M255 Unit 4
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

An introduction to
methods

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.
Copyright © 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,

WAT 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

ISBN 978 0 7492 5496 4
2.1

CONTENTS

Introduction 5
1 Classes and methods 6
1.1 Alook inside the Frog class 6
1.2 Messages and methods 8
1.3 Documenting methods 17
1.4 Editing, compiling and executing methods 19
2 Instance variables 21
2.1 Instance variables and methods 21
2.2 Constructors and initialisation 24
2.3 Accessor methods 25
2.4 Access modifiers — public or private? 28
2.5 Adding an instance variable to a class 28
3 Methods that return values 32
3.1 Message answers and method return values 32
3.2 Specifying the return type of a method 35
3.3 Messages with no reply 37
4 Methods with arguments 38
4.1 Formal arguments 38
4.2 Methods with two arguments 43
4.3 A more significant example 44
5 Reuse of code 47
5.1 Using libraries 48
5.2 Using accessor methods 49
6 Encapsulation 52
7 Consolidation 54
7.1 The Marionette class 54
8 Summary 60
Glossary 62
Index 64

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

In earlier units you interacted with objects by sending them messages. In this unit you
are going to use the OUWorkspace as before, but you are also going to be looking
‘behind the scenes’ at the code that causes Frog objects to behave as they do; in other
words, you will see how objects are programmed to respond to messages. To do this
you will use an editor to view and to modify the source code for the Frog class. As you
know from Unit 1, your computer does not understand the source code in the form you
have written it so, when you have modified the code, you will need to compile it using
the Java compiler in Blued.

The behaviour of an object is determined by its protocol — the messages to which it can
respond. In this unit you will learn how to extend the protocol of instances of a particular
class by providing the class with the code that an object of that class needs to execute
in response to these new messages. To add a new message to the protocol of objects of
some class we must write a piece of program code called a method. This is the code
that is executed when the corresponding message is sent to an instance of that class.
Thus creating new behaviours is about writing new methods or changing existing ones.

In Unit 2 you met polymorphism, an important concept in object-oriented programming.
This unit will introduce you to two further principles: encapsulation and reuse of code.

In the remainder of this unit we aim to:
» introduce methods and the editor in Blued (Section 1);
» introduce instance variables and their accessor messages (Section 2);

> explore more complex methods, including those with return values and arguments
(Sections 3 and 4);

» introduce the principles of reuse of code and encapsulation (Sections 5 and 6).

Sections 1 to 4 consist of text (including SAQs), activities (for which you will need your
computer) and paper-based exercises. These sections may look short on paper, but the
activities will take time to complete as you will be building up facility with the Blued editor
and the techniques necessary for writing code. Sections 5 and 6 are mainly discursive,
with few exercises or activities, and so may not take you as long to complete. However,
the concepts they introduce are fundamental to your understanding of the principles of
object-oriented programming. Section 7 is a consolidation section. It consists of a few,
longer, activities and aims to draw together in one extended example all the techniques
that you have learned in this unit. It is important to complete this section as it will give you
practice in the type of activities that may arise in practical TMA questions.

If you cannot remember
how to do this, refer to the
Software Guide.

This representation uses a
notation called UML
(Unified Modelling
Language), which is
commonly used to
diagrammatically model
the relationships between
classes. You will notice
that the classes Frog and
HoverFrog are connected
by an open-headed arrow.
This indicates that
HoverFrog is a subclass
of Frog.

Unit 4 An introduction to methods

Classes and methods

In this section we shall start by exploring the code for the Frog class. We then extend
the protocol for Frog objects by adding a new method, catchFly(), and add a new
method, doublelLeft (), to the Toad class. Two discussions complete the section: a
short look at documenting a class, and a description of the process that starts with
editing the code and results in observable behaviour.

IEBH A ook inside the Frog class

First, we will look at how the Frog class is constructed. We will use the editor in BlueJ to
scroll through the source code for the Frog class and look at the various parts. In this
unit we will only be concerned with changing the code for some methods and writing
some new methods, so the explanations for the various parts of the code are only
sufficient to enable you to carry out these tasks.

ACTIVITY 1

This activity introduces you to the way classes are written by way of an exploration. As
such, no specific ‘exercise’ is set, and the activity contains its own discussion of what you
see via the exploration.

Launch Blued and open the project named Unit4_Project_1 from the Block1 folder. You
should see a window containing rectangles representing the classes Toad, Frog and
HoverFrog.

Double-click on the Frog class to open the editor. The window that opens should look
something like Figure 1. If it does not, make sure the text in the drop-down list at the top
right-hand corner of the window contains the word ‘Implementation’.

Your editor window should now look like that in Figure 1.

Figure 1 shows the major elements of the code for the class Frog and a brief explanation
for each part. In this section we shall be concentrating on the methods. For now, just
make sure you can identify the different parts of the code in the editor window on your
screen, and then close the editor and return to reading this text.

1 Classes and methods

The Java keyword import tells the Java compiler that it needs to find some libraries which contain existing
code that it will need to use. We shall discuss the use of Java libraries later.

- BX

Class Edit Tools Options
Undo ’Cnpy][Paste”Find...”Find Nest| [Close | view Irmplerentation v
.Llimpnrt ou.*; -)
E_fl"ﬁ"ﬁ'
2 # Objects of the Frog class are zimple software representations of frogs. o
¢ # The class wodels them as having the attributes position and colour, and This is the
5| * hence instance wariables of those names. commept for th_e
| * The protocol provides messages to get the instance wvariables and to _ClaSS_IF contains
7| ¥ cause changes in an appropriate user interface., Incrementing and information about
| ¥ decrementing a frog's position by a whole mmber iz reflected in an ¢ the purpose of th,e
i ¥ appropriate user interface as spatial mowement to the user's right and class, who W_rOte it
| * left, respectiwelv. (Hence the messages for incrementing and decrementing and the version
1| * position are called right() and lefti).) number.
1| *
1x * Hauthor M255 Course Team
¢ " Bversion 1.0 This is the class header — it tells the compiler that
o I /the class is called Frog and has a superclass
1 called OUAnimatedObject.
1ffpublic class Frog extends 0UAnimatedObject
1i|l < Braces (curly brackets) enclose blocks of code and are very
19|/* Instance wariahles */ important — if you scroll to the bottom of the code you will find
i the closing brace to match this opening one.
il priwate 0UCalour colour:
” private int position: These are the declarations for the instance variables. They
” represent the attributes of the class.
it A
5 * Constructor for objects of class Frog which initialises colour Lo green The constructor tells
i * and position to 1. the compiler how to
i *’f initialise a new
| public Frogi) \ Frog object. Note
a the use of braces to
i superlly enclose the
i1 this.colour = O0Colour.GREEN; constructor code.
2 this.position = 1;
22 1
i
:5|/% Instance methods +/
3
27 J,J'.'f'.':
- * Returns the position of the receiwver.
2a #y This is the method getPosition ().
@| public int getPasitiani) Methods define the behaviour of Frog
o ; objects. Again the code for the method is
EH return this.position: enclosed with braces.
43 i
44 o
saved

Figure 1 An editor window for the Frog class

Unit 4 An introduction to methods

m Messages and methods

In the activities in the previous units you sent messages to Frog and Toad objects that
caused them to behave in a certain manner; for instance, if a Frog object is sent the
message Jjump () it will seem to jump in the Amphibians graphics window.

Adding a message to the protocol of a class involves writing a piece of program code
called a method. Every message must have a corresponding method. So, for the class
Frog, whose protocol is right (), left(), green(), ... , there are corresponding
methods right (), left(), green(), Notice that the message and the
corresponding method have the same name.

The structure of a method

Let us use the message right () as an example. You have already used this part of the
protocol for Frog with message-sends such as the following.

frogl.right();

The method right () - the program code that is executed whenever a Frog object is
sent the message right() - is shown below.

/**

* Increments the position of the receiver by 1.
*/

public void right()

{

this.setPosition(this.getPosition() +1);

}

A method consists of a comment, a method header and the method body. For the
method right () the comment is:

/**
* Increments the position of the receiver by 1.
*/
the method header is:

public void right()

and the method body is:
{

this.setPosition(this.getPosition() +1);
}

Thus the comment is the description, in plain English, of what the method does; the
method header is the part that gives important information to the compiler about the
method; and the method body is the Java code that tells the compiler what should
happen when the method is executed.

1 Classes and methods

SAQ 1
The following is the method home () in the class Frog.
VA
* Resets the receiver to its "home" position of 1.
*/

public void home ()

{

this.setPosition(1l);
}
Write down:
(a) the comment;
(b) the method header;
(c) the method body.
AN S VR
(a) The comment is:
/**
* Resets the receiver to its "home" position of 1.
*/
(b) The method header is:
public void home()

(c) The method body is:
{

this.setPosition(1l);

The method comment is enclosed by /** and */. This is so that the documentation for
the method can be created automatically, as you will see later. Within the method body,
single-line comments are sometimes used to explain what is intended by a section of
code. They start with // and do not appear in the automatically generated
documentation.

The method header has three parts. The first part is the access modifier; it tells the Java
compiler what other objects can send the corresponding message. For now, all the
methods we use will be public — any object may send the corresponding message to
objects of the class defining the method (including you, from the OUWorkspace!).
Declaring a method as public also enables an object of any subclass of the class
defining the method to respond to the corresponding message. The second word tells
the Java compiler whether the method returns a value as a message answer and, if so,
the type of the value returned. The methods we consider in this section return no values
— this is indicated by the keyword void. For example, the method right () returns no
value, so the header includes the word void. The final word is the name of the method,
in this case right, followed by parentheses. When you look at some more complicated
methods there will be arguments between the parentheses, but for now all you need to
remember is that you must put the parentheses after the name of the method.

The method body consists of one or more Java statements, each ending with a
semicolon. These statements comprise the code that is executed whenever the
corresponding message is sent to a Frog or HoverFrog object. We say that when a
message is sent to an object at run-time, the corresponding method of the same name is
executed (or ‘invoked’). The method body is enclosed by braces (curly brackets).

Remember that a Java
statement is a single
instruction for the Java
compiler.

Unit 4 An introduction to methods

Remember from Unit 3
that a variable is a named
memory location used to
store a value, or reference
to an object, which can be
changed by assignment.
The variable this is
known as a pseudo-
variable: it can only
reference a particular
object — the receiver — and
you cannot change (by
assignment) the object to
which this refers.

Launch BlueJ (if you do
not already have it
running) and open the
project named
Unit4_Project_1 from the
Block1 folder. Then
double-click on the class
Frog to open the editor.
From now on we will just
ask you to open the BlueJ
editor on a class in a
particular project. You may
need to make a note of
how to do this.

The special variable this is used within a method whenever there is a need to reference
the object that was sent the corresponding message and so caused the method to
execute. In other words, this references the receiver of the message that caused the
execution of the method. You do not (indeed cannot) declare the special variable this,
but it is always automatically available for use with a method and is an example of a
pseudo-variable.

Each message in the protocol of Frog has a corresponding method that is similar in its
overall structure to that of the method right (). A method can be thought of as the way
the behaviour in response to a message is provided - the concrete implementation of a
message.

SAQ 2
What is the difference between a message and a method?

ANSWER ..

A method is the piece of code (in the case of M255, Java code) that is executed when
an object receives a particular message. In other words, when you send a message to
an object, it is the corresponding method code that is executed at run-time.

Exercise 1

The comment and method header for the method 1eft () of the class Frog is given
below.
/**
* Decrements the position of the receiver by 1.
*/
public void left()

The code for the method 1eft () consists of a single Java statement (similar to that for

right()). Write down the code. Do not forget the braces and the semicolon.

ST] (U170 o [T
{

this.setPosition(this.getPosition() - 1);

ACTIVITY 2

This activity introduces you, through a second exploration using the Blued editor, to the
way methods are written. Again, no specific ‘exercise’ is set and the activity contains its
own discussion of what you see via the exploration.

Open the Blued editor on the class Frog in Unit4_Project_1. The instance methods are
all set out after the constructor. Scroll down to the method left (). You will see the
following code.

1 Classes and methods

Find the comment (the text between /** and */), the method header and the method
body (the part enclosed in braces).

/**
* Decrements the position of the receiver by 1.
*/
public void left()
{
this.setPosition(this.getPosition() - 1);

}

Browse through all the methods that are available for Frog objects. Note how all the
methods have the same format: the method header followed by the method body. Do not
worry if you cannot understand the code at the moment — all will be revealed in the next
few units.

Now open an editor window on the class Toad and see how the method left () for Toad
differs from the method 1eft () for Frog. Try to arrange matters so that you can see
copies of the methods together. (You can open an editor window for each class and have
them on the screen at the same time.)

Coding a new method

Let us now consider a message that is not yet part of the protocol for the Frog class.
Suppose that we want Frog objects to respond to a new message called catchFly().
The effect of catchFly () — the new behaviour it will provide - is that a Frog object
which receives a catchFly () message will perform a jump, perform a croak, and then
move one position to the right. In order to extend the protocol of Frog objects in this
fashion, a method for catchFly () must be provided.

Exercise 2

Write down a comment and method header for the method catchFly().

ST o] [0 (1) o FE TR

Here is our solution; your comment will probably differ but should provide the same
information.

/**

* Performs a jump, then croaks and then moves right.
*/

public void catchFly()

Exercise 3

Write down the Java statements that will complete the method catchFly (). Remember
the braces and the semicolons.

ST o] (8 (1) o FE TR
{

this. jump();

Iz

this.croak();
this.right()

_ Unit 4 An introduction to methods

You are now going to put these ideas about messages and methods into practice in the
following activities.

ACTIVITY 3

You are now going to create a new method, catchFly (), for the Frog class. Here is the
complete code for catchFly (), as developed above:

/*
* Performs a jump, then croaks and then moves right.
*/
public void catchFly()

{

this. jump();
this.croak();
this.right()

’

}

In order to create a new method, you need to edit the source code for the class. Open the
editor on the Frog class in Unit4_Project_1. Scroll the editor window down to the end of
the code. What you see now should look like Figure 2.

Class Edit Tools Options

[Cup\;] ’Pastel [Find...] ’Find Ne}rtl [Clnse] View |mplementation hd

Lz5 fuw ~

126 % Causzes a change in an appropriate ochserving user interface. 1

Lz7 * Icon representing the receiwver performs a jump animation

k3] L

1zd public wold Jumpi)

140 {

1141 this.performdotion (" junp™) 2

14 }

L4z

144 fE

1145 * Returns a string representation of the receiwer.

146 L

147 public 3tring to3tringi)

143 {

143 refturn "An instance of class "+ this.getClass().getlamer)

L] + " position " 4 this.getPosition()

51| + 7, colour " 4+ this.getColouri():

& }

52(1 (\ v
saved

Your method needs to go here — before the last closing brace.

Figure 2 The Frog class before the method catchFly() has been inserted

Position your cursor after the brace that ends the last method in the class. There will be a
brace below your cursor. This is correct — the class needs a final closing brace. Insert the
method code for catchFly (). Your editor window should now look like Figure 3.

Class Edit Tools Options

[Compile lUndnl lCnpyl [Paste] lFind...l [Find Next] lCIosel View |rmplementation hd
il?s J,-'mr ﬁé
;m * Causes a change in an appropriate ohserving user interface. :
513'.' * Icon representing the receiwer performs a jump animation
LT wi
?139 public woid jump ()
él*iﬂ {
ha this.performdction| juup™) ; |
14 1 |
il&:s‘ :
:14-1 FEE

:J.&S * Returns a string representation of the receiwver. ,
146 L [
;l&'f public 3tring to3tring() :
hes| |
14 return "An instance of class "+ this.getClass().getlane () '
1@ + T position T o4 this.getPositiont)
;151 + ", colour " + this.getColour(); |
;151 i :
s
%15-1 S
155 * Performs a jump, then croaks and then mowves right. :
élss L |
157 public woid catchFly() '
185 { '
1151 this.jump(): |
%_Lsu this.croaki(): |
Elsl this.righti): I
hez|) '
SLJ.s:e 1 v

/ changed

The message area, where messages from the Java compiler may appear.

Figure 3 The Frog class after the method catchFly() has been inserted

Now click on the Compile button at the top-left of the editor window, and look at the
message area at the foot of the window. You should see either the word ‘compiling ..." or
the phrase ‘File saved’ in the message area. After a short time that will be replaced by
‘Class compiled — no syntax errors’. If you have made a mistake when typing in the
method catchFly (), an error message will appear in the message area and the code
somewhere near the error will be highlighted. Check your code very carefully, making
sure you have placed the semicolons and braces correctly and used correct
capitalisation, then press the Compile button again. This process of finding errors,
correcting them and recompiling until the code compiles without errors is known as
debugging. Continue debugging until you have no more errors.

In fact you could have placed our new method after any of the existing methods in the
class. The order in which the methods appear in a class does not matter. Usually
methods are grouped together in what seems a logical order to the person writing the
code. As catchFly() does not seem to belong to a logical grouping with any existing
methods, we have asked you to place it at the end of the class.

In future we will just ask
you to execute statements
in the OUWorkspace and
to view their effect in the
graphical display. You may
need to make a note of
how to do this.

To execute code, select it
and then either press
Ctrl+E or select Execute
Selected from the Action
menu.

_ Unit 4 An introduction to methods

EdBlue): Unit4_Project_1
Project Edit Tools Wiew Help

Mew Class..

Caompile

el

Toad Frog

T

HoverFrog

Caompiling... Done

Figure 4 The project window after the Frog class has been recompiled

Now close the editor. You will find that the rectangle representing the HoverFrog class is
covered with blue diagonal lines, as in Figure 4. This shading is to alert you that, as it is
the subclass of a class that has been changed, the HoverFrog class needs to be
recompiled. Press the Compile button in the BlueJ window. The HoverFrog class should
now look like the other classes.

Congratulations — you have created your first method in the Blued Java environment.

ACTIVITY 4

You now need to test your new method in order to ensure that it produces the desired
behaviour when the message catchFly () is sent to a Frog instance. To do that, you will
need to create some Frog objects in the OUWorkspace.

With Unit4_Project_1 open, select OUWorkspace from the Blued Tools menu. An
OUWorkspace window will appear. In order to see, graphically, the effect of message-
sends to Frog, Toad and HoverFrog objects, you will need to open an Amphibians
window. Do this by selecting Open from the Graphical Display menu in the
OUWorkspace.

In the Code Pane of the OUWorkspace window, type the following code and execute it.
Frog kermit = new Frog() ;

You should see the variable name kermit appear in the Variables Pane, and the frog it
references should appear in the Amphibians window.

1 Classes and methods

Create some more Frog objects in the same way. Send each object a catchFly()
message using message-sends such as

kermit.catchFly();
and observe their behaviour.

Now do the same for HoverFrog. Create some HoverFrog objects and send them
catchFly() messages. Observe the result.

Finally, create a Toad object called croaker. Execute the following statement in the
workspace and observe what happens.

croaker.catchFly();

Try to explain why there is a difference between what happens when you send a
catchFly () message to a Frog or HoverFrog object and when you try to send the same
message to a Toad object.

DISCUSSION OF
ACTIVITY 4

You may have noticed several things.

All the instances of the class Frog that you create can respond to a catchFly()
message.

HoverFrog instances respond to the message catchFly (). This is a consequence of
the class/subclass relationship. HoverFrog is a subclass of Frog and whatever
behaviour is defined for Frog is also available for HoverFrog.

The statement croaker.catchFly(); does not execute correctly. Instead you get the
following error message in the Display Pane.

Semantic error: Message catchFly() not understood by class 'Toad'.

Note that if you select more than one line of code to execute in the OUWorkspace, the
error message displayed includes the line number on which the error occurred. For
example, if you were to select and execute the code

Toad croaker = new Toad() ;
croaker.catchFly();

all in one go, then you would get the error message
Semantic error: line 2. Message catchFly() not understood by class 'Toad"'.

The error message occurs because Toad is not a subclass of Frog and therefore the
behaviour defined for Frog objects will not be automatically defined for Toad objects.

ACTIVITY 5

This activity continues to use the project Unit4_Project_1.

You are now going to write a new method, called doubleLeft (), for the class Toad. This
method will decrement the value of the instance variable position by 4. However, before
defining this new method, satisfy yourself that the Toad objects do not currently respond
to a doubleLeft () message.

1 In the OUWorkspace, execute the following statements.
Toad toadl = new Toad() ;
toadl.doubleLeft();

2 We will now guide you through the code for the new method.

_ Unit 4 An introduction to methods

The comment and method header for your new method doubleleft () are given
below.
/**
* Moves the receiver left twice.
*/
public void doubleLeft()
Open the editor on the Toad class. Start writing the new method at the end of the
methods in the Toad class, just as you added the method catchFly() to the Frog
class. You now need to write the method body to achieve the effect indicated in the
comment. This can be done by sending the message left() twice to the object
referenced by this (the object whose method is being executed).

Complete your method by writing the two statements and the enclosing braces.
Compile the Toad class (debugging any errors you may have made).

Test your new method by sending doubleLeft () messages to some Toad instances
you create in the OUWorkspace. You might like to use the following messages to start
with.

Toad toadl = new Toad() ;
toadl.doubleleft();

DISCUSSION OF

ACTIVITY 5

1

You should obtain the following error message.

Semantic error: Message doublelLeft () not understood by class 'Toad'.

Here is the complete method doublelLeft().

/**
* Moves the receiver left twice.
*/
public void doubleLeft()
{
this.left();
this.left();
}

Check that your message-sends have worked by inspecting the instance variable
position for toadl or by watching the progress of the toad icon in the Amphibians
window.

Now you have completed these activities, you have:

>
>
>

used the Blued editor and examined existing methods for a selected class;
defined new methods for a class, compiled and tested them;

seen that, if a method is defined for a particular class, and declared as public, then
the corresponding message can be sent to objects of that class and its subclasses,
but not to objects of other classes.

If you have had difficulties with Activities 3-5, Unit4_Project_2 incorporates all the
changes made to the classes Frog and Toad in this set of activities.

1 Classes and methods

SAQ 3

What do you need to do to add a new message to the protocol of a class?

ANSWER .

Adding a message to a protocol requires writing a new method for the class. The editor
is used to do this.

SAQ 4
How can an object send a message to itself?

AN S E R
By using the special reference variable this as the receiver of the message.

m Documenting methods

Each time we have asked you to write a method, we have given a description of what the
method is intended to do in the form of a comment. This comment is given in a particular
format so that it can be used by a program called Javadoc, which comes with Java. The
Javadoc program picks up information from specially formatted comments and other
parts of the class code, such as the constructor and the method headers. These are all
used to create an HTML file, which describes the class in a standard way. This
description is aimed not at the Java compiler, but at human readers (and possibly the
writer of the code at a later date, when he or she might well have forgotten what the
methods do).

ACTIVITY 6

Open Unit4_Project_2. This project incorporates all the changes made to the classes
Frog and Toad in Activities 3-5.

From the Tools menu select Project Documentation (or press Ctrl+J on your keyboard).
(A dialogue box may appear; if it does, click on Regenerate.)

This will launch your web browser, and after a short while a browser window will appear
containing the Javadoc information for the project. The left-hand frame of the browser
window will display an alphabetical list of all the classes in the project. The right-hand
pane will display the documentation for the class, which is at the top of the list in the left-
hand frame, in this case the documentation for the class Frog. Clicking on a class name
in the left-hand list will display the documentation for that particular class in the right-hand
frame.

For now, ignore the menu items in the blue shaded area at the top of the right-hand
frame. What these items mean and do are explained in the Software Guide.

Focus your attention on the text underneath the first solid line in the right-hand frame. You
do not need to understand everything you see, but here is a short explanation of the main
parts of the documentation that you might find useful as you scroll downwards.

The first section under the title Class Frog shows where Frog comes in the class
hierarchy. It is a subclass of OUAnimatedObject and has one subclass, called
HoverFrog.

The second section shows the class comment.

Next, the constructor summary displays the first sentence of the constructor's comment.

Unit 4 An introduction to methods

Following the constructor summary you are shown a summary of the methods, in
alphabetical order. This summary just shows the name of the method, what arguments it
takes and its return type, and the first sentence in the method’s comment.

The inherited methods are displayed next. Clicking on a name of one of these inherited
methods will display the documentation for the class that implements that method in your
web browser.

Next, more detail of the constructor is displayed — this time you are shown the access
modifier and the entire comment.

Finally, you are shown more detail about the methods defined in the class; you are shown
the entire comment and the entire method header.

Look at the method catchFly (). You should see the comment you typed in as the
description of the method.

Close the browser window, open the editor on the Frog class, and move the comment for
catchFly () to after the method header. Recompile the Frog class. Did Frog recompile
successfully?

Once you have got the class to recompile, select Project Documentation from the BlueJ
Tools menu. This time a dialogue box will appear. You need to click on Regenerate. Look
at the Javadoc entry for catchFly (). What do you notice?

Return the comment for catchFly () to the correct position and recompile the Frog
class. Close the editor and the browser, and exit from Blued.

DISCUSSION OF
ACTIVITY 6

You should have been able to recompile the Frog class with no difficulty — Java takes no
notice of the comment or where it is placed. However, you should find that Javadoc has
now failed to pick up the comment, and so it is missing from the entry for the method
catchFly().

Information will only be picked up by Javadoc if it is in a particular form and position. So
far you have learned that, in order to ensure that the Java compiler takes no account of
the method comment, but that Javadoc can pick up the comment:

» you must enclose the method comment between /** and */; and
> you must place the method comment directly before the method header.

Method comments serve several purposes.

» They help focus your mind on the purpose of the method, i.e. on the behaviour the
corresponding message will cause.

» Months later, when as a student you are revising, or as a programmer you are
reviewing this method among dozens of other methods you have written previously,
comments can be enormously helpful in giving you a quick reminder of what the
code is about.

> They support reuse of code as they help anyone else looking at your code to
understand how to use the method and what the method should do.

1 Classes and methods

Notice that the method comment should not focus on how the code works; it should
focus on the code’s purpose or effect, on what is intended. You are best advised to think
of the meaning of the message that the method implements, rather than how the method
works. Although you should always include a method comment, you need not be so
pedantic about including comments in other parts of the method. As a general rule,
comments other than the initial one are more about how a method is implemented. You
should use these when you think that something is tricky to understand, so that those
who maintain the code will know what was intended.

m Editing, compiling and executing methods

So far in this unit we have glossed over what happens when you write a piece of code for
a method, compile it and then have it execute. The following is a reminder of the process
that was described in Unit 1.

Java is a high-level programming language, i.e. it is designed so that human beings can
read it. A Java program is written, or modified, using an editor. This could be something
as simple as Notepad, but in this course you use the editor provided by the Blued
environment. The code produced is called the source code. Earlier in this unit you
used the editor to modify the source code for the Frog class by adding a method
catchFly().

The computer cannot run Java code directly. Before a method can be executed, the
source code for the class it belongs to must be translated into machine code — the low-
level language made up of the instructions that the computer understands at the most
basic level. Compilers for many high-level languages go straight from source code to
machine code, but this technique has the disadvantage that the resulting machine-code
program will only run on one particular type of computer; computers with a different set
of machine-code instructions will not run it.

The Java compiler takes a different approach. It translates the source code into an
intermediate language called bytecode. In BluedJ, the compilation is done when the
Compile button is pressed. In the case of the Frog class, this will create a bytecode file,
Frog.class, from the source code file Frog. java.

The bytecode file is portable, because each computer that can run Java programs has a
Java Virtual Machine (JVM) — which is itself a program — that understands bytecode and
converts it into the machine code required for that particular computer. So any computer
that runs Java will be able to execute our compiled class Frog.

At run-time, when an object receives a message, the Java Virtual Machine selects the
appropriate method to be executed (determined by the class of the object). We call this
invoking the method or method invocation. The first time a method is used at run-time,
the JVM converts the corresponding bytecode into the machine code appropriate for

that particular computer.

Once the bytecode for a method has been translated into machine code, the JVM
retains the machine code for the next time the method is required, so it does not have to
do the translation over and over again. The machine code is only discarded when you
exit from Blued, or if you modify and recompile the class (when, obviously, the low-level
instructions will need to be regenerated). If a method is never used at run-time, it is
never compiled to machine code.

_ Unit 4 An introduction to methods

2 Instance variables

Instance variables

You have seen that, when a message is sent to a Frog object, a method with the same
name is executed. Some of these methods, such as left (), result in changing the state
of the object. The current state of an object is represented by the values of its instance
variables.

You have already seen a pictorial representation of instance variables in Unit 3. Here is a
diagram that represents the initial state of a Frog object.

gribbit Frog
position OUColour
colour D > BROWN

Figure 5 Diagrammatic representation of a Frog object

This section looks at the role of instance variables and the use of accessor methods for
instance variables. It concludes by showing how to add a new instance variable to a
class.

m Instance variables and methods

As you will see in Activity 7 and the corresponding discussion, the definition of a class
begins by declaring its instance variables.

Each instance variable, after initialisation by the constructor, either contains a reference
to an object or a value of some primitive data type. For instance, after a Frog object is
initialised, the instance variable colour contains a reference to an instance of the class
OUColour, in this case OUColour .GREEN; the instance variable position contains a
value of the primitive type int, in this case 1.

Note carefully that, in contrast with an accessor message, the written notation for
directly accessing an instance variable does not include parentheses. So within a
method, the expression this.colour is immediately recognisable as a direct access
of the colour instance variable of the object referenced by this. On the other hand,
this.getColour () is a message-send, which answers with the value of the
receiver's colour instance variable.

_ Unit 4 An introduction to methods

ACTIVITY 7

Open the editor on the class Frog in the project Unit4_Project_2. Find all the Java
statements that use the instance variable colour. What do you think each statement
does?

DISCUSSION OF
ACTIVITY 7

The Java statements that use the instance variable colour are as follows.

(i) private OUColour colour;

This appears immediately after the class header and before the constructor. These
statements are the variable declarations that define the instance variables for all Frog
objects. That is, they tell the Java compiler the name of each instance variable and the
type of values it can hold or reference. In this case, the instance variable colour is
defined to reference an instance of the class OUColour. The access modifier private
tells the Java compiler that the only objects that can access the instance variable
directly are the object to which it belongs and other objects of the same class.

(i) this.colour = OUColour.GREEN;

This statement is in the constructor for the class Frog. It directly accesses the instance
variable colour and assigns it the object OUColour .GREEN.

(iii) return this.colour;

This statement is in the method getColour (). It directly accesses the colour instance
variable of the receiver and returns it as the message answer. We discuss methods that
return values in Section 3.

(iv) this.colour = aColour;

This statement is in the method setColour (). It directly accesses the instance variable
colour and assigns it the OUColour object referenced by aColour, which is the
argument of the message that caused the method to be executed. We discuss methods
with arguments in Section 4.

Remember that although A class defines the methods that can be executed for any instances of that class (or its
Wgt?;ﬁ]afﬁe“r;%?fﬁzirwe subclasses). These methods are then stored in the compiled class, not in any instances
gasgs_ of that class. However many instances of the Frog class there are, each method is

stored once only — in the class. Hence when at run-time the JVM determines that an
object is receiving a message, the JVM must determine the class of that object and then
look in that object’s class to find the corresponding method to execute. If it cannot find
the method there, it will look in the superclass and so on. This description of how
methods get to be executed is specific to Java; more generally and informally, we can
(and will) say that when an object receives a message the object itself looks in its class
(and, if necessary, its superclass and so on) to find the corresponding method to
execute. (You will learn about executing methods from a superclass in Unit 6.)

Contrast this to how instance variables are stored. A class simply specifies what
instance variables objects of that class should have. Each instance of that class then
stores its own separate set of instance variables that conform to those specifications.

We now look at what happens when an object receives a message and the
corresponding method body is executed.

2 Instance variables

The message-send kermit.left() causes the method left() to be executed, the
code of which is shown below.

public void left()
{
this.setPosition(this.getPosition() —1);

}

Note the use of the pseudo-variable this. It is used like an extra argument to the
method — it references the object that was sent the 1eft () message (and hence caused
the method to execute) so enabling the method to send the setPosition() and
getPosition() messages to the correct object.

1 The getPosition() method is executed first. The code for the method is shown
below.

public int getPosition()
{
return this.position;

}
Notice again the use of this to reference the object that was sent the
getPosition() message, so enabling the getPosition() method to access the
instance variable position stored for that particular object. The value of the
position instance variable is then returned as the message answer.

2 The next step is to take 1 away from the value that has just been returned by
getPosition() and use this value as the argument to the message
setPosition().

3 Thefinal step is that the method setPosition() executes. The code for the method
is shown below.

public void setPosition(int newPosition)
{
this.position = newPosition;
}
Again, this is used so that the instance variable position for the object that was
sent the setPosition() message can be set to the value that was calculated in
step 2.

Instance variables must be declared before they are used. You have seen the form of
the declaration in Activity 7 and the corresponding discussion. Instance variables
should also be given initial values, and we look at how this can be done in the next
subsection.

You learned about how the
compiler uses the
constructor in response to
new in Unit 3,

Subsection 1.4.

Unit 4 An introduction to methods

m Constructors and initialisation

When an instance of a class is created — using new — it has to be initialised. To initialise
an object you need to initialise its instance variables. This is done by a constructor.

SAQ 5

Write down a Java expression to create a new instance of the class Frog referenced by
a newly declared variable aFrog.

ANSWER ...

Frog aFrog = new Frog() ;

As an example of how to write a constructor, we look at the constructor for the Frog class
in Exercise 4.

Exercise 4

The constructor is as follows.

/**

* Constructor for objects of class Frog which initialises colour
* to green and position to 1.

*/

public Frog()

{

super () ;
this.colour = OUColour .GREEN;
this.position=1;

}

The statement super () ; will be explained in Unit 6; for the moment we will ignore it.
What is the purpose of the other two statements?

ST U1
this.colour = OUColour .GREEN;

This statement sets the instance variable colour to the initial colour OUColour .GREEN.
this.position=1;
This statement sets the instance variable position to the initial home position, 1.

The effect of these two statements is to initialise the two instance variables, colour and
position. Initialising instance variables is commonly done by the constructor.

2 Instance variables

m Accessor methods

You are now going to explore further what you have just learned about instance variables
by looking at the methods used to access them.

ACTIVITY 8

You have seen in Activity 7 that the method setColour () sets the instance variable
colour. It does this by means of the following assignment statement.

this.colour = aColour;

Are there any other methods defined for the Frog class that also change the value of
instance variables directly by assignment?

Use the Blued editor to examine all the methods defined for Frog in the project
Unit4_Project_2.

DISCUSSION OF
ACTIVITY 8

You should have identified setPosition() as the only other method that sets an
instance variable using assignment. Here is the code for setPosition().

/**
* Sets the position of the receiver to the value of the argument
* aPosition.
*/
public void setPosition(int aPosition)
{
this.position = aPosition;
this.update("position");

You have seen that, of all the methods defined for Frog objects, only setPosition()
and setColour () set an instance variable directly by using an assignment statement.
Such methods are called setter methods (or setters). Their sole purpose is to set the
value of the appropriate instance variable to the desired value. They may also do things
that depend on how the instance variable has been implemented, such as check that
the value of the argument is valid.

Setter methods need to access the instance variables directly. Other methods that are
used to change the state of a Frog object in terms of its position or colour — such as
left() or brown() —do so indirectly by having the Frog object send itself the message
setPosition() Or setColour(), by using this as the receiver. Notice that the access
modifier in the method header for both setter methods is public. This is so objects that
are not instances of the class Frog can send the corresponding messages to alter the
instance variables.

Note also that, while subclasses of the Frog class inherit the colour and position
instance variables, objects of such a subclass (for example, HoverFrog) cannot directly
access these instance variables as they have been declared private to instances of the
Frog class. Hence the setters need to be public so that objects of a subclass can alter
their own inherited instance variables. If the setters were to be declared private, then
although they would still be inherited by a subclass, they would be hidden from view to
that subclass — leaving no way for objects of the subclass to alter their inherited instance
variables.

Unit 4 An introduction to methods

In M255, we use the term
accessor method to mean
either a setter or a getter.
Other sources use
accessor method to refer
to the getter method and
use the term mutator
method to refer to the
setter method.

The last statement in the method setPosition() is this.update("position") ;. This
message-send causes the update () method in the superclass (OUAnimatedObject) to
be executed; this method informs any observing object, such as the graphical display,
that the frog has moved position. In M255, the update () message is always used within
a method whenever it is necessary to trigger an update of a graphical display such as
the Amphibians window — this typically happens within a setter method.

We also need methods to get the values of the instance variables: these methods are
called getter methods (or getters). A getter is a method, such as getColour (), whose
sole purpose is to return the value of an instance variable. We will look at these methods
in Section 3, where we consider messages that return a value as a message answer.
Again, the access modifier for these getter methods is public, so that the
corresponding messages can be sent by objects that are not instances of the Frog
class and also so that objects that are instances of subclasses of the Frog class can
access the private inherited instance variables.

Setter and getter methods are the two types of accessor methods. In other words, they
are the methods that enable access to instance variables.

ACTIVITY 9

Suppose that you need to extend the protocol of Frog objects to include the message
yellow(). This new message, when sent to a Frog object, will cause the state of the
Frog object to change so that its instance variable colour references OUColour.YELLOW
(rather than, say, the initial OUColour.GREEN). This new message requires a new method,
yellow(), to be written. In this activity, your task is to write the code for this method. To
help you, here is the code for the analogous method brown().

/**
* Sets the colour of the receiver to brown.
*/
public void brown()
{
this.setColour (OUColour .BROWN) ;
}

Here is the method header for the new method yellow().

/**
* Sets the colour of the receiver to yellow.
*/

public void yellow()

Open the Blued editor on the Frog class in the project Unit4_Project_2. Add your
code for the yellow() method to the class and recompile. Now test your new
method in the OUWorkspace by creating a Frog object and sending it the message
yvellow() — view the effect in the graphical display.

Index

DISCUSSION OF
ACTIVITY 9

Here is the code that you should have written for yellow().

/**

* Sets the colour of the receiver to yellow.
*/

public void yellow()

{

this.setColour (OUColour.YELLOW) ;
}

In the OUWorkspace you could use the following statements to test your new method:

Frog kermit = new Frog();
kermit.yellow();

Exercise 5

Explain what happens to the instance variable position when the message left() is
sent to the object kermi t.

ST 0] (1111 o T

The message-send kermit.left() causes the code of method left(), which is
shown below, to be executed.

public void left()
{

this.setPosition(this.getPosition() —1);

}
This entails three steps.

The body of the method getPosition() is executed first. The code for the method is
given below.

public int getPosition()
{

return this.position;

}

Notice the use of this to reference the object that was sent the getPosition()
message, which enables the value of the instance variable position stored for that
object to be accessed. The value of position is then returned as the message answer.

The next step is to take 1 away from the value that has just been returned, and use this
value as the argument to this.setPosition().

The final step is to execute the method setPosition(). The code for the method is
given below.

public void setPosition(int aPosition)

{
this.position = aPosition;

}

Again this is used, so that the instance variable position for kermit will be set to the
value just calculated in the previous step.

Unit 4 An introduction to methods

m Access modifiers — public or private?

If an instance variable is declared as private, only instances of the same class can
directly access that instance variable. The previous sentence is very important, and you
need to appreciate exactly what it means: if we have two instances of the same class,
and one has a reference to the other, then that object can still directly access the other
object’s instance variable even though that instance variable has been declared as
private in the class definition. In other words, ‘private’ indicates that an instance variable
is only invisible to objects of other classes. Instances of other classes cannot access
that instance variable directly; even an instance of a subclass that inherits a private
instance variable will be unable to access the inherited instance variable directly.

Similarly, if a method is declared as private, only instances of that same class can send
the corresponding message to other instances of the class, or indeed to itself; even an
instance of a subclass that inherits the method will be unable to send the corresponding
message to instances of the superclass, or even to itself.

This can cause problems with inherited instance variables. If some superclass declares
an instance variable as private, then if that superclass wishes to allow instances of some
subclass to have any access to that instance variable, the superclass must make the
accessor methods for that instance variable public.

Java has other access modifiers that go some way to ameliorating this problem, as will
be briefly examined in Unit 7.

m Adding an instance variable to a class

To consolidate what you have learned about instance variables, the following three
activities will ask you to define an additional instance variable flyCount for instances of
the class Frog, which will be used to record the number of times the message
catchFly() has been sent to a Frog object since the object was created. You will need
to initialise flyCount and provide accessor methods. Also, you will need to add to the
code of the method catchFly () a statement that will increment the value of flyCount
every time catchFly() is executed.

ACTIVITY 10

Again using the project Unit4_Project_2, open the editor on the Frog class.

1 Find the instance variable declarations. Add the variable declaration for flyCount,
making it private. Remember to include a comment.

2 You now need to initialise flyCount. Find the constructor for the Frog class and locate
the following statements.

super () ;

this.colour = OUColour.GREEN;

this.position=1;
Add a statement to set the initial value of flyCount to 0. Also alter the constructor’s
comment to reflect what you have done.

3 Recompile the Frog class and then create a new Frog object in the OUWorkspace
and assign it to a variable named kermit. Inspect the object referenced by kermit
by double-clicking on the variable name in the OUWorkspace’s list of variables.
Check that the new instance variable is in the list of attributes.

2 Instance variables

DISCUSSION OF
ACTIVITY 10

1 Your comment and variable declaration should be something like the following.

//Count of the number of flies caught since the Frog was created.
private int flyCount;

2 The constructor and its comment should now look like the following.

/**
* Constructor for objects of class Frog, which initialises
* colour to green, position to 1 and flyCount to O.
*/
public Frog()
{
super () ;
this.colour = OUColour.GREEN;
this.position=1;
this.flyCount =0;
}

3 To create a Frog object you will have executed a statement such as the following.

Frog kermit = new Frog() ;

Inspecting the object referenced by kermit should show you that flyCount has
been added to the object’s list of attributes, and that flyCount has been initialised
to 0.

ACTIVITY 11

Again using Unit4_Project_2, write the accessor methods for flyCount. The comments
and method headers for the new methods are shown below.

/**
* Returns the flyCount of the receiver.
*/

public int getFlyCount()

/**
* Sets the flyCount of the receiver to the value
* of the argument aFlycount.
*/

public void setFlyCount(int aFlyCount)

Add the methods setFlyCount () and getFlyCount () to the Frog class. You could use
the methods setPosition() and getPosition() as templates. Note that you do not
need a this.update() message in the code of your setter method as the value of
flycount is not represented in the graphical display (the Amphibians window). Test your
methods in the OUWorkspace by sending appropriate messages to instances of the Frog
class.

_ Unit 4 An introduction to methods

DISCUSSION OF
ACTIVITY 11

You should have something like the following.

/**

* Returns the flyCount of the receiver.
*/

public int getFlyCount()

{

return this.flyCount;

/**
* Sets the flyCount of the receiver to the value
* of the argument aFlyCount.
*/
public void setFlyCount(int aFlyCount)
{
this.flyCount = aFlyCount;
}

You could test the new methods with the following code in the OUWorkspace.

int count;

Frog kermit = new Frog() ;
kermit.setFlyCount(3);

count = kermit.getFlyCount();

In the OUWorkspace'’s list of variables you could double-click on either count or kermit
to determine the value of flyCount.

The Frog class now has a new instance variable, which has been declared and
initialised and for which you have written accessor methods. In the next activity you will
modify the method catchfly () to increment flyCount.

ACTIVITY 12

Again using Unit4_Project_2, open the Blued editor on the Frog class and find the
method catchFly (). Add a statement to the method that will increment the value of
flyCount each time the method is executed. Recompile the class and then test your
method in the OUWorkspace.

DISCUSSION OF

ACTIVITY 12
Note the use of the Here is the additional statement needed in catchFly().
accessor methods to) .
access the instance this.setFlyCount(this.getFlyCount() +1);

variable each time. We

would like you to follow This will increment the instance variable flyCount each time the method catchFly() is

this convention in M255. executed.
We discuss this further in .] .]
Section 5. You could test the modified method with the following statements in the OUWorkspace.

Frog kermit = new Frog() ;
kermit.catchFly();

Then you could inspect kermit to check the value of the instance variable flyCount after
each execution of the statement kermit.catchFly() ;.

2 Instance variables

If you have had difficulties with Activities 6—12, Unit4_Project_3 incorporates all the
changes made to the classes in this set of activities.

The Frog class now has a new instance variable, flyCount, and methods that use this
instance variable. We made the accessor methods public. This was necessary so that
you could examine, and change, the value of flyCount from the OUWorkspace for
testing purposes. However, it is worth asking the question: ‘should the setter method be
public?’ In order that the instance variable flyCount be meaningful, it should be
incremented each time catchFly () is executed and not altered at any other time. So
the only method that needs access to setFlyCount () is catchFly(). You could,
therefore, make setFlyCount () private. If you have time, you might like to try this and
check that the method catchFly () still works for both Frog and HoverFrog objects.
The getter should remain public, as this does not alter the instance variable flyCount
and it allows the value of flyCount to be used by instances of other classes (and in the
OUWorkspace).

In this section you have studied instance variables, and learned how to add them to a
class, and seen how to write simple accessor methods. In doing so, you have written a
method that requires an argument and a method that returns a value. We now go on to
consider such methods in more detail.

_ Unit 4 An introduction to methods

Methods that return values

In this section we examine how to write methods that return information.

Message answers and method return
values

The effect of sending a message right () to an instance of Frog is to cause the object
to execute the method right (), which will change the state of the object so that its
position instance variable is incremented by 1. This change in state is reflected in the
Amphibians window (if you have it open): the Frog icon moves one stone to the right.
The right () message does not return a message answer, but you will recall that there
are other messages in the protocol for the Frog class that do have message answers.
An example of such a message is getColour (), which, if sent to a Frog object, answers
with the colour of the receiver, such as OUColour .GREEN.

The aim of messages like getColour () is to pass back information, not to change the
state of the receiver. When such a message is sent to an object, that message then
causes a method with the same name to be executed (if it exists in the object’s class or
any of its superclasses). If the method returns a value, then that value is used as the
answer of the message.

So how do you write methods that return values? How do you control what they return?
To answer this, look at how getColour () is constructed.

/**
* Returns the colour of the receiver.
*/
public OUColour getColour()
{
return this.colour;

}

In the statement
return this.colour;

the Java keyword return instructs the Java system that the value that follows is to be
returned by the method. In this case, colour is returned, i.e. the value of the colour
instance variable of the object referenced by this (the object that was sent the
getColour () message). As you learned in Section 2, as with other variables, instance
variables can hold references to objects or they can hold the value of a primitive data
type. Here, the instance variable colour will be a reference to some instance of
OUColour, for example OUColour .GREEN.

You are now going to carry out a series of activities in which you will use and investigate
return statements in methods.

3 Methods that return values

ACTIVITY 13

You have just seen that methods that return a value always contain a statement
beginning with the Java keyword return. Using Unit4_Project_3, use the BluedJ editor to
examine the classes Frog, HoverFrog and Toad and make a list of methods that return a
value.

DISCUSSION OF
ACTIVITY 13

You should have identified the following methods for the classes Frog and Toad:
getColour(), getPosition(). The class Frog also has the method getflyCount ().
The class HoverFrog has a method getHeight (). All three classes have a method
toString().

Here is the method getHeight () for HoverFrog.

/**
* Returns the height of the receiver.
*/
public int getHeight()
{
return this.height;
}

Here the method getHeight () returns the value of the instance variable height of the
object referenced by this (the object that received the message getHeight()). You
will recall that the class HoverFrog is a subclass of the class Frog and inherits all of the
instance variables declared in the class Frog, but has the instance variable height in
addition.

Methods that return values provide a way of obtaining a value that depends in some way
on the receiver’s state. For example, as you saw in Activity 13, this is the case with the
method getHeight () for HoverFrog, where the value returned depends on the value of
the instance variable height. In the next activity you are going to define a new Frog
method in which the value returned depends on the value of an instance variable.

The following will be useful in Activity 14: you saw in Unit 3 that if one of the operands of
the + operator is a String object then the other operand is automatically converted to a
String. Thus if a variable myAge is defined as type int and has the value 21 then
"My age is " + myAge; evaluates to the String "My age is 21".

ACTIVITY 14

Imagine that you wish to obtain the value of the instance variable position of a Frog
object, reported as part of a String rather than as an integer. Again using the project

Unit4_Project_3, use the Blued editor to define a new method positionReport () with
the following comment and header.

/**

* Return the String "The position is " concatenated with

* the value of the position of the receiver.

*/

public String positionReport()
Once you have recompiled the Frog class, satisfy yourself that Frog objects respond
appropriately to the new message in the OUWorkspace.

Unit 4 An introduction to methods

DISCUSSION OF
ACTIVITY 14

Your method positionReport () should look like the following (we've left out the
comment).

public String positionReport ()
{

return "The position is " + this.getPosition();

}
The following statements could be used to test your new method.

String frogPosition;
Frog kermit = new Frog() ;
frogPosition = kermit.positionReport();

The string now referenced by the variable frogPosition will appear in the Display Pane
(if Show Results is checked), or you could check frogPosition by inspecting it.

ACTIVITY 15

Again using the project Unit4_Project_3, define and test a similar method named
heightReport () for instances of the class HoverFrog.

DISCUSSION OF
ACTIVITY 15

Your method heightReport () should look like the following.
/**

* Returns the String "The height is " concatenated with
* the value of the height of the receiver.

*/

public String heightReport()

{

return "The height is " + this.getHeight();
}

The following statements could be used to test your new method.

String frogHeight;

HoverFrog wizzy = new HoverFrog() ;
wizzy.up();

frogHeight = wizzy.heightReport();

Then you could inspect the value of the variable frogHeight.

You have now written and tested several methods that explicitly return a value by means
of a return statement.

A return statement must be the last statement to be executed in a method. This is a
rule that is built into the syntax of the Java language, and the Java compiler will not
accept as valid any method that breaks this rule. To illustrate this, you are now
going to define a new Frog method, which will cause a Frog object to move right
and then report the new position. Having written this method correctly you will then
see what happens if you write the statements in the wrong order.

3 Methods that return values

ACTIVITY 16

Using the project Unit4_Project_3, we would like you to define a new method called
moveRightAndReport () for the class Frog. The code for the method is given below.

/**
* Cause the receiver to move right then return the string
* "The position is " concatenated with the value of

* the receiver's position.
*/
public String moveRightAndReport()

{
this.right();
return "The position is " + this.getPosition();

}
Once you have added this method, recompile the class.

Now rewrite the method with the order of the two statements in the body of the method
reversed, i.e.

return "The position is " + this.getPosition();
this.right();

DISCUSSION OF
ACTIVITY 16

When you compile the first version there should be no problems and you should find the
method works as expected in the OUWorkspace.

When you rewrite the method with the order of the two statements reversed and click on
the Compile button, the compiler should respond by displaying

unreachable statement in the message area and highlighting the statement
this.right(); in the code. The compiler is indicating that it is a mistake to have a
statement after the return statement. We say that the compiler has detected an error in
the method that you were attempting to define and cannot compile the new method.

The activities you have just carried out have given you experience in writing return
statements to define the value to be returned by a method underlying a message.
Subsection 3.2 looks at the method headers for methods that return a value.

m Specifying the return type of a method

As you learnt in Unit 3, every variable needs to have a defined type so that the compiler
knows how much memory to allocate and also so that it can perform some checks for
consistency. The return value for a method must also have a defined type. For the
method positionReport () the return value is of type String. This is declared as the
second part of the method header. In the next activity you will investigate what happens
if the return value is not of the same type as that declared in the method header.

Note that int, float and boolean start with a lower-case letter and String starts with an
upper-case letter. This is because String is a predefined class in the Java language,
whereas the other three types are primitive data types. At the moment, the main
importance this has for you is that you must remember to use upper- or lower-case initial
letters as appropriate.

_ Unit 4 An introduction to methods

ACTIVITY 17

Still using Unit4_Project_3, open the editor on the Frog class and change the return
expression for the method positionReport () from

return ("The position is " + this.getPosition());
to
return this.getPosition();

What happens when you try to compile? Before you leave the editor, correct the method
and recompile.

DISCUSSION OF
ACTIVITY 17

The Java compiler highlights the return expression and gives the following error
message.

incompatible types - found int but expected java.lang.String
When you correct the method it should compile without an error message.

This is one of the checks that the compiler does when it is compiling your source code
into bytecode. It is important to realise that, although the compiler highlights the return
statement here, it could have been the type declaration in the method header that was
incorrect. When you get this error message you need to check both places and decide
which type you need the return value to be.

If you have had difficulties with Activities 13—17, Unit4_Project_4 incorporates all the
changes made to the classes in this set of activities.

SAQ 6

What is the type of the return value for the method getColour()?

ANSWER ...
It is of type OUColour.

SAQ 7

Write down the method header for a method that has the name myMethod, is accessible
to any object, has no arguments, and returns an integer value.

ANSWER ...
public int myMethod ()

3 Methods that return values

m Messages with no reply

SAQ 8

Think back over the methods you have looked at in the class Frog. Which methods do
not have a return value? Look at the method headers for these methods. What do they all
have in common?

ANSWER .

The methods setPosition(), sameColourAs (), setColour(), brown(), green(),
yellow(), croak(), home(), left(), right(), jump(), catchFly(), setFlyCount()
do not have a return value. They all have the keyword void as the second part of their
header.

The keyword void is used to tell the Java compiler not to expect a return value from the
method. If a return statement appears in a method with the keyword void then the
compiler will generate an error message. Conversely, if a method has a return type that
is not void, then the method must include a return statement, and the value returned
must be consistent with the type declared in the method header.

SAQ 9

Write down the method header for a method that has the name myMethod, is accessible
to any object, has no arguments, and has no return value.

AN S E R
public void myMethod ()

Exercise 6

Using pen and paper, write a new method called distanceFromHome () for the Frog
class, which will return the value of the position of the receiver minus 1 (1 being the home
position).

Yo [0 (1) o F TP TP
/**

* Return the position of the receiver minus 1 (the home position).
*/
public int distanceFromHome ()

{

return this.getPosition() —1;

_ Unit 4 An introduction to methods

Methods with arguments

In Activity 8 you discovered that setter methods use an assignment statement to change
the value of the appropriate instance variable. To do this they need to have the new
value of the instance variable given to them. This is done by means of an argument.

In this section we investigate how to write methods for messages that require arguments. If a
message needs an argument then the corresponding method will declare an identifier to
handle the argument provided by the message. This declaration gives the type of the
argument that the message should provide. Some messages have more than one argument,
and therefore their corresponding methods have more than one such declaration.

The activities in this section use the project Unit4_Project_4.

m Formal arguments

You will recall that, in the Amphibian Worlds of Unit 2, some messages require
information to be supplied when sending a message. For example, when using the
message sameColourAs() you must specify which instance of Frog, HoverFrog or
Toad the message should take as an example of the desired colour. So you might have
written (and executed) the statement

frogl.sameColourAs(frog2) ;

in order to get frogl to change its state so that it is the same colour as frog2. We say
that frog2 is the argument of the message. And if you want frogl to change its colour
to that of (say) frog3, then you send a similar message but with frog3 as the argument:

frogl.sameColourAs(frog3) ;

SAQ 10

Write down the receivers and the arguments of the following message-sends.

(a) frogl.sameColourAs(frog3);
(b) frog4.setPosition(3);

ANSWER ...
(a) frogl is the receiver and frog3 is the argument.
(b) frog4 is the receiver and 3 is the argument.

Here is the method setPosition().

/**
* Sets the position of the receiver to the value of the argument aPosition.
*/
public void setPosition(int aPosition)
{
this.position = aPosition;
this.update("position");

4 Methods with arguments

The method header here is
public void setPosition(int aPosition)

The name of the method is setPosition() and the declaration int aPosition inside
the parentheses indicates that this method expects an argument. The argument
aPosition given in the method header is called a formal argument. In this case, the
formal argument has the name (identifier) aPosition and it is declared as being of the
primitive type int. Note that the declaration of a formal argument is similar to the
declaration of a variable, and you can think of the formal argument as being a special
sort of variable. Note that the type of a formal argument can also be the name of some
class.

When the message setPosition() is sentto a Frog object an actual argument is used.
This actual argument must be type compatible with the formal argument in the method
header of the corresponding method. So in the message

frog4.setPosition(3);
the integer 3 is the actual argument for the message.

On receiving the message setPosition(3), the Frog object referenced by frog4
causes the method setPosition() to be executed with its formal argument aPosition
set to the value of message’s actual argument, in this case 3.

ACTIVITY 18

You have just learned that methods that take arguments have their arguments declared in
the method header. Using the Blued editor and Unit4_Project_4, make a list of the
methods that take arguments in the Frog class.

DISCUSSION OF
ACTIVITY 18

You should have identified the following methods: setPosition(), sameColourAs(),
setColour () and setFlyCount().

When sending a message, the type (or class) of the actual argument of a message must
be type compatible with the type of the formal argument of the corresponding method.

Exercise 7

What do you think will happen when you execute the following statements in the
OUWorkspace?

Frog frogl = new Frog() ;

frogl.setPosition(OUColour.RED) ;
S Yo 111 o
OUColour.RED is not an integer, so an error message will be displayed in the Display
Pane of the OUWorkspace. In fact, the actual error message would be:

Semantic error: Message setPosition(ou.0OUColour) not understood
by class 'Frog'.

The name of the method together with the parentheses and the type of any arguments is
called the method signature. The signature of setPosition() iS setPosition(int).
The signature shows clearly the type of the expected argument.

_ Unit 4 An introduction to methods

Note that the Frog class defines two methods with the name sameColouras (). One has
the formal argument aFrog of class Frog and the other has the formal argument aToad
of class Toad. If there were a single sameColourAs() method whose formal argument
was declared as being of class Frog, then we would only be able to send a
sameColourAs () message to a Frog object with an actual argument that was an
instance of Frog (or a subclass of Frog). We would not be able to send a message
sameColourAs () 10 a Frog object with an actual argument that was an instance of Toad
— hence the necessity for the second method.

Thus the two methods sameColouras () have the signatures sameColourAs(Frog) and
sameColourAs(Toad).

Note that two methods within the same class cannot have the same signature. For
example, two hypothetical methods with the following method headers:

public void doSomething(int marks)
private int doSomething(int commission)

have the same signature, namely doSomething(int), hence the Java compiler would
report an error if you attempted to compile a class that defined two such methods.

ACTIVITY 19

With Unit4_Project_4 open, select Save As from the BlueJ Project menu and save the

project with a different name, such as Unit4_Project_4_Act_19. You will need to recompile
after doing this, so press the Compile button on the project window. After you have done this,
open the OUWorkspace and from its Graphical Display menu open the Amphibians window.

Execute the following statements one at a time in the OUWorkspace.

Frog kermit = new Frog() ;

Frog gribbit = new Frog();

Toad toadl = new Toad() ;
kermit.setColour (OUColour.RED) ;
gribbit.sameColourAs(kermit);
gribbit.sameColourAs(toadl) ;

Now execute the following two statements in the OUWorkspace.

HoverFrog wizzy = new HoverFrog();
gribbit.sameColourAs(wizzy);

DISCUSSION OF
ACTIVITY 19

The first set of statements should all work correctly, and you should end up with gribbit
being brown.

The second set of statements (using a HoverFrog object as the actual argument) should
also work and gribbit should return to green.

ACTIVITY 20

Still using the project you saved in Activity 19, use the Blued editor to delete the method
sameColourAs (), which has a formal argument type of Toad, from the class Frog.

Recompile the class Frog and execute in the OUWorkspace the statements given in
Activity 19 again. What happens this time?

Close the project when you have finished this activity.

4 Methods with arguments

DISCUSSION OF
ACTIVITY 20

You should have found that the message

gribbit.sameColourAs(toadl) ;
no longer works and you get the error message

Semantic error: Message sameColourAs(Toad) not understood by class
'Frog'

However, the message
gribbit.sameColourAs(wizzy);

should still work correctly.

Look at the code below for the version of the method sameColouras() with a Toad
object as its formal argument.

/**
* Sets the colour of the receiver to the argument's colour.
*/
public void sameColourAs(Toad aToad)
{
this.setColour (aToad.getColour());
}

In the method sameColourAs () above, aToad is the formal argument. When the method
is executed (as the result of a sameColourAs() message), the formal argument aToad
will reference a Toad object provided as the actual argument of the message
sameColourAs().

Exercise 8

Suppose you wish to add a new message increasePosition() to the protocol of
instances of the Frog class. The effect of this message will be to increase the value of the
attribute position by an amount defined by an argument, which we shall call step.

Using pen and paper, write a suitable comment and method header for a method called
increasePosition() that will support this behaviour.

Now (again using pen and paper) write the code for the method body. Remember to use
the accessor messages for the instance variable. You can use the method right() as a
guide.
S Yo 111 o
Your method should look something like the following.
/**
* Increases the value of the position of the receiver by
* the value of the argument step.
*/
public void increasePosition(int step)

{

this.setPosition(this.getPosition() + step);

Unit 4 An introduction to methods

SAQ 11

What is the signature of the above method?

ANSWER ...
The signature is increasePosition(int).

ACTIVITY 21
Reopen Unit4_Project_4, and open the editor on the Frog class.
Add your new method increasePosition() and compile.

Satisfy yourself that Frog and HoverFrog objects respond appropriately by executing
message-sends in the OUWorkspace, such as frogl.increasePosition(3).
Remember that you can check visually on the behaviour of Frog and HoverFrog objects
if you open the graphical display.

DISCUSSION OF
ACTIVITY 21

The single statement in the method body of increasePosition() requires some
explanation. It includes the two messages getPosition() and setPosition() as well
as the arithmetic operator +.

Consider what happens if the following message is sent to the object referenced by
frogl when its instance variable position has the value 3.

frogl.increasePosition(5);

» On receiving the message increasePosition(), the object referenced by frogl
causes the method increasePosition() to execute. The method’s formal
argument, step, is set to the value of the message’s actual argument, which is 5.

P The message getPosition() produces an answer that is the value of the current
position of the receiver, frogl, i.e. the integer 3.

» The integer 3 is then added to the actual argument, 5, by means of the arithmetic
operator +, and results in the integer 8.

> The integer 8 becomes the actual argument for the setPosition() message sent
to the receiver this, so the instance variable position of the object referenced by
frogl is set to 8.

Exercise 9

Describe what happens when the following message is sent to the Frog object
referenced by frog2, whose instance variable position has the value 6.

frog2.increasePosition(4);

ST o1 [11 o TSR

» On receiving the message increasePosition(), the object referenced by frog2
causes the method increasePosition() to execute. The method’s formal
argument, step, is set to the value of the message’s actual argument, which is 4.

> The message getPosition() produces an answer that is the value of the current
position of the receiver, frog2, i.e. the integer 6.

4 Methods with arguments

» The integer 6 is then added to the actual argument, 4, by means of the arithmetic
operator +, and results in the integer 10.

» The integer 10 becomes the actual argument for the setPosition() message sent
to the receiver this, so the instance variable position of the object referenced by
frog2 is set to 10.

m Methods with two arguments

Activities 22 and 23 introduce a method with two arguments. In a method with more than
one formal argument, the arguments are separated by commas.

ACTIVITY 22

Suppose that there is (another) requirement for Frog objects — to set both the position of a
frog to a given value and its colour to a given instance of OUColour with a single message.
To implement this behaviour you will need a new method, setPositionAndColour(),
which will take two arguments. One argument will give the position the frog must go to and
the other argument will give the colour that the frog must assume.

Using the project Unit4_Project_4, write the code for this new method for the Frog class
using the Blued editor, then recompile.

Then, using the OUWorkspace, satisfy yourself that Frog and HoverFrog objects respond
appropriately to the new message you have added to the protocol of the Frog class.

DISCUSSION OF
ACTIVITY 22

Here is our version of setPositionAndColour().

/**

* Sets the position of the receiver to the argument aPosition

* and the colour of the receiver to the argument aColour.

*/

public void setPositionAndColour (int aPosition, OUColour aColour)

{

this.setPosition(aPosition);
this.setColour (aColour);

}

You could have tested your code in the OUWorkspace with statements such as the
following.

frogl.setPositionAndColour (5, OUColour.BLUE) ;
frog3.setPositionAndColour(1l, OUColour .MAGENTA) ;

SAQ 12
What is the signature of the method given in the discussion of Activity 227

AN S E R
The signature is setPositionAndColour (int, OUColour)

Unit 4 An introduction to methods

ACTIVITY 23

In this activity you look at what happens if the order of the arguments in a message is not
the same as the order defined in the method header of the corresponding method.

With the project Unit4_Project_4 and the OUWorkspace open, execute the following
statements one by one. What happens?

Frog kermit = new Frog() ;
kermit.setPositionAndColour (3, OUColour.BLUE) ;
kermit.setPositionAndColour (OUColour.BLUE, 3);

DISCUSSION OF
ACTIVITY 23

The first two statements execute normally and (if you have the graphical display open)
you will see the Frog object, kermit, change position and colour.

The third statement does not execute. Instead, an error message is displayed indicating
that the compiler cannot find a corresponding method with the signature
setPositionAndColour (OUColour, int).

You can see from this that the order in which the arguments are defined in the method
header is important. The actual arguments of the corresponding message must be in the
same order.

m A more significant example

We conclude this section with an activity that gives you practice with the topics covered
in the section.

ACTIVITY 24

Using the project Unit4_Project_4, you are required to alter the Frog class so that the
value for the home position can be stored using another instance variable of type int
called homePosition. This instance variable will be initialised to 1 (so Frog objects will
still be created in the same initial state). However, it will be possible to change the home
of a frog to another position.

In each of the following steps make sure you provide adequate documentation in the form
of comments.

1 Add the instance variable declaration for homePosition in the correct place in the
class code.

2 Add the code to initialise homePosition to 1 in the constructor.

3 Add the accessor methods setHomePosition() and getHomePosition() at the
end of the class, and then compile so that your class is ready for testing.

4 Test your work so far by executing the following statements one by one in the
OUWorkplace and inspecting the temporary variable, hPos.

int hPos;

hPos = 0;

Frog frogl = new Frog() ;

hPos = frogl.getHomePosition(); //check hPos is now 1

frogl.setHomePosition(5);
hPos = frogl.getHomePosition(); //check hPos is now 5

4 Methods with arguments

5 Alter the method home () so that it sets the value of position to the value of
homePosition. You will need to recompile after this alteration.

6 Test your work by executing the following statements one by one in the
OUWorkspace and inspecting the variable pos.

int pos;

pos = 0;

Frog frogl = new Frog();
frogl.setHomePosition(3);

frogl.home();

pos = frogl.getPosition(); //check pos is now 3

7 Regenerate the documentation for Unit4_Project_4 by selecting Project
Documentation from the BluedJ Tools menu.

DISCUSSION OF

ACTIVITY 24

1 The instance variable declarations should now look like the following.

private OUColour colour;
private int position;
private int flyCount;
private int homePosition;

2 The code for the constructor should now look like the following.

/**
* Constructor for objects of class Frog which initialises
* colour to green, position to 1, flyCount to 0 and
* homePosition to 1.
*/
public Frog()
{
super();
this.colour = OUColour.GREEN;
this.position=1;
this.flyCount =0;
this.homePosition =1;

}
3 The accessor methods should be similar to the following.

/**

* Returns the home position of the receiver.
*/

public int getHomePosition()

{

return homePosition;

/**

* Sets the home position of the receiver to the value of
* the argument aPosition.

*/

public void setHomePosition(int aPosition)

{

this.homePosition = aPosition;

Unit 4 An introduction to methods

4 You should find that a new Frog object has an initial homePosition of 1, and that
you can use the accessor methods to get and set the value of homePosition.

5 The method home () should now look like the following.
/**
* Resets the receiver to its home position.
*/
public void home()

{

this.setPosition(this.getHomePosition());
}
6 After executing the code you should find that pos holds the value 3.

7 You should find that the documentation for the Frog class now includes information
on the new methods.

5 Reuse of code

Reuse of code

So far in this unit we have introduced techniques that enable Java programmers to write
code in an object-oriented manner. In this section we introduce a major concept in
object-oriented programming — reuse of code.

You have seen that the code for the Frog class includes several methods. Each method
can be tested to ensure that it conforms to the specification given in the method
comment. When you add a new method to a class you can reduce some of the
complexity of the new method, and also make the new method easier to maintain, by
reusing methods that have already been developed and tested for that class.

Consider the method doubleleft () for the Toad class, which you met in Activity 5:

/'k*
* Moves the receiver left twice.
*/
public void doublelLeft()
{
this.left();
this.left();
}

Now look at some alternative code for this method.

/**
* Moves the receiver left twice.
*/
public void doublelLeft()
{
this.setPosition(this.getPosition() - 4);

}

You might think this is better. However, consider the requirement stated in the method
comment.

/**
* Moves the receiver left twice.

*/

This, and the name of the method, doubleleft (), tell us that the method is supposed to
have the same effect as a double application of left ().

At present, the Toad class defines 1left() to mean changing the position by 2, and so
doubleLeft () changes the position by 4. So for the time being the statement

this.setPosition(this.getPosition() - 4);
achieves the correct result.

But suppose the designers of the Toad class changed their minds, as they
easily might, and decreed that toads moved left 3 stones at a time! ‘Move left twice’
would now mean changing position by 6, and the statement
this.setPosition(this.getPosition() - 4); would be wrong and would need
to be altered. If the designers had a further change of mind, another modification
would be needed, and so on.

Unit 4 An introduction to methods

However, the earlier version of doubleLeft (), which uses this.left() twice, would
continue to work perfectly without any changes! It will always produce the same effect
as two moves left. The designers of Toad could change their minds about what left()
means as many times as they like, and this version of the method would always
automatically produce the correct result, without requiring any modification.

This is very important, because there could be many different methods whose result
depends on the definition of ‘move left’. If the methods are written so that they
manipulate the position directly, then every time there is a change to the method left ()
you would need to identify all those methods and update their code. Quite apart from the
effort involved, you might overlook some and it would be easy to make mistakes.

However, methods that reuse 1eft () will not require any changes at all, and all these
problems are entirely avoided! Reuse is a far superior strategy, and experienced object-
oriented programmers employ reuse wherever they can. Although you are not yet an
expert, you should look carefully for possible reuse and try to take advantage of it in the
code you write.

m Using libraries

The ability to reuse code goes beyond the simple example described above.

One of the features of object-oriented languages that make them so powerful is that they
usually include class libraries. Such libraries may contain hundreds, or even thousands,
of classes that have proven useful to programmers in the past to write a wide range of
applications. These classes have been robustly tested, and they have been well
documented, so that programmers can understand the purpose of each class and what
each method in a class does, without having to know how the methods are
implemented. Indeed, class libraries usually do not include source code, just the
compiled code, so the programmer has to rely on the documentation as they cannot see
the source code.

Java comes with many such class libraries (which it calls packages); in addition,
programmers can develop their own class libraries (packages) containing classes that
are relevant to their own application area. Once tested and documented, these can be
reused to form the basis of many applications.

You are already making use of a library of classes (package) developed for M255. It is
this reuse of code that enables you to have frogs moving in a graphical display at this
early stage in the course. In the next activity, we look at the documentation for the
simplest of these classes. As this is an exploratory activity, there is no discussion.

ACTIVITY 25

Open the Blued editor on the Frog class in the project Unit4_Project_4. At the top of the
editor window the first statement is:

import ou.*;

This tells the compiler to find the library (package) called ou and make all the classes in it
available to the Frog class. Now select OU Class Library from the Blued Help menu. The
documentation for the library will soon appear in a browser window. You will notice that
the package name is ou and that it contains four classes. OUAnimatedObject is the
superclass of the classes Frog and Toad, and it contains the methods that enable Frog,
HoverFrog and Toad objects to be visible and move around a graphical display.
OUColour is the class that provides the colours we have used in our classes. OUDialog
provides methods that you will use in Unit 5to communicate with a user via dialogue
boxes. The fourth class, OUFileChooser, is not used until Unit 12.

5 Reuse of code

Click on the link for ouColour in the left-hand frame. We have been using this class each
time we write a statement such as

freddie.setColour (OUColour.GREEN) ;

Do not worry if you do not understand the detail. All you need to appreciate is that the
various colours we use are kept in this class as constants. You will learn more about this
in Unit 7. There is only one instance method in this class: toString().

Click on the link for oUAnimatedObject in the left-hand frame of your browser window.
This is a much more complicated class, but it still contains many parts you might
recognise, including a list of methods that include update() and performAction().
Now, going back to the Blued editor, look at the code for the Frog class. You will see that
we use update() in the methods setPosition() and setColour(), and we use
performAction() in the methods jump () and croak (). There is no need to worry about
how these methods are implemented. We have all the information we need in the
documentation provided for the library — a description of what they do and the method
header. Someone else has put in the time to code these methods and test them to ensure
they work.

Later in the course we will make extensive use of the Java Class Libraries. You can see
the documentation for these libraries in your browser by selecting Java Class Libraries
from the Help menu in the BlueJ window. You do not need to access this documentation
now, but you might like at some stage to look at what is provided. Depending on how
your computer is set up you may need to be connected to the internet in order to access
this documentation.

m Using accessor methods

Earlier in this section you saw that you could rewrite the method doubleLeft () without
reusing left (), although this might not be advisable. It is even possible to rewrite the
method without using the accessor methods at all, since we can work with the variable
position directly, although you will see shortly that there are strong reasons why this is
even less advisable. The resulting method would be as follows.

/**

* Moves the receiver left twice.
*/

public void doublelLeft()

{

this.position = this.position - 4;
this.update("position");
}

This seems fine — noting the use of update () to notify any observing user interface, such
as the Amphibians window, that the receiver’s position has changed. However, what
happens if you write a new method tripleLeft () and forget the statement containing
the message update ()7 You will investigate this in the next activity.

_ Unit 4 An introduction to methods

ACTIVITY 26

Using the project Unit4_Project_4, open the Blued editor on the Toad class and add the
following method.

/**

* Moves the receiver left three times.
*/

public void triplelLeft()

{

this.position = this.position - 6;

}

Recompile, open the OUWorkspace from the Blued Tools menu, and then open an
Amphibians window from the Graphical Display menu.

Execute the following statements one at a time in the OUWorkspace.

Toad dermot = new Toad() ;
dermot.tripleleft();

Inspect the state of dermot by double-clicking on the name dermot in the Variables Pane
in the OUWorkspace. Is the state of dermot reflected in the Amphibians window?

DISCUSSION OF
ACTIVITY 26

You should have found that the value of position for dermot had changed to 5 but that
the icon of the toad representing dermot in the Amphibians window was still sitting on
the 11th stone.

If you have had difficulties with Activities 18-26, Unit4_Project_4_Completed
incorporates all the changes and additions made in this set of aclivities.

Advantages of using accessor methods

When developing the OUWorkspace for this course, we arranged for the Amphibians
window to display a representation of any amphibian-like objects created in the
OUWorkspace (i.e. the domain model of the Amphibians window is the collection of
amphibian objects in the OUWorkspace). However, the Amphibians window and the
collection of objects in the OUWorkspace have to be kept in step. Therefore any method
that directly changes an instance variable that is of importance to the Amphibians
window must also send a message to notify that window (or indeed any other interested
observing object) that the value of an object’s instance variable has changed. If this is
not done, the Amphibians window will not know to refresh itself to reflect any changes to
the state of that object. This is exactly what has happened with the method you tested in
Activity 26.

You will have noticed that the setter methods setColour (), setPosition() and
setHeight () all contain statements to notify an observing object (in this case the
Amphibians window) that a particular object’s instance variable has changed its value.
This has the important consequence that a method that makes use of an instance
variable’s setter, rather than changing the instance variable directly, will have the
Amphibian window notified automatically that the instance variable has changed.

The need to notify some observing object that the value of some other object’s
instance variable has changed is not the only reason why it is often better to use
accessor methods than to work with instance variables directly. What would happen
if, for some reason, the class were changed so that position was stored as a float

5 Reuse of code

rather than an int? The programmer making the changes would ensure that the
method headers of the accessors remained identical, so that the getter would still
answer with an integer, and the setter would still take an integer argument. The
change in number format would be strictly internal to the methods, and any number
conversions that were required would be taken care of. Methods that depended on
the accessors would go on working precisely as before.

However, methods that used the instance variables directly might not be in this fortunate
situation. They might rely on position being an integer, and the change of number

format might ‘break’ them so that they stopped working. If programmers had used direct
access instead of accessor methods, it would be necessary to track down every place
where this had happened, check how the method was affected and rewrite the code if
necessary. This obviously entails a lot of additional work, and is an error-prone process.

So when should a programmer reuse accessor methods, and when is it good practice to
access instance variables directly? This is not an easy question. Direct access is
simpler, and can take less processing time than using accessor methods. However,
setters may have checks for validity of the arguments, and both setters and getters may
mask the fact that the actual implementation of how an instance variable is stored may
have changed. In M255, you are not going to design any time-critical software so, as a
rule of thumb, we suggest that wherever accessors are available you should use them in
your methods. This will mean the only place — other than in a constructor — where an
instance variable is assigned directly is in the setter method, and the only place it is
accessed directly is in the getter method. These two methods — the getter and setter —
have to operate directly with the instance variable, because there is no other way for
them to work. They cannot use accessors, because they are the accessors!

To recap, there are two major advantages in using accessor methods (if they are
provided).

1 Using accessor methods is more economical in terms of coding. This is because
you can define the detailed work required in changing some aspect of an object’s
state just once with a setter method, and then ensure that you make use of that
detailed work in other methods by reusing the setter.

2 Accessor methods aid reuse. That is, they facilitate the business of changing a class
or creating a subclass for use in a different situation. For example, the implementor
of a subclass does not need to know the details involved in updating or returning the
values of inherited instance variables. Indeed, an object of some subclass is
prevented from directly accessing an inherited instance variable if that instance
variable has been declared as private, and has to make use of accessor methods
that the superclass must declare as public (so that instances of the subclass can
see them). This means that the subclass is insulated from any changes that might
be made in the superclass to the representation of its instance variables, or to the
detailed work required in changing some aspect of its state. Changes may be made
to the superclass without the knowledge of any subclasses, provided the
specifications of the getter and setter methods are preserved. So in the case of the
class Frog, an instance of a subclass — or indeed an object of any class — can
access the instance variable position using getPosition() and be confident that
the message will always answer with an int value.

It is for reasons such as these — minimising the impact of change — that it is sensible,
even in simple applications, to use accessor messages (getters and setters for
attributes) instead of accessing instance variables directly.

For reasons that cannot
be elaborated upon here,
it is safer, where possible,
to initialise instance
variables directly in a
constructor rather than
using setter messages.

_ Unit 4 An introduction to methods

Encapsulation

So far in this unit you have seen how an object contains both state (the values of its
attributes held in instance variables) and behaviour (defined by its message protocol).
This is an example of what is termed encapsulation. Put another way, objects
encapsulate state and behaviour. The concept of encapsulation is very powerful
because it allows an efficient division of labour in large software projects. Each team
member can work in isolation on the class(es) he or she is responsible for. All that team
members need to know about other classes are the names and specifications of the
public methods.

Related to encapsulation is the concept of data hiding, whereby an object becomes a
black box, with access to the encapsulated data (the instance variables) being possible
only through a limited set of public methods. In other words, only an object’s own
methods are allowed to access the value of an instance variable (to either change it or
return it).

Objects in Java exhibit encapsulation and they can also exhibit data hiding. You have
seen how it is possible to define access modifiers for each instance variable and
method. If the instance variables for an object are defined as private, then that object
can exhibit data hiding as well as encapsulation. However, other instances of the same
class will be able to directly access the private instance variables so, to some extent,
Java relies on the individual programmer to enforce data hiding.

Figure 6 illustrates the concept of encapsulation and data hiding.

private protocol public protocol messages object of

(defined by private methods <——— (defined by public methods <————{ some other
in the object's class) in the object's class) class

private instance variables

messages

object of
some other

class

Figure 6 Encapsulation

6 Encapsulation

Do you remember the millennium bug — Y2K? Some operating systems and some
programming languages record time and dates as just another number. (Compare
this with Java, which has a Date class provided in the java.util package.) As time
progresses the time number gets bigger — so a future date is always larger than a
past date. The Y2K bug arose because many programmers writing commercial
systems in the 1970s and 1980s had omitted the century digits from dates — such
programmers did not think the century digits would be needed! For example, many
COBOL programs represent the date 26 February 1990 as the number 900226, and
the date 1 January 1991 as 910101, allowing the programs to compare the two
numbers and correctly assume that the smaller number represented the earlier date.
However, without the century digits, those comparisons would fall apart on 1 January
2000. The last day of the millennium was 991231, and after the stroke of midnight
many computers would see 1 January 2000 as 000101 — a smaller number than the
day before. Time would appear to have been reversed! To avoid this disaster a lot of
money was spent paying people to read programs line-by-line, checking how the
programs implemented dates and, if need be, modifying the programs to include
century digits. The cost of all this work is estimated to have exceeded 400 billion
pounds worldwide! If all software had been written in an object-oriented language (or
at least a language providing encapsulation and data hiding) the cost would have
been considerably less, as it would only have been necessary to check objects that
implemented dates.

SAQ 13
How is encapsulation implemented in Java?

ANSWER .

In Java you can define classes that are templates for the creation of objects. These
objects then encapsulate both state and behaviour.

SAQ 14
How do you implement data hiding in Java?

AN SR ...
Data hiding is implemented by declaring instance variables as private.

_ Unit 4 An introduction to methods

Consolidation

This section contains activities designed to help you practise the techniques and
explore some of the concepts you have learned in this unit. The activities are all based
on the project Unit4_Project_5. Unless you leave your computer during your study of this
section, we suggest that you do not close the project or the OUWorkspace during this
set of activities. The project Unit4_Project_5 contains the classes Circle, Triangle and
Diamond. It also contains a partially complete class called Marionette.

/A The Marionette class

First, you need to familiarise yourself with the Marionette class.

ACTIVITY 27

Launch Blued and open the project Unit4_Project_5. From the Blued Tools menu select
Project Documentation (if a dialogue box opens, click on its Regenerate button). When
the browser opens to display the generated Javadoc documentation, select the link for
the Marionette class in the left-hand frame. Now look at the documentation for the class
in the main frame of the browser window. What methods can you see?

DISCUSSION OF
ACTIVITY 27

The visible methods are addComponents() and right().

ACTIVITY 28

With the project Unit4_Project_5 open, choose Open from the Graphical Display menu of
the OUWorkspace. This will open up a graphics window called Shapes, in which shape-
like objects created in the OUWorkspace can be displayed.

Execute the following statements in the OUWorkspace one at a time and check they do
what you might expect, both by inspecting the variables that reference the objects you
create and by looking at their graphical representations in the Shapes window.

Circle head = new Circle();

Diamond body = new Diamond() ;

Triangle leftleg = new Triangle();

Triangle rightLeg = new Triangle();

Marionette mary = new Marionette();
mary.addComponents (head, body, leftlLeg, rightlLeqg);
mary.right(20);

mary.right(20);

7 Consolidation

DISCUSSION OF
ACTIVITY 28

On creating each shape (a circle, a diamond and two triangles) you should have seen
that they were all displayed in the top-left of the Shapes window, all on top of each other.
As soon as the addComponents () message was sent to the Marionette object
referenced by mary you should have seen that the shapes became arranged into a
recognisable marionette-type figure. Finally, sending right () messages to mary
caused this marionette figure to move to the right.

The class Marionette is incomplete. Objects of this class have no arms and can move
in only one direction (right). In the next two activities you will look at the code for the
class Marionette and add the necessary instance variables and methods to complete
the required behaviour for its instances.

ACTIVITY 29

1 With the project Unit4_Project_5 open, open the Blued editor on the class
Marionette. Notice that there are many more methods in the code than appeared in
the documentation. Why do you think this is? Why do they not appear in the
documentation? What would happen if you tried to send a message that
corresponded to one of these methods to an instance of Marionette from the
OUWorkspace?

2 Look at the code for the method right () and write similar methods left (), up()
and down (). Test these in the OUWorkspace. Why should these methods be public?

DISCUSSION OF
ACTIVITY 29

1 The methods that have been declared as private do not appear in the
documentation. If you tried to send these messages from the OUWorkspace you
would get an error message. The methods have been made private because the
corresponding messages are not to be part of the public behaviour of a marionette;
rather, they exist to ‘help’ the publicly visible methods. You will notice that all the
Marionette instance variables and their accessor methods have been declared as
private. This has an important consequence: only Marionette objects can access
the instance variables, either directly or indirectly. This means also that any instance
of some future subclass of Marionette would be unable to access these instance
variables, either directly or indirectly.

2 Here is our code for the methods left (), up() and down().

/**
* Decrements xPos by the value of the argument.
*/
public void left(int decrement)
{
this.setXPos(this.getXPos() - decrement) ;

_ Unit 4 An introduction to methods

Although it seems initially /**
counter-intuitive, the up()

method needs to * Decrements yPos by the value of the argument.

decrement yPos (and *x/
conversely down () needs public void up(int decrement)
to increment yPos) {
because, in Java, the) .
origin (0,0) is at the top left this.setYPos(this.getYPos() - decrement) ;
of the working area. }
/* *
* Increments yPos by the value of the argument.
*/

public void down(int increment)
{
this.setYPos(this.getYPos() + increment);

}

You could test your methods by executing the following statements one by one in the
OUWorkspace.

Circle head = new Circle();
Diamond body = new Diamond () ;
Triangle leftleg = new Triangle();
Triangle rightLeg = new Triangle();
Marionette mary = new Marionette();
mary.addComponents (head, body, leftleg, rightlLeqg);
mary.left(50);
mary.up(50);
mary.down(50) ;
These methods need to be public to allow other objects (including you, from the

OUWorkspace) to send the corresponding messages as they are part of the new
public behaviour for Marionette objects.

ACTIVITY 30

The body parts of a Marionette object are referenced by the following instance
variables: body, head, rightLeg and leftlLeg.

1 You are now going to add arms to a Marionette object. The arms of Marionette
objects should be instances of class Diamond. Look at the code for declaring the
instance variable leftLeg. Write similar declarations for two new instance variables:
leftArm and rightArm.

2 Next, using setLeftLeg() and setRightLeg() as templates, write the setter
methods setLeftArm() and setRightArm() for these new instance variables. You
should set the heights of both arms to 15, their widths to 40, and their colour to
OUColour.YELLOW. Once you have done this, write the getter methods for the new
instance variables.

3 Inthe method addComponents () the instance variables that form the body parts are
assigned the objects given in the actual arguments of a corresponding message.

Add formal arguments to the argument list in the method header of addComponents ()
for the new arms. Then add code to the addComponents () method to set the new
rightArm and leftArm instance variables to these additional arguments.

4 In order to align the arms of a Marionette object to the rest of its body parts you will
need to write two more methods: alignLeftArm() and alignRightArm(). Use
the methods alignleftleg() and alignRightLeg() as templates. For the left
arm you should to set its xPos to the xPos of the marionette minus 35, and its yPos

7 Consolidation

to the yPos of the marionette plus 25. For the right arm you will need to set its xPos
to the xPos of the marionette plus 25, and its yPos to the yPos of the marionette
plus 25.

5 Finally, you will need to add two more statements to the alignall() method that
make use of alignLeftArm() and alignRightArm(). Once you have done this,
create a Marionette object in the OUWorkspace and send it right (), left(),
up () and down () messages to make sure that the code you have written in this
activity works correctly.

DISCUSSION OF
ACTIVITY 30

1 You should have added the following code to the list of instance variables.

private Diamond leftArm;
private Diamond rightArm;

2 The code for these instance variables’ accessor methods should be as follows.

/**
* Sets the leftArm of the receiver to the argument and
* then sets the height, width and colour of leftArm.
*/
private void setLeftArm(Diamond anArm)
{
this.leftArm = anArm;
this.leftArm.setHeight (15);
this.leftArm.setWidth(40);
this.leftArm.setColour (OUColour.YELLOW) ;
}

/**
* Returns the leftArm of the receiver.
*/
private Diamond getLeftArm()
{
return this.leftArm;

}
/**

* Sets the rightArm of the receiver to the argument and
* then sets the height, width and colour of rightArm.
*/
private void setRightArm(Diamond anArm)
{
this.rightArm = anArm;
this.rightArm.setHeight(15);
this.rightArm.setWidth(40);
this.rightArm.setColour (OUColour.YELLOW) ;
}

/**

* Returns the rightArm of the receiver.
*/

private Diamond getRightArm()

{

return this.rightArm;

Unit 4 An introduction to methods

3 Here is our updated code for the method addComponents().

/**
* Sets the head, body, leftleg, rightlLeg, leftArmand rightArm of the
* receiver to the arguments. Then causes these instance variables to be
* aligned relative to each other.
*/
public void addComponents(Circle aHead, Diamond aBody, Triangle
aleftleg, Triangle aRightLeg, Diamond alLeftArm, Diamond aRightArm)
{
this.setHead(aHead) ;
this.setBody(aBody) ;
this.setLeftlLeg(aleftleqg);
this.setRightLeg(aRightLeqg) ;
this.setLeftArm(aLeftArm);
this.setRightArm(aRightArm) ;
this.alignAll();
}

4 Here is our code for the methods alignLeftArm() and alignRightArm().

/**
* Aligns the leftArmof the receiver relative to the xPos and yPos of the
* receiver.
*/
private void alignLeftArm()
{
this.leftArm.setXPos(this.getXPos() - 35);
this.leftArm.setYPos(this.getYPos() + 25);
}

/**
* Aligns the rightArmof the receiver relative to the xPos and yPos of the
* receiver.
*/
private void alignRightArm()
{
this.rightArm.setXPos(this.getXPos() + 25);
this.rightArm.setYPos(this.getYPos() + 25);
}

5 Below is the updated code for the method alignaAll().

/**
* Aligns all the body parts of the receiver.
*/
private void alignAll()
{

this.alignBody();
this.alignHead() ;
this.alignLeftLeg(
this.alignRightLeg
this.alignLeftArm(
this.alignRightArm

);
()
)
(

);

7 Consolidation

Finally, here are statements you could have used in the OUWorkspace to test that
the new code worked correctly.

Circle head = new Circle();

Diamond body = new Diamond() ;
Triangle leftlLeg = new Triangle();
Triangle rightLeg = new Triangle();
Diamond leftArm = new Diamond();
Diamond rightArm = new Diamond () ;
Marionette mary = new Marionette();
mary.addComponents (head, body, leftleg, rightLeg, leftArm, rightArm);
mary.left(50);

mary.up(50);

mary.down(50) ;

If you have had difficulties with Activities 27-30, Unit4_Project_5_Completed
incorporates all the changes and additions made in this set of activities.

_ Unit 4 An introduction to methods

Summary

After studying this unit you should understand the following ideas.

>

|

A method defines a message for all instances of a class and for all instances of any
subclasses.

Although a method has to be defined only once to work for a whole class of objects,
when a message causes a method to be executed, the method behaves as though
it is inside exactly one object — namely the object that received the message that
caused the execution of the method.

Attributes are implemented in Java as instance variables. An instance variable holds
either a primitive data value or a value that is a reference to an object. The declared
type of the variable specifies what kind of value it can hold.

Access modifiers are used to specify the visibility of instance variables and methods
to objects of other classes.

You can think of two kinds of things existing inside an object: its own instance
variables and its own methods. All other objects (and their methods) can be
considered to be outside a given object. This incorporation of data and behaviour in
a single entity is termed encapsulation.

The only way that an object (or a user) can change the state of another object or
make it do something is by sending it a message. If you have followed good
practice and made all the instance variables private, there is no direct access to the
state of an object from objects of other classes. It is up to programmers to respect
encapsulation between objects of the same class.

Objects or primitive data values are returned as values from a method by writing a
return statement in the method code.

Arguments are used in a message to pass information to an object’s method. The
formal argument names in the heading of a method are placeholders for the actual
arguments.

LEARNING OUTCOMES

After studying this unit you should be able to:

» explain the distinction between a method and a message;
» explain what is meant by the principles of encapsulation and reuse of code;

» use an editor to create new methods for a class, and test the methods on a variety of
instances of that class;

add instance variables to a class, initialise them and write accessor methods;
write a simple constructor for a class;
write methods that return values;

vVvyyy

understand the use of arguments in messages, and write code for methods
involving arguments;

v

explain the meaning of public and private in relation to both instance variables
and methods.

_ Unit 4 An introduction to methods

Glossary

accessor method A method that implements an accessor message. See getter
method and setter method.

accessor message An accessor message is either a getter or a setter message. For
example, the messages getPosition() and setPosition() are accessor messages
for the instance variable position held by instances of the Frog class. The getter
message getPosition () returns the value of the instance variable position, while the
setter message setPosition() changes the value of position.

argument Some messages require information. For example, when requesting a Frog
object to change its colour to that of another Frog object, it is necessary to specify the
other Frog object. This is seen in the message-send frogl.sameColourAs(frog2). A
message can have zero, one or more arguments. The arguments (if any) used in a
message are known as actual arguments, since they contain actual values or references
to actual objects that will be passed to the method via the corresponding formal
arguments. The actual arguments must match the formal arguments in number and
type, and must appear in the same order.

bytecode Bytecode is the intermediate code produced by the Java compiler. In
Blued, compilation is done when the Compile button is pressed. This will create a
bytecode file, for example Frog.class, from the source code file Frog. java. The
bytecode file is portable, because each computer that can run Java programs has a
Java Virtual Machine — a program itself — that understands bytecode and converts it into
the machine code required for that particular computer.

comment A comment is a piece of text in program code that is ignored when

executing the code. In Java multi-line comments are delimited by /* and */. Single line
comments are simply preceded by //. A comment can generally be placed anywhere in
the code of a class, with the exception of method comments — method comments are
placed between /** and */ and must appear immediately before the method header.

compiler A piece of software which first checks that text written in a high-level
language is correctly formed. If the check is successful, then the source code is
compiled into bytecode.

data hiding This is where an object is treated as a black box, with access to the
encapsulated data (the instance variables) being possible only through a limited set of
methods, i.e. only an object’s own methods are allowed to access the value of an
instance variable (either to change it or return it).

debugging The identification and removal of implementation errors (bugs) from a
program.

encapsulation Objects allow you to encapsulate data by incorporating into a single
entity (the object) both the data (instance variables) and the behaviour (methods)
defined for that data. The concept of encapsulation is very powerful because it allows an
efficient division of labour in large software projects. Each team member can work in
isolation on one or more classes. The only things that team members need to know
about other classes are the names and specifications of the methods.

formal argument An identifier used in a method to stand for a value that is passed into
the method by a message.

8 Glossary

getter method An accessor method whose purpose is to return the value of an
instance variable as its message answer.

instance variable A variable that is common to all the instances of a class but the
value of which is specific to each instance. Each instance variable either contains a
reference to an object or contains a primitive data value. For example, the instance
variable colour contains a reference to an instance of the class ouColour, say
OUColour.GREEN, whereas the position instance variable contains a value of type 1.

Javadoc A program that comes with Java. The Javadoc program picks up information
from specially formatted comments and other parts of the class code such as the
constructor and the method headers. These are all used to create an HTML file, which
describes the class in a standard way. This description is aimed not at the Java
compiler, but at human readers (and possibly the writer of the code at a later date, when
he or she might well have forgotten what the methods do).

method The code that is invoked by the Java Virtual Machine at run-time when an
object receives a message.

method body That part of a method enclosed by braces that follows the method
header.

method header A method header consists of an access modifier (e.g. public), a
return value (e.g. int or void) and a name (e.g. setPosition) followed by the
formal argument names enclosed in parentheses (e.g. (int aNumber)). For
example, the method header for a method whose name is setPosition() is
public void setPosition(int aNumber).

method invocation At run-time, selecting and executing a method when an object
receives a message.

method signature The name of the method together with the parentheses and the
types of any arguments. For example, the signature for the setPosition() method in
the Frog class is setPosition(int).

private An access modifier. It tells the Java compiler that the only objects that have
access are the object to which it belongs and other objects of the same class.

pseudo-variable A special undeclared variable, visible within a method or
constructor, that cannot be changed by assignment. Java has two such variables — this
and super.

public An access modifier. It tells the Java compiler that all objects have access.

setter method An accessor method whose purpose is to assign a new value to an
instance variable. The new value is determined by the single argument of the method.

signature See method signature.

this A pseudo-variable used within a method to reference the receiver of the
message that activated the method.

_ Unit 4 An introduction to methods

Index

A F P

accessor methods 26, 28 formal argument 39 primitive 35
argument 38 G private 22, 25
B getter methods 26 pseudo-variable 10, 23
bytecode 19 | public 25

C instance variables 21, 28 S

comment 8 J setter methods 25
compiler 5 Javadoc 17 T

D M this 10

data hiding 52 method 5, 8 type 35
debugging 13 method body 8

E method header 8

editor 5 method invocation 19

encapsulation 52 method signature 39

