to behave in a particular way if their position were to the right of the
centre stone and their colour were purple.

In this section we review the equality, relational and logical operators you met in
Subsection 2.1 of Unit 3. We shall also explain a bit more about how logical operators
work.

3.1 Simple comparisons
You will recall from Unit 3 that Java has a number of comparison operators which can
be applied to primitive data types.

s ==

!=

s <

<=

>

>=

Equality operator equal to

not equal to

Relational operator less than

less than or equal to

greater than

greater than or equal to

The operator == can also be applied to objects, in which case it tests whether two
variables reference exactly the same area in memory, that is, whether they reference the
same object. Similarly, for objects, != tests whether its operands reference different
objects.

These are all binary operators, because they require two operands. They compare one
value with another. (An operator which takes only one operand is called unary.)

You will remember that if an expression involves a combination of operands,
parentheses (round brackets) are used where necessary to clarify the order in which
the operations should be evaluated.

We have also mentioned the method equals() applied to String objects. This gives a
way of testing if two strings are ‘the same’ in the sense of representing the identical
sequence of characters in the same order, even though the String objects concerned
may be stored in different locations in memory and so be different objects.

34

If t and l 12 and 14
"

or e?

(a)

(b)

(c))

(d) 4

(a) e.

e; 2 14,
l.

(c) .

; 2 14 14.

SAQ 10

coun tota have the values respectively and item has the value
"xyz , what are the results of evaluating the following expressions? That is, what do they
evaluate to, true fals

count > 12

count + 2 != total

item.equals("xyz"

count + 2 <= 1

ANSWER...

Evaluates to fals

(b) Evaluates to fals count + has the value and it is false that this does not
equal the value of tota

Evaluates to true; the two strings have the same characters in the same order

(d) Evaluates to true count + has the value , which is less than or equal to

Unit 5 Dialogue boxes, selection and iteration

3.2 Boolean operators
s – e

to or e

a n

t and sum

Java also has operators which take Boolean operand any expressions which evaluat
true fals . The operands could be comparisons for example, or values passed

back as the return value from a confirm dialogue box, or values stored in boolea

variable. By using the logical operators you can build up compound expressions which
test if some combination of conditions is satisfied.

SAQ 11

In this question, coun have the values in the table:

Kind Operation

Unary ! not !a a is e

Binary && and is if a is b.
s e.

|| or is a or b, or
e.

Java symbol Effect

is true if fals , and vice versa.

a && b true true and so is
Otherwise it i fals

a || b true if either both of
them, are true. Otherwise it is fals

(i) 10 50

(ii) 20 200

(iii) 4 40

(iv) 9

count sum

110

(a)	 What does the following expression evaluate to for each pair of values of count and
sum in the table above?

(count < 10) && (sum <= 100)

35

(c) t?

e (ii) e (iii) (iv) e

(ii) e (iii) (iv)

e (ii) (iii) e (iv) e

Exercise 6

e int

(i) , and .

(ii) Set to if r 0 to
e to if 0 to),

to if r 0 to
e).

day and h int

d if 1 and day 1 to 31

(a)

;

;

;

;

{

}

{
)

{

}

{

}
}

(b) What does the following expression evaluate to for each pair of values?

(count < 10) || (sum <= 100)

What does the following expression evaluate to for each value of coun

!(count <= 10)

ANSWER...

(a) (i) fals fals true fals

(b) (i) true fals true true

(c) (i) fals true fals fals

(a) Suppose a variabl number of type already exists and has been given some
value. Write code to do the following.

Declare three boolean variables, called positive zero negative

positive true numbe is greater than (otherwise set positive
fals), set zero true number is equal to (otherwise set zero false

and set negative true numbe is less than (otherwise set negative
fals

(b) Suppose mont are variables of type which already exist and have been
given values. Write down a single statement that will declare a boolean variable
dateVali and set it to true month is equal to is in the range
inclusive, false otherwise.

Solution...

A short solution is this:

boolean positive = (number > 0)
boolean zero = (number == 0);
boolean negative = (number < 0)

However, you may well have used a different approach, such as:

boolean positive = false
boolean zero = false;
boolean negative = false
if (number > 0)

positive = true;

else

if (number == 0

zero = true;

else

negative = true;

3 Boolean expressions

1

36 Unit 5 Dialogue boxes, selection and iteration

e

e
e

Exercise 7

int day and

day 12 and the
5.)

n variable , e

.

s age int and r n
’

n
e
e)

(a)

(b)

In this second solution all three variables are first initialised to fals . When the
following lines are executed the value true is assigned to the appropriate variable.

The first solution we gave is more elegant. Although we realise it may not always b
easy to see how to write code which assigns Boolean values directly in this way, w
would encourage you to try to do so.

(b) One answer is:

boolean dateValid = (month == 1) && ((day >= 1) && (day <= 31));

The following, which uses fewer parentheses, also works:

boolean dateValid = (month == 1) && (day >= 1) && (day <= 31);

(a) Suppose the date of my birthday is 16 November and the variables
month hold values which specify the current day of the month and the current month,
respectively. (For example, for 12 May, would have the value month
value

Write a single statement that will cause the appropriate value to be assigned to the
boolea isMyBirthday, i.e. true if the current date is my birthday fals

otherwise. (Assume isMyBirthday has been declared already.)

(b) A pharmaceutical research organisation is seeking volunteers to take part in a new
drug study. One group of volunteers must be aged between 25 and 35 (inclusive) and
be non-smokers

If the variable of type isSmoke of type boolea already exist and
have been assigned values which specify a volunteer s age and whether or not the
volunteer is a smoker, write down a single statement that will result in the boolea
variable isEligibl being assigned a value that reflects the volunteer specification.
(Assume isEligibl has already been declared.

Solution...

isMyBirthday = (day == 16) && (month == 11);

isEligible = (!isSmoker) && (age >= 25) && (age <= 35);

ACTIVITY 10

Open Unit5_Project_2 and the OUWorkspace. From the Graphical Display menu select
Open to make the Amphibians window visible.

In the workspace create an instance of the HoverFrog class and send it some
setHeight() messages with different arguments, including negative numbers and
numbers greater than 6. Observe the effect of each message on the graphical
representation of the hoverfrog in the Amphibians window. Inspect the hoverfrog to
check that the value of the instance variable height is consistent with the height of
the hoverfrog icon in the window in each case. You should find the height accurately
reflects the value of the instance variable.

2

)

;

;
0–

{

}

{

}

37

The following code (which is incomplete) reads in a number from a user, tests
whether it is in the range 0 to 6, and informs the user whether or not it is in range.
Without looking at the code for the method setHeight(, complete the code by
writing the condition we have described as a comment in the code.

String inputString;
int number
inputString = OUDialog.request("Input a number");
number = Integer.parseInt(inputString)
if // Write a condition to test if number is in the range 6 inclusive.

OUDialog.alert("Number is in range.");

else

OUDialog.alert("Number is out of range.");

Test your code in the workspace with a variety of numbers, both within and outside
the range. Test at the boundaries, that is, make sure it works correctly when the user

3 Boolean expressions

.

1)

2

;

;
)

{

}

{

inputs 0 or 6

DISCUSSION OF
ACTIVITY 10

The code for the method setHeight(is written so that it only sets the height to
values in the range 0 to 6 inclusive. If the method argument is outside this range, no
action is taken.

Our solution was this:

String inputString;
int number
inputString = OUDialog.request("Input a number");
number = Integer.parseInt(inputString)
if ((number >= 0) && (number <= 6)

OUDialog.alert("Number is in range.");

else

OUDialog.alert("Number is out of range.");
}

ACTIVITY 11

Open Unit5_Project_2. Double-click on the HoverFrog class to open the BlueJ editor.

Write a method called inTheCorner() for the HoverFrog class which answers true if
the receiver has any of the following combinations of values for its instance variables
height and position:

height set to 0 and position set to 1

height set to 0 and position set to 11

height set to 6 and position set to 1

height set to 6 and position set to 11

For any other combinations, the method answers false.

Compile HoverFrog and close the editor window.

Now open the OUWorkspace. From the Graphical Display menu select Open to make the
Amphibians window visible.

Create an instance of HoverFrog. Send it the message inTheCorner() and verify that
the result shown in the Display Pane is true.

Now use the messages setPosition() and setHeight() to move the hoverfrog to a
range of different locations, and send it the message inTheCorner() at each one,
checking that the results are as expected.

DISCUSSION OF
ACTIVITY 11

There are many possible solutions. Here are a few variations:

/**
* Checks whether the receiver is 'in the corner'.
* The corners are the following locations:
* height 0 and position 1;
* height 0 and position 11;
* height 6 and position 1;
* height 6 and position 11.
*/
public boolean inTheCorner()
{

return
(((this.getHeight() == 0) && (this.getPosition() == 1))
|| ((this.getHeight() == 0) && (this.getPosition() == 11))
|| ((this.getHeight() == 6) && (this.getPosition() == 1))
|| ((this.getHeight() == 6) && (this.getPosition() == 11)));

}

A much neater solution would be:

public boolean inTheCorner()
{

return
(((this.getHeight() == 0) || (this.getHeight() == 6))
&& ((this.getPosition() == 1) || (this.getPosition() == 11)));

}

The next possible solution uses nested combinations of if statements instead of using
the && operator.

public boolean inTheCorner()
{

// If the receiver is in a 'corner' position, answer true.
if (this.getHeight() == 0)
{

if ((this.getPosition() == 1) || (this.getPosition() == 11))
{

return true;
}

}

Unit 5 Dialogue boxes, selection and iteration 38

3 Boolean expressions 39

if (this.getHeight() == 6)

{

if ((this.getPosition() == 1) || (this.getPosition() == 11))

{

return true;

}

}

// Otherwise answer false

return false;

}

Notice how the return statement is used to return a value and avoid further processing
as soon as an answer has been determined.

It is always possible to use nested combinations of if statements to replace an &&
operator. The solution you choose will depend on factors such as the clarity and
efficiency of your code.

Finally, here is a solution that uses a ‘helper’ method:

public boolean inTheCorner()
{

return this.isAt(0,1) || this.isAt(0,11) || this.isAt(6,1) || this.isAt(6,11);
}

/**

* Helper method for inTheCorner.

*/

private boolean isAt(int height, int position)
{

return (this.getHeight() == height) && (this.getPosition() == position);
}

We tested our code by creating a hoverfrog and ‘walking it round the box’ with the
sequence of statements given below.

HoverFrog hf1 = new HoverFrog();

hf1.right();

hf1.setPosition(11);

hf1.up();

hf1.setHeight(6);

hf1.left();

hf1.setPosition(1);

hf1.down();

hf1.setHeight(0);

After each statement we executed hf1.inTheCorner(); to check the result. These
tests should give alternately true and false answers!

Finally, we tested in the middle.

hf1.setPosition(6);

hf1.setHeight(3);

& and |

& and |
s && and ||

&& and ||

What && does
is a and b are a is

a e is
e b.

a is will b

What || does
, is a and b are n

a a
that is b.

a is will b .

40

Before leaving this section we shall take a brief look at two additional Boolean operators
that you may meet. These are and, although they can sometimes be used to
achieve the same effect as the operator , the way they are implemented is
significantly different.

To understand the difference, we first look at how are implemented.

a && b true only if both true. When a && b is evaluated, the value of
determined first. If evaluates to fals , the JVM deduces immediately that a && b
fals and skips the evaluation of

Only when true also be evaluated.

Similarly a || b true if either or both of true. Whe a || b is evaluated,
the value of is determined first. If evaluates to true, the JVM deduces immediately

a || b true and skips the evaluation of

Only when false also be evaluated

Unit 5 Dialogue boxes, selection and iteration

no

yes

is b
true?

the result is
true

the result is
false

is a
true?

no

yes

is b
true?

the result is
true

the result is
false

is a
true?

no yes

yes no

In case this seems a little tricky, the following pair of flow charts may help.

Figure 12a How && is implemented Figure 12b How || is implemented

This economical scheme – evaluating only as much as necessary – is called lazy
evaluation or short-circuit evaluation.

In contrast, when a & b and a | b are evaluated both operands are evaluated first and
only then is the result calculated. There is no short circuiting: both operands are always
evaluated.

Why would this matter? Well, imagine, for example, that a programmer wanted to check
whether acc1 actually referenced an Account object and if so, whether the account had
a balance greater than 500. Suppose they wrote the following, using the non-lazy
operator &:

boolean checkResult = (acc1 != null) & (acc1.getBalance() > 500);

3 Boolean expressions 41

See what would happen if acc1 were null. Both operands would be evaluated. When
the operand on the right was evaluated, an attempt would be made to send the
message getBalance() to a non-existent object. This would cause an exception.

Using the lazy operator && there would be no problem. If the first operand evaluated to
false the second operand would not be evaluated at all.

Because of cases like this it is generally safer to stick to the lazy operators && and ||.
This is what we shall be doing in M255.

42 Unit 5 Dialogue boxes, selection and iteration

In Unit 3 you met the
postfix operators ++ and
--, which respectively
increment and decrement
a numerical variable by 1.

4 Iteration

In Java there are two main ways of causing an action, or group of actions, to be
executed repeatedly – in other words to be iterated.

The first mechanism is a for loop. A for loop is suitable when you want to repeat an
action a given number of times or when you want to run through a known range of values
performing some action for each value in the range. After completing the specified
number of iterations the iteration stops.

The second mechanism is a while loop. A while loop is suitable when you cannot tell in
advance when the iteration should end. The iteration will continue looping while some
particular condition is true. As soon as the condition becomes false the iteration stops.

The methods System.out.println() and System.out.print()
The methods System.out.println() and System.out.print() provide a way of
producing textual output: System is a class that contains an object out that has
methods println() and print(). These methods output their argument. When you
use the OUWorkspace the output appears in the Display Pane. The difference between
them is that:

c System.out.println("Some text") prints ‘Some text’ then starts a new line for
whatever comes next;

c System.out.print("Some text") just prints ‘Some text’ with no new line
following it.

In this section you will use these methods to produce textual output.

4.1 Examples of loops
To illustrate loops here are some short snippets of code. Do not worry about the details
for the moment; we shall explain more in Subsection 4.2 below. These examples are
simply meant to give a flavour of how for and while loops can be used.

First we look at some for loops.

This code outputs the same string three times:

for (int numberOfTimes = 1; numberOfTimes <= 3; numberOfTimes++)
{

System.out.println("Hello");
}

The following runs through the range of numbers from 20 to 30 inclusive, printing each
number:

for (int value = 20; value < 31; value++)

{

System.out.println(value);

}

The next code fragment accepts a number from the user and produces a string
consisting of that number of ‘x’s. This demonstrates that the number of iterations can be
determined by the value of a variable.

4 Iteration 43

int numberOfX;

String result;

result = ""; // Empty string to start with

numberOfX = Integer.parseInt(OUDialog.request("Please enter a number"));

for (int num = 1; num <= numberOfX; num++)

{

result = result + "x";

}

System.out.println(result);

Now we examine a couple of while loops. In the following example the user is
repeatedly invited to enter a number. While the number they enter is less than 100, an
alert dialogue box is put up informing them of the fact. As soon as the number entered is
100 or more, the condition becomes false and the loop terminates.

while (Integer.parseInt(OUDialog.request("Input a number.")) < 100)
{

OUDialog.alert("Your number was less than 100.");
}

The point about this is that there is no way of predicting in advance what numbers the
user will actually enter. You cannot know how many numbers there will be, nor can these
numbers be expected to run neatly in some particular sequence. The code just has to
keep looping round as long as the input is less than 100 and will not stop looping until
the first value of 100 or more actually materialises.

The final example we give outputs the odd numbers in sequence 1, 3, 5, ... while the
current odd number is less than 30:

int number = 1;
while (number < 30)
{

System.out.println(number);
number = number + 2; // Next odd number

}

Once each number has been output the code adds 2 to it to generate the number that
will be used next time round the loop.

In this example we did not have to use a while loop, because the range of values we
wanted to iterate through was known. We could have used a for loop:

for (int number = 1; number < 30; number = number + 2)

{

System.out.println(number);

}

In fact it turns out that anything that can be done with a while loop can also be achieved
with a for loop and vice versa. However, in most applications you are likely to find one
form of loop is better than the other, in that it is more convenient and natural.

In the following subsections we look in detail at the structure of for and while loops,
and put them to use.

44 Unit 5 Dialogue boxes, selection and iteration

4.2 for loops
A Java for loop has the following structure:

for (init; test; inc)
{

statement block
}

The individual constituents are:

c init typically declares and initialises a variable,

c test is a condition which must be a Boolean expression,

c inc updates the variable declared in init; typically it increments (or decrements) it.

The sequence init; test; inc must be enclosed between parentheses. If these are
missing Java will report an error. init and test, but not inc, must be followed by
semicolons.

In fact the statement block The for statement block – often called the body of the loop – consists of one or more
can consist of zero statements enclosed between braces to form a block. If there is only a single statement
statements, but normally
this is not very useful.	 the braces can be left out, but we advise against it. This is because if you later decide to

add extra statements to the loop body it is very easy to forget to insert the braces.

When the loop is executed:

1 init is executed once.

2 test, which must produce a boolean result true or false, is evaluated.

3 If test evaluates to false, the iteration terminates at this point. If test evaluates to

true, the statement block is executed.

4 inc is executed.

5 Execution returns to step 2.

This keeps looping round until test evaluates to false. (Of course, it is possible that in
some cases this will happen when step 2 is reached for the first time; if so, the iteration
will stop immediately.) When the iteration terminates, the flow of program execution will
pass on to whatever code follows the statement block.

It is possible for both init and inc to be replaced by a sequence of statements
(including an empty sequence), but further discussion of this falls outside the scope of
this unit.

Let us see how the steps above work out for the following example:

for (int move = 0; move < 3; move++)
{

frog1.right();
frog1.croak();

}

454 Iteration

Code move

0

0 e

0

0

1

1 e

1

1

2

2 e

2

2

3

3

We trace what happens as a table.

Value of Value of
(move < 3)

int move = 0;

(move < 3) tru

frog1.right();

frog1.croak();

move++

(move < 3) tru

frog1.right();

frog1.croak();

move++

(move < 3) tru

frog1.right();

frog1.croak();

move++

(move < 3) false

In the example above the variable move acts as a loop counter. All the for loops you will
meet in M255 will have a similar counter, although it is possible to use Java for loops in
other ways.

You may have noticed that we declared and initialised the loop variable move in the first
line of the for loop:

for (int move = 0; ...

This has the effect of making the variable move local to the loop: it can only be used and
seen inside the loop header and body, and once the loop terminates move will be
undefined. As move is declared as local to the for loop, it would not be listed in the
OUWorkspace’s Variables Pane since it does not exist outside the loop.

If you wanted move to also be available outside the loop, you would declare it before the
first line of the loop:

int move;
for (move = 0; ...

Now move will be accessible inside the loop but will also continue to exist after the loop
has ended. This is not advisable and is considered bad programming style.

You may also have wondered why we initialised move to 0, and used the condition
move < 3. Why not initialise the counter to 1 and test move <= 3, which would have the
same effect? The reason is that it is a common convention (although not essential) in
Java to start loop counters from 0 rather than 1. We thought it would be useful to
introduce you to this idiom now, even though we did not use it in the previous examples.

46

++ d
be e – – or

e – 1

Exercise 8

1 a object
and r int

(a) a for 1 left
r r

(b)
a for

r

(a)

)
{

;
}

(b)

/**
.

*/

{
)

{

}
}

Note too the use of the postfix operator to increment move by 1. An alternative woul
move = move + 1. Similarly, if you wanted to decrement by 1, you could us move

move = mov . The form you use is up to you; we suggest you adopt whichever you
feel most comfortable with, and you will see both styles in the rest of the course.

In this pen-and-paper exercise you should assume that frog references Frog
aNumbe has been declared as an and assigned some value.

Using the example above as a guide, write loop that will move frog
aNumbe times. (Hint: you will need to use aNumbe in the test expression of the loop.)

Write a new method for the Frog class, with the method header
public void leftBy(int aNumber), which uses loop to move the receiver to
the left by the number of positions specified by the argument, aNumbe , in single steps
of a stone at a time.

Solution...

for (int move = 0; move < aNumber; move++

frog1.left()

* Moves the receiver to the left aNumber times

public void leftBy(int aNumber)

for (int move = 0; move < aNumber; move++

this.left();

Unit 5 Dialogue boxes, selection and iteration

In this next activity you will use for loops to organise some frogs in the Amphibians
window to perform a set of simple dances.

ACTIVITY 12

From BlueJ, open Unit5_Project_2 and the OUWorkspace, then make the Amphibians
window visible by selecting Open from the Graphical Display menu.

You can view a dance as a short sequence of movements, which are repeated for the
duration of the dance. To make frogs dance you first need to consider which of the
messages that could be sent to a Frog object would make it exhibit dance-like
behaviour in the Amphibians window. You should be familiar enough by now with the
protocol of Frog objects to agree that sending the messages left(), right() and
jump() to an instance of the Frog class would result in behaviour that could be used
as the basis to simulate frogs dancing.

1

4 Iteration 47

To start, create two instances of the Frog class by executing in the workspace:

Frog sam = new Frog();
Frog lew = new Frog();

Now execute the following group of statements in the workspace and observe the
effect in the Amphibians window:

sam.right(); sam.right(); sam.jump(); sam.left();

To turn this sequence of movements into a dance you need to send this series of
messages repeatedly to the same Frog object. Of course, one way to do this is write
the series out as many times as it takes. If, for example, four repetitions were
required, you could use the following:

sam.right(); sam.right(); sam.jump(); sam.left();

sam.right(); sam.right(); sam.jump(); sam.left();

sam.right(); sam.right(); sam.jump(); sam.left();

sam.right(); sam.right(); sam.jump(); sam.left();

Clearly, this is mightily inconvenient! And what if you wanted the number of repetitions
to depend on the value of a variable? You could not look at the value and then add
extra lines of code to the program while it was already executing.

Fortunately, as you have seen, Java provides a solution. The following for statement
does what we require:

for (int count = 0; count < 4; count++)
{

sam.right(); sam.right(); sam.jump(); sam.left();
}

The body of this loop consists of the four statements that make up the sequence of
steps, and it will be executed four times.

In the workspace write code that will cause the frogs you have created to move as
specified below.

2 Make the frog sam jump five times.

3 Make sam jump five times, with the value 5 stored in a variable numberOfJumps.

4 Move sam directly to the central stone. Make the frog perform the rightward dance

one step right, one step right, jump, one step left

three times, followed by the leftward dance

one step left, one step left, jump, one step right

three times.

5 Move the two frogs directly to their central stones. The frogs should then each
perform the rightward sequence

one step right, one step right, jump, one step left

alternately a total of three times. The two frogs should then, alternately in the same
order, perform the leftward sequence

one step left, one step left, jump, one step right

again repeating this three times in all.

Observe the Amphibians window to test that the frogs move as expected.

48

DISCUSSION OF

Unit 5 Dialogue boxes, selection and iteration

ACTIVITY 12
1 The Frog object referenced by sam should perform the sequence of movements:

one step right, one step right, jump, one step left.

2 The following loop will make sam jump five times:

for (int count = 0; count < 5; count++)
{

sam.jump();
}

3 The following loop will also make sam jump five times:

int numberOfJumps = 5;

for (int count = 0; count < numberOfJumps; count++)

{

sam.jump();

}

Of course, if the value held in numberOfJumps were changed from 5, the number of
iterations would be different.

4 	The following code will make sam move to the centre stone, then do a rightward
dance followed by a leftward one.

sam.setPosition(6);
for (int count = 0; count < 3 ; count++)
{

sam.right(); sam.right(); sam.jump(); sam.left();
}
for (int count = 0; count < 3 ; count++)
{

sam.left(); sam.left(); sam.jump(); sam.right();
}

5 The following code will make sam and lew alternately do a rightward dance followed
by a leftward one.

sam.setPosition(6);

lew.setPosition(6);

for (int count = 0; count < 3; count++)

{

sam.right(); sam.right(); sam.jump(); sam.left();
lew.right(); lew.right(); lew.jump(); lew.left();

}

for (int count = 0; count < 3; count++)

{

sam.left(); sam.left(); sam.jump(); sam.right();
lew.left(); lew.left(); lew.jump(); lew.right();

}

;
;

)
{

;
}

)
{

;
}

)
{

}
)

{

}

sam

then lew sam
lew began.

SAQ 12

Why would the following be an incorrect solution in step 5 of Activity 12?

sam.setPosition(6)

lew.setPosition(6)

for (int count = 0; count < 3; count++

sam.right(); sam.right(); sam.jump(); sam.left()

for (int count = 0; count < 3; count++

lew.right(); lew.right(); lew.jump(); lew.left()

for (int count = 0; count < 3; count++

sam.left(); sam.left(); sam.jump(); sam.right();

for (int count = 0; count < 3; count++

lew.left(); lew.left(); lew.jump(); lew.right();

ANSWER...

The intention was that would perform the sequence

one step right, one step right, jump, one step left

would do the same sequence, and so on, alternately; not that would do the
sequence three times before

4 Iteration 49

,

;

;

Java programming style

Good Java style normally dictates that we keep to one statement per line. However
the dance examples contain large numbers of short statements and in many cases
we have felt it preferable to put several of these on one line. Our reasoning is that

sam.right(); sam.right(); sam.jump(); sam.left();

is much more compact than

sam.right();

sam.right();

sam.jump()

sam.left()

Putting the movements that form a basic dance step on the same line also makes it
easier to understand the dance sequence.

50 Unit 5 Dialogue boxes, selection and iteration

ACTIVITY 13
1 	In the OU workspace write a for loop that will output the 9 times table, using

System.out.println(). The output should appear like this:

1 times 9 is 9

2 times 9 is 18

and so on, until

12 times 9 is 108

2 	Write code that will prompt the user for a number using a request dialogue box, then
output whatever times table they have chosen.

DISCUSSION OF
ACTIVITY 13
1 	Here is our solution:

for (int number = 1; number <= 12; number++)

{

System.out.println(number + " times 9 is " + number *9);

}

2 	Here is our solution:

int tableNumber;
tableNumber =

Integer.parseInt(OUDialog.request("Which times table do you want?"));
for (int number = 1; number <= 12; number++)
{

System.out.println(number + " times " + tableNumber
+ " is " + number * tableNumber);

}

In the next activity you will consolidate your knowledge of for loops by writing code that
requires two for loops, one nested inside the other.

ACTIVITY 14

In this activity, using the OUWorkspace, you will write code that will print to the Display
Pane the well-known song ‘10 men went to mow’, missing out the first verse (because it’s
different from the others and we want to keep things simple).

The song begins with:

2 men went to mow, went to mow a meadow,

2 men, one man and his dog,

Went to mow a meadow.

The next verse is:

3 men went to mow, went to mow a meadow,

3 men, 2 men, one man and his dog,

Went to mow a meadow.

Then we have 4 men and so on. This goes on until the last verse:

10 men went to mow, went to mow a meadow,

10 men, 9 men, 8 men, ..., 2 men, one man and his dog,

Went to mow a meadow.

for
r 2 to 10 for loop

:

.

r 2;
for

n for

p – 0
{

p – 2
{

}

}

{
;

)
{

}
;

}

)
and).

section.

To do this you will need two loops, one inside the other. The outer loop should
declare a variable verseNumbe that is incremented from ; then in the
statement block you should first print the first line of the song

x men went to mow, went to mow a meadow,

where x is the current value of verseNumber

Then you should start the inner loop. The inner loop should declare a variable
numberOfMen that is decremented from the current value of verseNumbe down to
then in the loop statement block you should print just the beginning of the second line
of the verse:

x men,

where x is the current value of numberOfMe . Next close the inner loop and print

one man and his dog,
Went to mow a meadow.

Then finally close the outer loop.

Schematically, you will then have the following:

Outer loo verseNumber increments up from 2 to 1

First line of verse
Inner loo numberOfMen decrements down from verseNumber to

Second line of verse, except "one man and his dog,"

"one man and his dog,"
"Went to mow a meadow."

DISCUSSION OF
ACTIVITY 14

Here is our version of the code:

for (int verseNumber = 2; verseNumber <= 10; verseNumber++)

System.out.println(verseNumber + " men went to mow, went to mow a meadow,")

for(int numberOfMen = verseNumber; numberOfMen >1; numberOfMen- -

System.out.print(numberOfMen + " men, ");

System.out.println("one man and his dog,")
System.out.println("Went to mow a meadow.");

You will need to use both
System.out.println(

System.out.print(
These were described at
the beginning of this

4 Iteration 51

52 Unit 5 Dialogue boxes, selection and iteration

4.3 e loopswhil

When the number of repetitions in a loop is not fixed at the outset, but depends on
achieving some condition, the appropriate structure is a while statement, or while
loop.

A Java while loop has the following structure:

while(condition)
{

statement block

}

When the loop is executed:

1 condition, which must be a Boolean expression, is evaluated;

2 if condition evaluates to false, the iteration terminates at this point; if condition
evaluates to true, the statement block (also called the body of the loop) is
executed;

3 execution returns to step 1.

When the iteration terminates, the flow of program execution will pass on to whatever
code follows the statement block.

As it stands, this does not explain how the loop can ever terminate. Something has to
happen to make condition go from true to false. Very commonly the value of the
condition will depend on something declared and initialised prior to the loop, which gets
changed each time the body of the loop is executed, so that eventually the condition
becomes false. Another possibility is that the value of the condition may depend on input
from the user, or from some other source such as a file. You saw an example of this in
Subsection 4.1, where a loop was terminated as soon as the user entered a number
which was 100 or more.

Example

This example shows how to move a frog – whose position is assumed to be
somewhere to the left of the central stone – to the central position in the
Amphibians window (stone 6) by repeatedly executing the statement
frog1.right(); while the frog’s position is less than 6.

while (frog1.getPosition() < 6)

{

frog1.right();

}

The following table traces what happens if the frog is initially at position 1.

534 Iteration

Code
)

1

2

2

3

3

4

4

5

5

6

6 e

Value of
frog1.getPosition()

Value of
(frog1.getPosition() < 6

(frog1.getPosition() < 6) true

frog1.right();

(frog1.getPosition() < 6) true

frog1.right();

(frog1.getPosition() < 6) true

frog1.right();

(frog1.getPosition() < 6) true

frog1.right();

(frog1.getPosition() < 6) true

frog1.right();

(frog1.getPosition() < 6) fals

Exercise 9

y sam

o .

)
{

;
}

)
.

(a)
right

By long tradition, a dance in the amphibian world begins with all the participants in the
central position dressed in a red costume. Before the dance can commence, the frogs
participating must move to the central stones and put on their red clothing in readiness.

Rather than moving directly to these stones, however, they hop towards the centre stone
by stone. That is, they jump then move one step left or right, as appropriate, repeating
this sequence until they reach the central stone. How many hops a given frog takes to
reach the centre will of course depend on its starting position.

First consider the situation where a frog is to the left of the centre position when it starts.
The following statement when executed will cause the frog referenced b to hop right
until it reaches the central stone. The Boolean expression is evaluated to see if the frog
has still not reached the centre. If it evaluates to true, the body of the block is executed
to move the frog one stone to the right. This is carried out repeatedly while the expression
continues to evaluate t true

while (sam.getPosition() < 6

sam.jump(); sam.right()

When the frog has made the required number of hops and reached the centre, the
condition (sam.getPosition() <6 will become false, the iteration will terminate and
the frog will stop hopping

The code above assumes that at the start the frog is positioned to the left of the
centre. Suppose that on the contrary the frog is initially positioned to the of the
central stone. Write the code that is now needed to make the frog hop to the centre.

54 Unit 5 Dialogue boxes, selection and iteration

(b)	 How can the code that you have just written be combined with the code we gave
earlier so that the frog will hop to the central stone from any position? (Hint: do not
think too hard. The answer is quite straightforward.)

(c)	 Write (on paper) a method of takeUpYourPosition() for the Frog class which when
sent to a Frog object will make it hop to the centre and put on its red costume
(remember the red costume?).

Solution...

(a)	 The code needed is:

while (sam.getPosition() > 6)

{

sam.jump(); sam.left();

}

(b) Simply put the two one after another, like this:

while (sam.getPosition() < 6)

{

sam.jump(); sam.right();

}

while (sam.getPosition() > 6)

{

sam.jump(); sam.left();

}

(c)	 First write the initial comment and method header. Open up a pair of braces to
receive the body of the method.

/**
* Makes the receiver move to the central stone, hopping one stone at a time.

* Sets its colour to red on arrival.

*/

public void takeUpYourPosition()

{

}

Now copy the code written in (b) into the space between the braces. Go through the
code and replace sam everywhere by this, the receiver of the message corresponding
to the method we are writing. Add the colour change at the end. Hey presto!

Here is the finished method:

/**
* Makes the receiver move to the central stone, hopping one stone at a time.

* Sets its colour to red on arrival.

*/

public void takeUpYourPosition()

{

while(this.getPosition() < 6)

{

this.jump(); this.right();

}

while (this.getPosition() > 6)

{

this.jump(); this.left();

}

this.setColour(OUColour.RED);

}

4 Iteration 55

ACTIVITY 15

Instead of using a while loop as in Exercise 9, you could move the frog to the central
stone by working out how far to move and in what direction, and then use a for loop. On
paper, rewrite the solution given above in part (b) of Exercise 9 using this different
approach. There is no need to write an actual method; assume the code will be executed
in the workspace, so that instead of this you should use a specific instance of Frog such
as sam.

Then open Unit5_Project_2 and the OUWorkspace. From the Graphical Display menu
select Open to make the Amphibians window visible. Enter your code into the workspace.
Create an instance of Frog referenced by sam and test your code on it.

DISCUSSION OF
ACTIVITY 15

We first set the initial position with:

Frog sam = new Frog();

int initial = 4;

sam.setPosition(initial);

You can then move sam to the central stone as follows:

if (sam.getPosition() < 6)
{

int jumps = 6 - sam.getPosition();

for (int count = 0; count < jumps; count++)

{

sam.jump(); sam.right();

}

}

if (sam.getPosition() > 6)

{

int jumps = sam.getPosition() - 6;

for (int count = 0; count < jumps; count++)

{

sam.jump(); sam.left();

}

}

sam.setColour(OUColour.RED);

Repeat the test with different values for the variable initial.

Exercise 10

A frog is taking part in a sponsored hop with the following rules. Beginning from whatever
position the frog happens to be at when the sponsored hopping starts, it repeatedly hops
one stone to the right. For each hop it makes, 10 pounds is credited to a bank account,
which starts with a balance of zero. The frog continues hopping until either (a) it reaches
stone 11, or (b) 80 pounds has accumulated in the account. (Of course, if the frog is
already at stone 11 or beyond no money will be earned.)

56 Unit 5 Dialogue boxes, selection and iteration

;

r and

{
;

}

Write a

e
.

;
;

{
– .

;
?

{

;
}

;
}

;

Assume that the frog and the bank account have already been created, using the
following statements:

Frog mel = new Frog()
Account acc = new Account();

You need not worry about the attributes holde number of the account; in this
exercise you are concerned only with the balance.

Write down the code that will cause the frog to hop rightwards according to the
sponsorship rules given above.

Solution...

while ((mel.getPosition() < 11) && (acc.getBalance() < 80))

mel.jump()

mel.right();
acc.credit(10);

Exercise 11

A well-known puzzle goes like this. A snail starts at the bottom of a well 10 metres deep.
(Presumably it fell down!) Each night the snail climbs up 3 metres towards the mouth of
the well, but each day it slips back again by 2 metres. How many days will it take the snail
to escape from the well?

while loop to simulate this problem. You will need two variables, one to keep
track of the snail’s height and the other to record the number of days. You will also need
to check inside the body of the whil loop to see if the snail is out of the well yet. If so, it
will not slip back 2 metres during the next day, because it has escaped

Solution...

int distanceClimbed = 0
int days = 0
while (distanceClimbed < 10)

// Night climb up
distanceClimbed = distanceClimbed + 3
// Escaped yet
if (distanceClimbed < 10)

// If not, slip back during day.
distanceClimbed = distanceClimbed - 2

days = days + 1

System.out.println(days)

e

{

}

1
1

e always

require

1 to 3
expression?

{
;

}

1 –1, – n
e

g
) 0 a

Endless looping
There is a potential danger with whil loops. It is very easy to write code accidentally
that repeats endlessly. If the body of the loop does not change the variable that the loop
condition is testing, or does not change it in the right way, the condition may always be
true, and the loop will carry on repeating forever. Here is an example:

while (frog1.getPosition() != 6)

frog1.right();
frog1.right();

Here, the programmer intended frog to move repeatedly two steps to the right, until its
position equalled 6. But what will happen if frog sets off from an odd-numbered stone?
Since it moves two steps at a time, it will always be on an odd numbered stone, 1, 3, 5,
7, ... No odd number can equal 6!

The expression (frog1.getPosition() != 6) will therefor be true, and the
frog will continue moving two steps right forever. This is not what was intended.

On the other hand there can be situations where we actually a program to run
forever. In Java a common way of coding this is:

while (true)

When the test expression true is evaluated the result is invariably true, so the loop will
run endlessly.

SAQ 13

What would happen if you set the position of frog before executing the following

while (frog1.getPosition() != 6)

frog1.left()

ANSWER...

The statement forming the body of the loop would continue to decrease the position of
frog (that is, to 2, 1, 0, 2, ...). Hence the Boolean condition would never retur
fals . This means that the loop would be executed forever!

Exercise 12

Using pen and paper, write a new method for the HoverFro class, with the method
signature moveTo(int , which first sets the height of the receiver to and then uses
while loop to move it to the height specified by the argument, increasing the height in
steps of 1.

4 Iteration 57

For instance, an airline
reservation system might
be intended to run for 24
hours a day, never
stopping.

/**
n

.
*/

{
;

{
;

}
}

58

Solution...

* Sets the height of the receiver to 0 and the

* moves it to the height specified by the argument,
* increasing the height in steps of 1 to aHeight

public void moveTo(int aHeight)

this.setHeight(0)

while (this.getHeight() != aHeight)

this.up()

Unit 5 Dialogue boxes, selection and iteration

Note that if you sent the message moveTo(), as coded in Exercise 12, with an argument
value outside the range 0 to 6 you would find that it looped for ever. Since it is impossible
to move hoverfrogs outside this range, the condition this.getHeight() != aHeight
will always be true. The method could be made safe from this risk by adding an extra
test.

public void moveTo(int aHeight)
{

if ((aHeight >= 0) && (aHeight <= 6)) //extra test
{

this.setHeight(0);
while (this.getHeight() != aHeight)
{

this.up();

}

}

}

ACTIVITY 16

Open Unit5_Project_1 and the OUWorkspace.

Imagine a user saving money in a bank account, represented by an instance of the
Account class referenced by herAccount. The user’s savings target is 500 pounds. In
the workspace, create a new instance of Account with

Account herAccount = new Account();

Here is the specification of the code we would like you to write. Please do not start coding
until you have read the specification and the advice that follows.

You are asked to write code which uses a while loop to repeatedly check the balance of
herAccount to see if 500 pounds has been reached yet. If this target has not yet been
achieved, a request dialogue box is to be displayed asking the user how much they want
to pay in. The amount they enter (which should be a whole number not a decimal) is to be
added to the balance of herAccount. As soon as the balance of herAccount is at least
500 pounds, the iteration should cease and the message ‘Congratulations, you have met
your target!’ should be displayed in an alert dialogue box.

59

1 not

{

}

e

.

,

t

(a)

(b) e
–

reduced.

2

1

;
;

2

)
{

;
}

t
input:

)
{

(
;

}

We suggest you work as follows.

In the workspace type an empty block, as follows. Do include the first line with the
while in at this point; you will add that in a minute.

Now inside this block add code that will prompt the user for the amount of the deposit
and add this to the balance of the account (remember to us
Integer.parseInt() to convert the string returned by the dialogue box into an
integer). You should also use credit() to increase the balance of herAccount

Once this block of code is written test it. It should put up a dialogue box and then add
whatever figure you enter to the balance of herAccount. You can check the balance
by inspecting herAccoun . By doing this test you are making sure that the code in the
body of the loop works correctly. You can see that unless this code is right in the first
place there is no point in repeating it over and over again in a loop!

If it does not work, then go back and try to correct it.

The beauty of doing things this way is two fold:

You break the problem into more manageable chunks.

You know before you add the whil that the account balance is getting updated
correctly so the chances of accidentally writing an endless loop are greatly

Now add the while with the appropriate condition in front of the block, to construct
the complete while statement. Remember the alert dialogue box that was specified;
that goes at the end.

Execute your code to verify that it works to specification.

DISCUSSION OF
ACTIVITY 16

This is our version of the code that should go inside the block:

int inputAmount = Integer.parseInt(
OUDialog.request("How much do you want to deposit?"))

herAccount.credit(inputAmount)

This is the whole thing:

Account herAccount = new Account();
while (herAccount.getBalance() < 500

int inputAmount = Integer.parseInt(
OUDialog.request("How much do you want to deposit?"));

herAccount.credit(inputAmount)

OUDialog.alert("Congratulations, you have met your target!");

Alternatively, you could have written the code without a variable to hold the amoun

Account herAccount = new Account();
while (herAccount.getBalance() < 500

herAccount.credit(Integer.parseInt

OUDialog.request("How much do you want to deposit?")))

OUDialog.alert("Congratulations, you have met your target!");

We know this code is not
very exciting so far, but
bear with us!

Look at our solution if you
need to.

4 Iteration

60 Unit 5 Dialogue boxes, selection and iteration

5 Summary

After studying this unit you should understand the following ideas.

c Classes can define class methods in addition to instance methods.

c The execution of a class method does not involve a message-send to an object.

c Dialogue boxes are a means of obtaining input from, and displaying output to, the
user. In this course dialogue boxes are created using class methods of the
OUDialog class.

c The class methods Integer.parseInt() and String.valueOf() can be used to
convert a string to a number and vice versa.

c A sequence of statements can be made into a statement block by enclosing it in
braces.

c An if-then statement is used to determine whether or not to execute a statement
block depending on a Boolean condition which evaluates to true or false.

c An if-then-else statement is used to select between two alternative statement
blocks depending a Boolean condition. If the condition evaluates to true the then
statement block is executed, otherwise the else statement block is executed.

c The operators == != < <= > >= are used for comparing values from primitive data
types.

c The operator == can also be applied to objects, in which case it tests whether two
variables reference exactly the same area in memory, that is, whether they reference
the same object. Similarly != tests whether its operands reference different objects.

c The message equals() can be used to test if two strings contain the same
characters in the same order.

c More complicated Boolean expressions can be composed by using the logical
(Boolean) operators &&, || and !.

c The operators && and || use short-circuit evaluation.

c Java statement blocks can be executed repeatedly using for and while loops as
control structures. The number of iterations is controlled by a condition.

Summary 61

SLEARNING OUTCOME

After studying this unit you should be able to:

c invoke class methods in the class OUDialog to create dialogue boxes to display
output to the user or to gain input from the user;

c write Java statements which convert string values to number values and vice versa;

c use if statements to select alternative statement blocks for execution depending on
a condition;

c construct more complex conditions using comparison and logical operators;

c use the Java for statement to execute a statement block a fixed number of times;

c use the Java while statement to execute a statement block a variable number of
times depending on some condition.

62 Unit 5 Dialogue boxes, selection and iteration

Glossary
block See .

A
of a .

r or e n

m

.

See n.

if e
a .

class
methods of

)
)
)

k

static

statement block

Boolean condition Boolean expression used to control the conditional execution
statement block

Boolean expression An expression that evaluates to eithe true fals . Boolea

expressions can be simple or complex and can involve a number of variables.

Boolean operators Operators used to combine simple Boolean expressions to for
more complex Boolean expressions, which in turn can be combined with other Boolean
expressions. They are also known as logical operators.

class method A method that is executed as the result of an invocation (not by
sending a message to an instance of a class). Class methods in Java are specified by
including the static modifier in the method header

condition Boolean conditio

conditional selection The use of statements to select and execute alternativ
statement blocks based upon the value of Boolean condition

dialogue box A mechanism whereby users can be given information by the system or
provide information to the system on request. Dialogue boxes are implemented by

OUDialog. Examples of these methods are:

alert(String prompt
confirm(String prompt
request(String prompt
request(String prompt, String initialAnswer)

iteration Also referred to as repetition. The repeated execution of a statement bloc
for as long as some condition continues to be true.

statement block A statement or sequence of statements ‘bundled together’ for use in
a particular context. Any sequence of statements can be turned into a block by
enclosing it in braces.

A Java keyword which defines a variable or method as belonging to a class
rather than its instances.

C

Index 63

Index

A

alert 8

and 34

B

binary operators 33

Boolean

condition 21, 24

expression 33

operators 34

Cancel button 15, 31

class method 7

comparison operators 33

concatenation operator 17

condition 21

conditional selection 5

confirm 12

D
dialogue boxes 6

E

equality operators 33

equal to 33

F

for loop 44

G

greater than 33

greater than or equal to 33

I

if-then statement 21

if-then-else statement 21

input box 14–15

Integer 18

iteration 5

L

lazy evaluation 40

less than 33

less than or equal to 33

local variable 12

M

modal dialogue box 6

N

No button 13

not 34

not equal to 33

null 15

O

or 34

OUDialog 6

P

parentheses 33

parseInt 18

R

readability 14

relational operators 33

request 14

S

short-circuit evaluation 40

statement block 22

static 7

T
toUpperCase 9

U

unary operator 33

V

valueOf 18

W

while loop 52

Y
Yes button 13

