M255 Unit 3
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Variables, objects and
representations

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.
Copyright © 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,

WAT 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

ISBN 978 0 7492 5495 7
2.1

CONTENTS

Introduction 5
1 Data types and variables 6
1.1 Primitive data types 6
1.2 Variables of primitive data types 8
1.3 BluedJ and the OUWorkspace 9
1.4 Reference type variables and objects 13
1.5 Variable names 18
2 Expressions 21
2.1 Expressions involving primitive data types 21
2.2 Expressions involving objects 29
2.3 Strings 31
3 Variables, typing and assignment 36
3.1 Assigning values of primitive types to variables 36
3.2 Assigning objects to reference type variables 39
3.3 Visualising references to objects 41
4 Textual representations of objects and
primitive values 51
41 The message toString () 51
5 Summary 54
Glossary 57
Index 59

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

In Unit 2you did a lot of practical work in self-contained microworlds, sending messages
to different objects in order to discover the nature of objects — that they have state, have
a protocol (the messages that they respond to) and that they are organised into classes.

In this unit we begin to lift the lid on how the behaviour and state of objects might be
implemented. You will learn that there are two categories of data types in Java — primitive
data types and classes. Values of primitive types are the nuts and bolts that can be
represented at the machine level — numbers (1234 or 564.33), or Boolean values like
true and false, or characters like ?, G and b. Instances of classes are, as you have
already learnt, objects. Ultimately, all objects (in Java) are represented at the machine
level using primitive values. For example, Account objects have the attributes balance
and holder. The attribute balance has a value of the primitive type int, and the
attribute holder has a value which is a String object. However this String object is
made up of values from the primitive type char. So, as will be demonstrated, ultimately
everything in Java is composed from these primitive types.

This unit will also introduce you to the concept of expressions, chunks of program code
that evaluate to a single value, and how that value can then be assigned to a variable so
that a program can remember the value for future use.

You will also be introduced to Blued, which is an example of an IDE — an integrated
development environment. Later on in the course you will use this IDE to modify
classes of objects and to create entirely new classes. In this unit, however, you will be
using Blued to access the ‘OUWorkspace’, a programming tool that the M255 course
team have integrated into Blued. This tool is designed to enable you to get used to the
syntax of Java and enable you to write and test snippets of Java code in a quick and
convenient way.

Unit 3 Variables, objects and representations

Data types and variables

All computer programs deal with data. Data comes in all shapes and sizes. For example,
it could be simple numbers such as temperature readings, or strings of characters such
as the names of account holders, or complex objects such as bank accounts or frogs. If
a program running on a computer is going to be able to make use of this data, the data
needs to be stored in the computer’s memory, and in order to access the stored data,
the program needs some way of keeping track of where the data is stored.

To help it to do this a program can make use of variables. A variable is simply a named
‘chunk’ or block of the computer's memory where data (or a reference to the data) is
stored. By using the name of the variable in program code we are able to access the
data stored in the corresponding block of memory and also to change what is stored
there. It is because the value that is stored in a memory location can change that we use
the word variable for these named memory locations. For example, as you will see in the
next unit, the position of a Frog object is stored in a variable called position. The value
that is stored in position changes every time the frog moves to the right or the left. In
other words the value of position varies; position is a variable.

In this section we explain that Java has two categories of data, and how each category
is stored differently in a variable.

m Primitive data types

Java distinguishes two sorts of data: values of primitive data types and instances of
classes (objects). You have already met examples of both. Thus numbers such as 5 and
56.35 are examples of values of primitive data types, whereas the frogs, hoverfrogs and
toads you interacted with in the microworlds in Unit 2 are objects — instances of the
Frog, HoverFrog and Toad classes.

A primitive data type is defined as a set of values together with operations that can be
performed on them. The primitive data types in Java provide a set of basic building
blocks from which all the more complex types of data can be built. There are three
categories of primitive data type:

» numbers;
» characters;
» Booleans.

There are various kinds of humber types. First there are the integer types, byte,
short, int and long. The values of each of these types are integers (positive and
negative whole numbers and zero); the differences are in the range of values they
include and the amount of memory each requires. Thus a value of the byte type requires
only 8 bits of memory but can only be an integer in the range —128 to 127. The size and
range of the integer data types are summarised in the following table.

1 Data types and variables

Type Size Range
byte 8 bits -128 to 127
short 16 bits -32768 to 32767
int 32 bits —2147483648 to 2147483647
long 64 bits —9223372036854775808 to 9223372036854775807

In this course we use mainly the int data type for integer values.

However, not all numbers are whole numbers; in order to store decimal humbers such
as 17.34 we use floating-point types. There are two of these types in Java — float and
double. A value of the float type takes up 32 bits of memory while one of the double
type requires 64 bits. The double type not only covers a wider range of numbers (up to
over 17 followed by 307 zeros, i.e. 17 x 103°7, compared with the much smaller 3
followed by 38 zeros, i.e. 3 x 10%8, for float) but, more importantly, has greater accuracy
(more significant figures of the number are stored).

In order to represent particular values of any of these primitive types in a program we
make use of what are called literals. A literal is just a textual representation of a
particular value of some type. Some of these are pretty obvious. Thus 17 is the literal that
represents the int 17. If you want to represent the same number 17 as a 1ong you need
to use the literal 17L.

For floating-point numbers the default type is double. Thus the literal 1.7 represents the
double floating-point number 1.7. In order to specify a float you append an F; thus
1.7F represents a value 1.7 of type float. Note that these appended letters can be in
either upper case or lower case.

There is another way of representing floating-point numbers that is useful for very large
or very small numbers. This is known as exponential notation. For example,

3.17E15

represents the number 3 170 000 000 000 000 (stored as a double). The E15 means that
the point should be moved 15 places to the right, requiring 13 extra Os to be added.

Similarly,
3.17E-15

represents the number 0.000 000 000 000 003 17, as the E-15 means the point has to be
moved 15 places to the left.

We said above that a primitive data type is a set of values together with operations that
can be performed on them. The operations on numbers include the familiar ones of
addition, subtraction, multiplication and division. We will look at these and other
operations in more detail in Section 2.

For characters Java uses just one primitive data type, char. The values of the type char
represent both printable (e.g. A, B, x, and %) and non-printable characters (sometimes
called control characters). In the Introduction you came across values of type char as
the individual letters in sString objects. So for example the string "Java" is made up of
the characters 'J', 'a', 'v' and 'a'. Historically, characters were stored in 8 bits of
memory because they were represented at machine level by a seven-bit ASCII code,
which allowed for 128 characters. (ASCII stands for American Standard Code for
Information Interchange and was originally devised as a standard coding system to
allow text to be transferred from one device to another; the spare eighth bit was often
used to help check whether the code had been corrupted during transfer between the

There are no special
literals for representing the
smaller types of integer; to
store an integer as a byte
or a short you need to
assign the integer to a
variable of the appropriate

type.

An example of a non-
printable character would
be a tab or a carriage
return.

Unit 3 Variables, objects and representations

Hexadecimal is the base-
16 number system, which
consists of 16 unique
symbols: the digits 0 to 9
and the letters A to F. For
example, the decimal
number 15 is represented
as F in the hexadecimal
numbering system. One
use of the hexadecimal
system is that it can
represent every byte (8
bits) as two consecutive
hexadecimal digits.

In general it is sensible to
assume that when a
variable is first declared it
is undefined (it has no
value). However, you will
learn later that there are
some contexts in which
variables are automatically
provided with default
values of the appropriate
types when they are
declared.

devices.) However, to code all the different characters that are used in all of the world’s
written languages requires many more characters than are available with a single byte.
As a result a new character representation, Unicode, has gradually superseded ASCII
since the late 1980s. Unicode characters are stored in 16 bits, and this is what Java
uses for the primitive type char.

There are two ways of representing particular values of the data type char. One, which
we used above, is to enclose the character in single quotes, for example 'c' or '$'. We
call this a character literal. The other method is to use the actual Unicode code for the
character. This is done by writing \u followed by the code in hexadecimal. Thus \u0063
represents the character whose code is 63 in hexadecimal (which is 99 in decimal); this
is the character 'c'. In this course we will normally use character literals such as 'c’
and not concern ourselves with Unicode codes.

Finally, Java uses the type boolean for Boolean data. There are only two values of this
type and they are represented by the literals true and false.

The operations available on all these types will be dealt with in Section 2.

m Variables of primitive data types

Now that we have introduced the primitive data types we need to consider how Java
uses variables to hold values of these types in a program. Recall that a variable is a
named ‘chunk’ or block of memory. Before you use a variable in a Java program you
need to declare it; this will ensure that the variable is allocated a chunk of memory of a
suitable size to store the required type of value. To declare a variable in Java you simply
give the type of the variable and its name in a statement as shown in Figure 1. Note that
a semicolon (;) must be used at the end of every statement to indicate to the Java
interpreter that it has come to the end of the statement.

int myNumber;

Figure 1 Declaring a variable

When this statement is executed it reserves a 32-bit block of the computer's memory
(enough to store a value of type int) and records the identifier myNumber as the name of
this block of memory. We can illustrate this as follows:

myNumber

[]

Figure 2 The result of variable declaration

This shows a ‘blank’ block of memory (the empty rectangle) with the name myNumber

and is a visual representation of what has happened as a result of the declaration of the
variable myNumber. In particular the variable apparently has no value. This is because
we have not yet assigned a value to it.

To assign a value to a variable you use the assignment operator =. For example, after the
variable myNumber has been declared as above you can assign the value 17 to it by
executing the statement

myNumber = 17;

This type of statement is called an assignment statement, and this example will cause
the value 17 to be stored in the variable myNumber. We can illustrate this as follows.

myNumber

Figure 3 The result of an assignment statement

Statements are the building blocks of Java programs. Each statement represents a
single instruction to the Java interpreter.

Note that the number is stored in the actual named block of memory.

Variables declared to hold values of some primitive data type are termed value type
variables. This is because the ‘chunk’ of memory they label holds a value, as is
illustrated in Figure 3.

Exercise 1

With pencil and paper, write two Java statements, one which will declare a character
variable called letter and then another that will assign the letter 'D' to the variable.
S T0] V1o o O SEPRRR

char letter;
letter ="'D";

m Blued and the OUWorkspace

Blued encompasses a programming language, a library of classes and a development
environment. All commercial (object-oriented) programming systems contain these
three parts, with the major variation being in the environment. Blued is an example of a
Java environment developed for teaching to which we (the course team) have added a
general-purpose programming tool called the OUWorkspace.

The only part of the Blued system that you will use in this unit is our addition, the
OUWorkspace, so details of other elements of the Blued system will be left until Unit 4.

Once you have launched Blued, you can open the OUWorkspace by selecting
OUWorkspace from the Tools menu. The OUWorkspace is an important part of this
course; it is a tool that enables you to write and test arbitrary Java statements in a quick
and convenient way. You can think of a statement as a single instruction that has to be
carried out by the computer when the statement is executed. You saw in Subsection 1.2
some examples of simple Java statements for declaring variables and assigning values
to them. Remember that simple Java statements are all terminated with a semicolon.

Unit 3 Variables, objects and representations

ACTIVITY 1

Launch Blued by double-clicking the Blued icon, which is on your Windows desktop. Then
select OUWorkspace from the Blued Tools menu.

8=

Project Edit GGIEM ‘iew Help

Compile Chrl+K
Mew Clas Compile Selected Chrl+Shift-+E
Rebuild Package
==k
Use Library Class. .. Chrl+L

P Project Documentation Ctrl+]

Compilg Preferences... Chrl+Commna

Figure 4 Opening the OUWorkspace

After selecting OUWorkspace from the Tools menu, the window shown in Figure 5 should
open.

= OUWorkspace [No open project]
File Edit Action
Code Pane

Dizplay Fane ‘Yariables [Double click to inspect)

Show Results

Figure 5 The OUWorkspace

The OUWorkspace has many similarities to the Accounts World used in Unit 2; however,
it is more flexible and powerful, and will be used throughout the rest of the course.

The top pane in the OUWorkspace is called the Code Pane. This is where you type
statements that you want executed. Statements are not executed until they have been
highlighted (selected) and their execution requested by choosing Execute Selected from
the Action menu.

Below the Code Pane there are two further panes — on the left there is the Display Pane.
This has two functions. First, it is where the OUWorkspace’s Java interpreter will write
any error messages if you make a mistake in any statement(s) you are testing in the

1 Data types and variables

Code Pane. For example, if you attempt to assign a value to a variable (x) before the
variable has been declared, the Java interpreter that is used to parse and execute code in
the Code Pane will write Semantic error: Assignment to undeclared variable: xin
the Display Pane. The second function of the Display Pane is to display the value of the
last expression evaluated in a statement (or series of statements). This will occur only if
you check the Show Results check box.

To the right of the Display Pane is the Variables Pane. This pane will display any variables
declared in the Code Pane.
1 Type the following code into the Code Pane (remembering the semicolons).
int myNumber;
myNumber = 17;
Ensure that the Show Results check box is checked.

Now highlight both lines of code and execute them by selecting Execute Selected
from the Action menu.

What do you see in the Display Pane (bottom left) and in the Variables Pane (bottom
right)?
What happens when you double-click the variable name in the Variables Pane?

2 Close the Inspector window and type in the following statement.

myNumber = 45;
Select and execute the statement. Inspect the variable myNumber.

3 Clear the Code Pane and the Display Pane by choosing the appropriate items from
the Action menu.

Now enter the following statement into the Code Pane, highlight it and then execute it.

yourNumber = 34;
What happens? Try to explain it.
4 Enter and execute the following statement.

int yourNumber;
Describe what happens.

5 Enter and execute statements that will declare a character variable called choice
and give it the value 'Q'.

DISCUSSION OF
ACTIVITY 1

1 After executing the code

int myNumber;

myNumber = 17;
the Variables Pane displays the name of the variable you have just declared
(myNumber) and the Display Pane shows the number 17 — the result of executing
myNumber = 17;. This is shown in Figure 6.

Unit 3 Variables, objects and representations

= OUWorkspace [No open project]

File Edit il

ed
Clear Display Pane Ctrl+D
Chrl+K
Chrl+R
Crl+T

Clear Code Pane
Reset OUWorkspace
Restore Code Pane

Display Pane Yariables [Double click to inspect]

17

Show Results

Figure 6 Executing code in the OUWorkspace

Although code is normally entered in the top left corner of the Code Pane, we have
shown the snippet starting a little lower in Figure 6 to allow the Action menu to be
displayed.

When you double-click myNumber in the Variables Pane, an Inspector window
opens, as shown in Figure 7.

Type "W ale

int 7

Figure 7 An Inspector window showing the value of the variable myNumber

2 The Display Pane should show the result 45 and the inspector should also show that
myNumber has the value 45. Both of these confirm that the value of the variable
myNumber has changed from its previous value of 17.

3 Executing the code
yourNumber = 34;
results in the Display Pane showing the following error message:

Semantic error: Assignment to undeclared variable: yourNumber

This error message is informing you that the variable yourNumber has not been
declared, and therefore you cannot assign a value to it.

4 When you execute the statement

int yourNumber;

yourNumber appears in the Variables Pane.

5 The statements you need to declare a character variable called choice and give it

the value 'Q"' are:

char choice;
choice="'Q"';

1 Data types and variables

m Reference type variables and objects

We noted at the end of Subsection 1.2 that variables declared to hold values of some
primitive data type are termed value type variables. In this section we introduce you to
another type of variable, reference type variables.

Reference type variables are variables which are declared to hold objects. As you saw
in Unit 2, objects are instances of classes. Each class defines a reference type. For
example the class Frog defines a reference type called Frog. The values that can be
assigned to variables declared to be of the reference type Frog are simply the objects
that are instances of the class Frog, or subclasses of that class.

There are a number of important differences between objects and values of primitive
data types:

» The values of primitive data types are predefined; they already exist. The
programmer never has to create primitive values like 42 or 3.14592 or 'X'. They are
built into the language. You just use them. In contrast, objects have to be created as
required.

» You can create as many different instances (objects) of a class as you want. For
example, there is no limit to the number of Frog objects that you can create. (You will
see how to create a Frog object shortly.) Thus the number of instances of a class is
potentially infinite. This is in contrast to a primitive data type which only has a finite
number of values.

» A programmer can invent new classes of objects. You will find out how to make new
classes in Unit 4. It is not possible to make new primitive data types in Java.

» Objects usually take up much more memory than values of primitive data types. This
is because an object will normally have a number of attributes each of which will be
another object or a value of some primitive data type. For example, a Frog object
has two attributes: position, which holds a value of the primitive type int, and
colour, which references an OUColour object.

» The space needed to store an object is also unpredictable because we cannot know
at compile-time what class of object will actually be dynamically assigned to a
variable at run-time. If a variable has been declared to hold, for example, Frog
objects, it is legal to assign to it an instance of the class HoverFrog; instances of a
subclass can be assigned to variables declared for its superclass. However,
HoverFrog objects take up more storage than Frog objects (they have an extra
attribute height). Indeed the class of an object held by a particular reference type
variable may change at various times during the course of execution.

The last point is an important one. It means that we cannot always know in advance how
much storage space a reference type variable may require. For this reason the variables
that we use with objects work in a completely different way from variables that hold
values of primitive data types. A reference type variable does not hold the actual object;
instead the reference type variable contains a reference (the address) to where the
object is stored in memory. We can illustrate this by using a variable reference
diagram. Figure 8 shows a variable gribbit referencing a particular instance of the
class Frog. The diagram shows that the variable holds a reference rather than the actual
Frog by having an arrow coming out of the gribbit variable box pointing to a
representation of the Frog object. Similarly while the attribute position of the Frog
object holds the int value 5, the attribute colour references an OUColour object (which
in this case represents the colour brown).

_ Unit 3 Variables, objects and representations

gribbit Frog
position OUColour
colour D B BROWN

Figure 8 A variable reference diagram

Exercise 2

Why do you think that the position of the frog in Figure 8 is simply shown as a number in a
box, whereas the colour is shown using an arrow pointing to another box?

SYo) (V1110) o FTT TR PO TTPTRRTN

The position of a Frog object is represented by an int value; this value is stored in a box
labelled position. However, the colour of a Frog object is represented by an instance
of the class OUColour; so by using the arrow we are able show the colour box
referencing the oUColour object rather than containing it.

Reference type variables are declared in the same way as value type variables. First you
give the name of the type (the class) and then the name of the variable. Thus

Frog kermit;

declares a reference type variable called kermit that can be used to reference
instances of the class Frog. When a reference variable is first declared it does not
reference anything; it simply holds the special value null.

kermit

Figure 9 The result of reference variable declaration

In order to give the variable kermit a sensible value, you first need to create a Frog
object for it to reference. You do this by using a special operator new together with
something called a constructor. As its name suggests, the operator new is used for
creating new objects. A constructor is a piece of code for initialising the state of an
object of a class when it is created. The constructors for a class are written by the
programmer who implements the class; every class must have at least one constructor.

The constructor for the Frog class is Frog(). It is used in conjunction with the operator
new as follows.

new Frog() ;

The operator new first creates a new Frog object. It knows that it has to create a Frog
object from the name of the constructor that follows; the name of a constructor is always
the same as the name of the class whose objects it initialises. The code of the
constructor Frog() is then invoked and this code sets the attributes of the new Frog
object to their initial values (1 and OUColour .GREEN).

However, if you want to use this new Frog object in a program you need to have some
way of keeping track of it. You do this by assigning it to a variable as soon as it has been

1 Data types and variables

created. To assign the new Frog object to the variable kermit you need to execute the
following statement.

kermit = new Frog();

Note that you need to do the assignment and creation together in one statement. If we
used a separate statement to create the Frog object, then we would have no way of
getting hold of it afterwards and would not be able to assign it to any variable.

The end result of executing the two statements

Frog kermit;
kermit = new Frog();

is to produce the situation illustrated in Figure 10.

kermit Frog
position OUColour
colour D = GREEN

Figure 10 A variable reference diagram showing a new Frog object, kermit

SAQ 1

Describe the three steps that take place when the statement

kermit = new Frog();
is executed.

ANSWER ..
First, the operator new causes a new instance of Frog to be created.

Second, the constructor Frog () causes the new instance of Frog to have its position
attribute initialised to 1 and its colour attribute initialised to OUColour .GREEN.

Finally, the assignment operator = causes the new, initialised instance of Frog to be
assigned to the variable kermit.

ACTIVITY 2

In this activity, once you have launched Blued you will need to open a project from the
Project menu. Do not worry too much about this for now — all this does in the context of
this unit is to allow you to create instances of classes that have been defined by the
course team and that are not part of the standard Java libraries.

Launch Blued and select Open Project from the Project menu. Navigate to the folder
called M255 projects. Double-click on the Block1 folder and then on the project named
Unit3_Project_1. Opening the project displays a number of icons in the main BlueJ
window: one document icon and three rectangular class icons labelled HoverFrog, Frog
and Toad. The inheritance relationship between the HoverFrog and Frog classes is
indicated by an open arrowhead (see Figure 11).

If you already have Blued
running with an open
OUWorkspace window,
close the OUWorkspace
before continuing.

_ Unit 3 Variables, objects and representations

EdBluel: Unit3_Project_1

Project Edit Tools Wiew Help
=
—— Frog Toad
HoverFrog
—_——

Figure 11 Blued project window

The rectangular class icons indicate that in this project the classes HoverFrog, Frog and
Toad are available and that you will be able to create instances of them in the
OUWorkspace.

From BluedJ’s Tools menu select OUWorkspace. The OUWorkspace window that opens
has a menu bar with four menus: File, Edit, Action and Graphical Display.

= OUWorkspace [Project: Unit3_Project_1]

File Edit Action @Graphical Display

Code Pane

Display Fane Wariables [Double click to inzpect)

Shaw Results

Figure 12 The OUWorkspace window associated with projects containing classes whose objects
can be displayed graphically

1 Enter the following statement in the Code Pane and execute it.
Frog kermit;
Inspect the variable kermit.

2 Now enter and execute the statement

kermit = new Frog() ;

Inspect the variable kermit.

1 Data types and variables

Now enter and execute the statements

kermit.right();

kermit.right();

kermit.setColour (OUColour .BROWN) ;
Inspect kermi t.

Next enter and execute the statement

kermit = new Frog() ;
and inspect kermit once again.

From the Graphical Display menu of the OUWorkspace choose Open. Once you
have done this, a new window labelled Amphibians should appear behind the
OUWorkspace. What can you see in this window? Arrange the windows conveniently
then, using the OUWorkspace, try sending some messages to kermi t by typing and
executing them in the Code Pane. Try things like:

kermit.right();

kermit.setColour (OUColour.PURPLE) ;

kermit.left();
What do you observe in the Amphibians graphics window?
In the OUWorkspace declare a variable called gribbit and assign to it a new Frog
object. What do you see in the graphical display?

DISCUSSION OF

ACTIVITY 2

1

The variable kermit appears in the Variables Pane of the OUWorkspace. Inspecting
kermit shows that its value is null.

Inspecting kermit now shows that it references an instance of the Frog class, that
its attribute position has the value 1, and that its attribute colour has the value
OUColour .GREEN. These attributes are implemented as special variables called
instance variables that are declared by the programmer of the Frog class to hold a
Frog object’s state.

Inspecting kermit now shows that its attribute position has the value 3 and that its
attribute colour has the value OUColour . BROWN. In programming terms we say that
its instance variable position has been set to 3 and that its instance variable
colour has been set to OUColour . BROWN.

Inspecting the object referenced by kermit now shows that its instance variable
position has been set to 1 and that its instance variable colour has been set to
OUColour .GREEN. The reason for this sudden change in colour and position is
that the code

kermit = new Frog();

has made kermit reference a new Frog object. The frog that kermit referenced
initially, in parts 2 and 3, is no longer accessible as no variable now references it.
The object that kermit referenced in parts 2 and 3 is now available for garbage
collection.

When you opened the Amphibians window from the Graphical Display menu it
displayed a graphical representation of the Frog object referenced by kermit.
Sending state changing messages in the OUWorkspace to the Frog object
referenced by kermit resulted in the Amphibians window graphically displaying
those state changes.

Assignment of a new Frog object to gribbit is accompanied by the display of a
second frog in the Amphibians window.

Unit 3 Variables, objects and representations

The Amphibians window that you encountered in Activity 2 models the (possibly empty)
collection of variables shown in the Variables Pane of the OUWorkspace. Hence, as
sS00Nn as you created a new Frog object and assigned it to the variable gribbit, it was
displayed in the Amphibians window. However, the Amphibians window only knows how
to display Frog, HoverFrog and Toad objects graphically. It ignores any variables that
hold values of primitive types or any variables that reference non-amphibian-like
objects. Note also that, since this window only monitors the variables in the Variables
Pane of the OUWorkspace, it has no buttons or text boxes. You will learn more about
how all this happens in Unit 4.

Please note that you can open an Amphibians window from the OUWorkspace to view
graphical representations of Frog, HoverFrog and Toad objects in any project that
includes those classes.

m Variable names

Variables should be given names (more technically called identifiers) that tell a reader
what their purpose is. There is not a totally free choice, because Java imposes rules, but
these will seldom prevent you from using a suitable name. The rules listed below are a
little tighter than what the Java language specifies, but we believe following them will
help to make your code more readable.

M255 conventions for identifiers are as follows.

> The first character should be an upper- or lower-case letter (that is, A...Z, a...z).
Subsequent characters may be an upper- or lower-case letter or a digit (0, 1, 2...9).
Identifiers are not allowed to have any spaces in them.

vYyy

You may not use a keyword, which is a word that already has a special meaning in
Java. The following table includes all the keywords; these cannot be used as
identifiers (please note the American spelling used for the keyword synchronized).

abstract double int strictfp
assert else interface super
boolean enum long switch
break extends native synchronized
byte final new this

case finally package throw
catch float private throws
char for protected transient
class goto public try

const if return void
continue implements short volatile
default import static while

do instanceof

> Finally, you cannot use true, false or null as variable names because they are

reserved words that are literals used to indicate values.

1 Data types and variables

Note that the above conventions mean that you cannot have an identifier that starts with
a digit, and an identifier cannot contain single or double quotes. Although Java does
allow two other characters ($ and) in identifiers there are many characters that must
not be used so it is simplest just to use ordinary alphabetic letters.

In M255 we would also encourage you to respect the following style guidelines when
choosing identifiers for your variables. Keeping to these guidelines should make your
programs much easier to read and (if necessary) debug.

» Although there is no lower or upper limit on the number of characters that can be
used in an identifier, we would urge you to avoid very short identifiers, such as a, b,
%, ch because they are not very informative.

» |dentifiers composed entirely of letters are usually the most meaningful to human
readers, though it might sometimes be appropriate to use digits in identifiers for a
number of similar values, for example frogl, frog2, frog3. Always choose
meaningful names; that is, identifiers which give some indication as to the role
played by the variable.

» Start your identifiers with lower-case letters. This helps to distinguish them from
classes, which start with an upper-case letter. Where an identifier is composed of
two or more English words or abbreviations, then we suggest the use of a single
upper-case letter to mark the start of each word after the first. We have used this
style of identifier (known as a camel-backed identifier) for myvar and yourvar. Here
are a few more examples: totalCost, dateToday and myFamilyName.

SAQ 2

Which of the following are valid variable identifiers in Java? Give a reason in each of the
cases where you consider that the text is not an identifier.

(a) kermit
(b) hover frog
(c) hoverFrogl

(d) my+Frog

(e)

(f) 3.2

(g) "iAmAvVariable"
(

h) MyNumber

myAcc

ANSWER ..
(a) kermit is a valid variable identifier.

(b) hover frog is not valid; it contains a space character.
(c) hoverFrogl is a valid variable identifier.
(d)

my+Frog is not a valid identifier since it contains a + character which is not a letter or
a digit.
e) myAcc is a valid variable identifier.

(

(f) 3.2 is not valid; it does not start with a letter; in fact it is a number literal.

(g) "iAmAvVariable" is not valid; it does not start with a letter; in fact it is a string literal.
(

h) MyNumber is valid. However, it breaks an almost universal programming convention
that variable names should start with a lower-case letter.

Unit 3 Variables, objects and representations

In this subsection you have seen that Java deals with two kinds of data — values of
primitive data types and instances of classes (objects). You have learnt how to declare
variables for both of these data types (value type variables and reference type
variables) and how to assign values of the appropriate type to these variables.

You have also learnt that the attributes of objects are implemented by instance
variables.

An assignment statement is always of the form
aVariable = something;

where ‘something’ represents a simple literal value or a newly created object. You will
see in Section 2 that more complex expressions can be used on the right-hand side of
an assignment statement.

Although assignment statements always have the same form (we say they all have the
same syntax), what an actual assignment statement means (its semantics) depends on
the type of the variable (and the value that is being assigned to it).

When a value of some primitive data type is assigned to a value type variable then the
assignment causes the actual value to be stored in the variable. We call this value
semantics. However, if the value is an object being assigned to a reference type
variable then the object is not stored in the variable; instead the variable holds a
reference to where the object is stored. This is called reference semantics.

2 Expressions

Expressions

An expression is something that can be evaluated to produce a single value. A helpful
way to think of an expression is that it is anything that could appear on the right-hand side
of an assignment statement. An assignment statement always looks like the following.

someVariable = someExpression;

The value that an expression evaluates to may be of a primitive data type or it may be an
object. Evaluate just means ‘find the value of’. The simplest examples of expressions in
Java are literals such as 17 or 'c'. The literal 17 evaluates to the int value 17; the
character literal 'c' evaluates to the character c (a value of type char). An example of
an expression that evaluates to an object is new Frog().

A variable that has been assigned a value is also an example of a simple expression.
Thus, if myNumber has been assigned the value 34, then, when the expression myNumber
is evaluated, it returns the value 34. Similarly if a Frog object has been assigned to the
variable kermit, then, when kermit is evaluated, it will return as its value the Frog
object that it references.

m Expressions involving primitive data types

You can build more complex expressions involving values of primitive data types by
combining literals and variables using operators. The operators most people are
familiar with are the arithmetical operators that are used with numbers. For example,

17+ 12

is an expression built from the two literals 17 and 12 using the operator + (addition). The
value it returns when evaluated is 29. In this expression we call 17 and 12 the operands
and + the operator. We call + a binary operator because it has two operands.

In the above expression both operands are integers (in fact they are of type int);
however, you can also use addition with values of type float and double and, indeed,
with a mixture of different types of numbers. The type of the value returned by the
evaluation of such expressions will depend on the type of the operands. For example,

1.7 + 3.4 evaluates to a value of type double.

5+ 1.7 also evaluates to a value of type double as the 5 gets converted by

the Java interpreter from an int to a double before the addition is done.

5+ 17 evaluates to a value of type int as both the operands are of type int.

The other arithmetic operators are similar. These are — (subtraction), * (multiplication)
and / (division). Examples of expressions using them are the following.
17 — 5 evaluates to the int value 12.
7.1 — 5 evaluates to the double value 2.1.
3 * 2 evaluates to the int value 6.
1.5 * 2 evaluates to the double value 3.0.
6 / 2 evaluates to the int value 3.
7 / 2 evaluates to the int value 3 (note this is not 3.5; when you divide an
int by an int the answer produced is an int and any remainder is simply
ignored — this is called integer division).
7.0 / 2 evaluates to the double value 3.5.

Unit 3 Variables, objects and representations

The only surprising thing in the above examples is the integer division that takes place
when 7 / 2 is evaluated. Java provides another operator, the remainder or modulus
operator, %, which gives the value of the remainder when one integer is divided by
another. For example,

7 % 2 evaluates to the int value 1 (the remainder when 7 is divided by 2),
17 % 3 evaluates to the int value 2,

5 % 17 evaluates to the int value 5 (do not confuse this with 5 / 17 which
gives 0).

One other arithmetical operator that is sometimes useful is the negation operator. This is
just a minus sign (as used for subtraction) but instead of being put between two
numbers it is put in front of single number and produces the negative of that number
when the expression is evaluated. This is an example of a unary operator as it has only
one operand. For example,

— 7 evaluates to the int value -7,
— (=7) evaluates to the int value 7.
All these operators have numbers as operands and when evaluated return numbers as

their values. However, there is another group of operators that can have numerical
operands but return Boolean values when the expression is evaluated. These are:

equal to),
not equal to),
less than),

(
(
(
<= (less than or equal to),
(greater than),

(

greater than or equal to).

Here are some examples of using them.

Expression Value

3=3 true
Tl = 2.5 false
=17.0 true
3i=3 false
7.1!'=2.5 true
2<3 true
2<=3 true
3<=3 true
4<3 false
4>3 true

Note that the operators consisting of two symbols, such as >=, must not have a space
between the symbols. Although not necessary, it is good practice to have space on
each side of a binary operator.

The equality operators (== and !=) can actually be used with operands of any type.
When used with objects as operands, == will answer true if both sides evaluate to the
same object.

The relational operators (<, <=, > and >=) can also be used with operands of type char.

Thus an expression using < evaluates to true if the Unicode code of the character

on the left is less than that of the character on the right. For our purposes it is sufficient

to know that Unicode codes are arranged in the following order '0' '1' '2' ... '9"
. (other characters) ... 'A" 'B' ... 'Z2' ... (other characters) ... 'a' 'b' ...

Z

There are three important operators that can be used with Booleans only. These are

&& (logical and), || (logical or), and ! (not). These logical operators work as follows. Note that ! is a unary
operator (like the negation

. operator —).
Expression Value

true && true true
true && false false
false && true false
false && false false
false || false false
true || true true
true | | false true
false || true true

! true false

! false true

In all the examples above, the operands in the expressions are literals. However, the
operands do not need to be literals; an operand can be a variable or indeed any
expression that evaluates to a value of an appropriate type.

Before you can use a variable in an expression you need to ensure that it has been
declared and given a value. In order to ensure that a variable has a value it is often
sensible to give it an initial value when it is declared. You can combine declaration and
assignment in a single statement. Two examples are

int myNumber = 15;
Frog kermit = new Frog() ;

Examples of expressions involving myNumber declared and initialised as above are

myNumber + 12
myNumber < 17

Unit 3 Variables, objects and representations

Exercise 3

Assume that myNumber and yourNumber have been declared and initialised by executing
the following statements.

int myNumber = 17;

int yourNumber = 5;
What are the values of the following expressions?
(a) myNumber — 15
(b) myNumber * yourNumber
(c) myNumber / yourNumber
(d) yourNumber > myNumber
(e)

€) yourNumber != myNumber

When you use one expression as an operand in another expression, it is sensible to
enclose the expression being used as an operand in parentheses (round brackets)
unless it is a simple literal or variable. This will avoid any misunderstanding about which
part of the expression should be evaluated first. For example, to evaluate the expression

(17-5) =2

we first evaluate 17 — 5 to get 12; this is then the value of the first operand for the right-
hand subtraction, which becomes 12 — 2 giving the value 10.

On the other hand, in the expression
17— (5-2)

it is the 5 — 2 that gets evaluated first giving the value 3 for the second operand of the
left-hand subtraction, which becomes 17 — 3 giving the value 14.

If you simply write 17 — 5 — 2 then it might not be clear which of the evaluations is meant.
In fact, there are rules (called precedence rules) that determine the order in which
things are worked out when there are no parentheses to help determine the order.
According to these rules 17 — 5 — 2 would be worked out as if it were (17 —5) — 2.

Expressions involving different operators can also be misinterpreted if parentheses are
not used. For example, the correct way to evaluate 17 + 3 * 2 istotreatitas 17 + (3 * 2)
which gives 23 and not as (17 + 3) * 2 which would give 40. This is because *
(multiplication) has a higher precedence than + (addition) and so, in the absence of
parentheses, multiplication is done before addition.

The following table summarises the order of precedence for the operators you have met so
far in this subsection. However, it is always better to use parentheses in a complex

expression to make the order of evaluation clear. This helps the readability of the code that
you write as well as making it less likely that you will make mistakes with the precedence
rules. In the table the operators in any row all have higher precedence than those in the rows
below. Apart from the assignment operator, if binary operators of equal precedence appear
(without parentheses) in succession in an expression they are evaluated from left to right.

2 Expressions

creation new
multiplicative =
additive + -
relational <> <=>=
equality == |=
logical AND &&
logical OR Il
assignment =

You may be surprised to find assignment (=) included in the above table. In fact
although we usually think of assignment as a statement, in other words an instruction to
do something, an assignment statement does in fact return a value when it is executed,
so it is also an expression. The value it returns is simply the value that it assigns to the
variable on the left-hand side of the =.

You can find a precedence table showing all the operators in Java in the Java
Handbook. You may wish to consult this when additional operators are introduced later
in the course.

When an expression is built up using other expressions as its operands we say that the
operand expressions are sub-expressions of a compound expression. For example, in
the compound expression

(3+2) *6

the left-hand operand to the * operator (3 + 2) is an example of a sub-expression.
Such sub-expressions can themselves be made up of further sub-expressions, a little
like Russian dolls; for example, in the compound expression

4% (5+(6/2))
we say that (6 / 2) is nested within the sub-expression (5 + (6 / 2))

Such nested expressions should be read from the inside out. So, in this example, 6 is
first divided by 2. Then 5 is added to that result which is finally multiplied by 4.

More generally, as each nested expression is evaluated, the resulting value is passed
up to the next level, so that by the time the outer level is reached the entire compound
expression will evaluate to a single value.

There is no limit to the level of nesting; however, it is sensible to limit the amount of
nesting since if too much nesting is used it can become very difficult for a human to
interpret the expression. As code becomes less readable it is easier to make mistakes.

Exercise 4

In your head, or using pencil and paper, evaluate each of the following expressions.

(@) 3*(7+2)

(b) (3*7)+2

(c) ((5-2))>(8/2)
(d) (3<=7) && (7<9)
() (6 +4)/ (6-4)

Unit 3 Variables, objects and representations

S0 (5111 o TR

(a) The expression (7 + 2) is evaluated first and then multiplied with 3 to give the
value 27.

(b) The expression (3 * 7) is evaluated first and then added to 2 to give 23.

(c) The expression (5 — 2) is evaluated first to give the value 3. This value is then
subtracted from 7 to give a final value for the left-hand operand of 4. Next (8 / 2) is
evaluated to give a value for the right-hand operand as 4. So the operator > has final
values of 4 on both the left- and right-hand sides and (4 > 4) evaluates to false.

(d) The expression (3 <= 7) is evaluated first (3 less than or equal to 7) which evaluates
to true. Then (7 < 9) is evaluated which also evaluates to true. As the final values
of the operands of the &«& operator both evaluate to true, the result of the operation
is also true.

(e) The expression (6 + 4) is evaluated first to give the value 10. Next (6 — 4) is
evaluated to give the value 2. The operand / then works with the value 10 on the left-
hand side and 2 on the right-hand side to return the value 5.

Exercise 5

Although we recommend that you use parentheses to make the order of evaluation clear,
there are some forms of expression where the parentheses are very often omitted. Again,
in your head or using pencil and paper, evaluate each of the following.

(@) 3*2+11
(b) 3+2*7
(c) 25-6-2

ST)11 11T R

(a) As * has a higher precedence than +, 3 * 2 is evaluated first to give 6 which is then
added to 11 to give 17.

(b) As * has a higher precedence than +, 2 * 7 is evaluated first to give 14 which is then
added to 3 to give 17.

(c) This expression is evaluated strictly from left to right as both operators have the
same precedence (they are both —). Therefore 25 — 6 is evaluated first to give 19.
Then 2 is subtracted from 19 to give 17.

ACTIVITY 3
Launch Blued, if not already open, and then from the Tools menu select OUWorkspace.
Enter, select and execute the following variable declarations, one at a time.

int anInt;

double aDouble;
boolean aBool;

int myNumber = 17;
int yourNumber = 5;

In each of the following statements an expression is evaluated and then assigned to a
variable of an appropriate type. When an assignment statement is executed, the value
assigned is returned as the answer. Make sure that Show Results is checked; you will
then be able to read the value of the expression that was evaluated from its textual
representation in the Display Pane. Enter and execute each of the following statements in
turn — make sure that the parentheses are in pairs.

2 Expressions

0 N O o~ N =

©

10
11

12
13
14
15
16
17

anInt = myNumber — 15;

anInt = myNumber * yourNumber ;

anInt = myNumber / yourNumber;

aDouble = myNumber / yourNumber ;

aBool = yourNumber > myNumber ;

aBool = yourNumber != myNumber;

anInt = myNumber % yourNumber;

abouble =7/ 2;

aDouble = 7.0 / 2;

anInt =3 * (7 + 2);

anInt = (3 *7) + 2;

aBool = (7-(5-2))>(8/2);
(3<=7) && (7<9);

anInt = (6 +4) / (6 —14);

anInt =3 * (2 +11);

anInt = (3+2) *7;

anInt =25—- (6 —-2);

aBool =

In the next two statements we have deliberately introduced errors. In each case a bracket
(parenthesis) is missing. Type in the statements just as you see them and then execute
them, one at a time. Can you understand the error messages?

18
19

anInt =22/ 11) + 4;
aBool = (22 / 11 + 4;

DISCUSSION OF

ACTIVITY 3

1

A W N

o N O O

10
11
12
13

anInt is assigned the value 2.
anInt is assigned the value 85.
anInt is assigned the value 3.

myNumber / yourNumber evaluates to 3 which is converted to 3.0 before being
assigned to abouble.

aBool is assigned the value false.
aBool is assigned the value true.
anInt is assigned the value 2.

7 / 2 evaluates to 3 (integer division) which is converted to 3.0 before being
assigned to aDouble.

When you execute

aDouble =7/ 2;

the Display Pane will display 3, yet inspecting aDouble will show that it has the value
3.0. The reason for this is that the Display Pane shows the result of integer division,
which is an integer. Java converts this int value into a double value (3.0) before
assigning that value to the variable aDouble.

aDouble is assigned the value 3.5.
anInt is assigned the value 27.
anInt is assigned the value 23.
aBool is assigned the value false.
aBool is assigned the value true.

_ Unit 3 Variables, objects and representations

14 anInt is assigned the value 5.
15 anInt is assigned the value 39.
16 anInt is assigned the value 35.
17 anInt is assigned the value 21.
18 When the left parenthesis of a pair is omitted, the interpreter reports an error which is
written in the Display Pane:
Syntax error: column 14. Encountered:)

What this error is reporting is that the interpreter has read the line of code from left to
right and has come across a right parenthesis at column 14, i.e. the 14th character
in the line, without a matching left parenthesis.

19 When the right parenthesis of a pair is omitted, the following error report is written in
the Display Pane:

Syntax error: column 19. Encountered: ;

What this error is reporting is that the interpreter has reached the end of the
statement (delimited by the ; at column 19) and has encountered some error — not
very informative!

Finally, it is worth noting that there are two commonly used postfix operators ++ and - -
that can be used with numeric variables. They work as follows.

Suppose myNumber is a variable of any number type (int, long, float, double oOr
whatever). Then the statement

myNumber++;

is an instruction to increase the value stored in myNumber by 1.
myNumber— —;

decreases the value stored in myNumber by 1.

These operators have a higher precedence than the unary minus (negation).

SAQ 3

What is the value of myNumber after the following statements have been executed?

int myNumber = 17;
myNumber = myNumber — 11;
myNumber++;

ANSWER ...
myNumber holds the value 7.

It is tempting to say that the expression myNumber++ is equivalent to the expression
myNumber + 1 but this is not strictly true. This is because evaluating myNumber++
returns the value of myNumber before it has the 1 added to it; whereas the expression

In this course we tend to myNumber + 1 returns the value after the 1 has been added. So, for example, in the
avoid the use of ++ and - - following code:

because of the confusion '

they can cause. int myNumber, result;

myNumber = 17;
result = myNumber++;

result is assigned the value 17 and myNumber is incremented to 18.

2 Expressions

Compare that with this code:

int myNumber, result;
myNumber = 17;
result = myNumber + 1;

result is assigned the value 18 and myNumber remains holding the value 17.

m Expressions involving objects

You have seen how operators are used with values of primitive data types to build up
complex expressions from simple ones. However, with objects the only kinds of
expression we have mentioned explicitly are ones of the form

kermit
and
new Frog()

In the first a variable referencing an object is used; it evaluates to the object that it
references. In the second an expression consisting of the operator new and the
constructor Frog () is used as the operand; this expression evaluates to a newly created
and initialised Frog object. Notice that the new operator has a constructor of a class as
its operand and returns a value that is an instance of that class.

Unlike values of primitive data types, objects are not normally used with operators. The
only common operators generally available for use with objects are the equality
operators == and !=. For example, if kermit and gribbit are reference type variables
then

kermit == gribbit

will evaluate to true if the operands reference or evaluate to the same object; otherwise
it will evaluate to false. The operator != is the opposite of ==.

However, there is another type of expression, one that does not involve operators, that is
used with objects. As you will recall from Unit 2, when a message is sent to an object an
answer may be returned. For example, if kermit is a Frog object then the message-
send

kermit.getColour()

returns an answer which is the value of the colour attribute of kermit. Similarly if
myAccount is an instance of Account then the message-send

myAccount.debit (100)

returns an answer which is either true or false depending on the balance and
overdraft limit of the receiver.

On the other hand, message-sends such as
kermit.right()

and
myAccount.credit(100)

do not return answers; they simply change the state of the receiver.

_ Unit 3 Variables, objects and representations

SAQ 4

Some message-sends return answers, some change the state of the receiver and some
do both. Give an example of message-send that can do both.

ANSWER ...

myAccount.debit (100) will do both, assuming that myAccount is an instance of
Account with a big enough balance to allow 100 to be taken from it. It will return the
answer true and change the state of myAccount by reducing its attribute balance
by 100.

A message-send that returns an answer is called a message expression.

SAQ 5

Which of the following are message expressions? You can assume that kermit
references a Frog object; myAccount references an Account object; and myNumber
references an int.

a) kermit.left()
b

myAccount.getBalance()

(
(
(
(d
(e
(
(
(
(

)

C) myAccount.credit(50)
) kermit.getPosition()
)

myNumber > myAccount.getBalance()
f
g) myAccount.debit(70) == true

~

myAccount.debit (kermit.getPosition())

h) kermit.getPosition() + 2

=

myAccount.getBalance() * (kermit.getPosition() + 2)

ANSWER
a) No, the message left() does not return a message answer.
b) Yes, the message getBalance() returns the balance of an Account object.

(

(b)

(c) No, the message credit() does not return a message answer.

(d) Yes, the message getPosition() returns the position of a Frog object.
(e)

e) No, the whole expression is a Boolean expression. However, the right-hand operand

of this expression is a message expression, which evaluates to an integer.

(f) Yes, the message debit() returns either true or false. In this example the
argument to the debit () message is also a message expression which evaluates to
an integer.

(g) No, the whole expression is a Boolean expression. However, the left-hand operand
of this expression is a message expression, which evaluates to a Boolean value.

(h) No, the whole expression is an arithmetic expression. However, the left-hand
operand to the + operator is a message expression which evaluates to an integer.

(i) No, the whole expression is an arithmetic expression. The left-hand operand to the *
operator is a message expression which evaluates to an integer. The right-hand
operand to the * operator is a sub-expression, (kermit.getPosition() + 2),
which also evaluates to an integer. Inside the sub-expression,
kermit.getPosition() is a message expression which evaluates to an integer.

2 Expressions

A very important point to note is that you cannot tell simply by looking at a message-
send whether or not it is a message expression. In other words, unless you know what
the message-send ‘means’ or ‘does’ you cannot work out whether or not it returns an
answer. Often the name might give a clue, but sometimes message names can be
misleading. Before you can use a message correctly by writing a message-send you
need to know what it does when sent to that type of receiver and whether or not it returns
an answer.

It is important to realise that a message-send can be used as a statement on its own
whether or not it returns a message answer.

For example, both the following are Java statements:

kermit.left();
kermit.getPosition();

Both are instructions to send a message in the protocol of Frog to an instance of Frog.
However, it would be unusual to find the second one in a genuine program since it does
nothing useful. The whole purpose of the message-send kermit.getPosition() is to
return the value of the receiver’s position, but in the above statement the message
answer that is returned is simply ignored. So the statement achieves nothing. You would
only send the message getPosition() to a Frog object if you were going to:

P> assign the message answer to a suitable variable for use later in the program; for
example, you might write:
int aNumber = kermit.getPosition();

or similarly as part of a more complex expression such as:

int frogSum = kermit.getPosition() + gribbit.getPosition();

» use the message answer as the argument to another message such as:

gribbit.setPosition(kermit.getPosition());

m Strings

Although many classes such as Frog and Account are developed by programmers for
particular applications, there are some classes that are used for creating objects that,
like primitive data types, are useful in most if not all applications. There are many sorts of
these general-purpose classes and they are provided in various libraries as part of the
Java language. One important general-purpose class is the string class.

Instances of the string class model sequences of characters. In other words, an
instance of String is a collection of characters in a particular order. In Java a string can
be represented by enclosing its characters in double quotes. For example, "cat" is a
string literal representing a sString object whose characters are 'c', 'a' and 't in that
order. Other examples of strings are "Hello Mum", "Whitehall 1212" and
"013683795"

String objects are used for many purposes; for example, as file names, names of
products for sale, addresses of businesses, descriptions of holiday resorts. You have
already met String objects in the Account class — the value of the attribute holder of
an Account object is a String object. Thus executing the statement

myAccount.setHolder ("Grendel Barty");

makes the holder attribute of myAccount reference a 13-character string object
whose characters are 'G' 'r' 'e' 'n' 'd' 'e' '1' "' 'B' 'a' 'r' 't' 'y'".

Unit 3 Variables, objects and representations

Note that the
OUWorkspace uses a
Java interpreter rather
than a compiler. In Unit 4
you will begin to use
Blued’s Java compiler.

SAQ 6

In the string object "Grendel Barty", write down the following:
(a) the first character

(b) the fourth character

(c) the eighth character

ANSWER
(a) 'G"

(b) 'n'

(c) ' ' (aspace)

Note the difference between the representations of strings and characters: a String
literal (or string literal) is a sequence of characters enclosed in double quotes, and a
char literal (or character literal) is an individual character enclosed in single quotes. A
more technical way of expressing this is to say that String literals are delimited by
double quotes and individual char literals are delimited by single quotes. The term
delimit is more accurate than enclosed because the quotes are used to tell the Java
interpreter where a string starts and ends so that the interpreter can determine that the
series of characters is not a variable name or a keyword. In a similar way the semicolon
(;) is a delimiter, as it tells the Java interpreter where a single program statement ends.

If you wish to include the double quotes character in a string literal, a backslash (\) must
precede each double quote, as in "say \"hello\" tome", for example. The reason for
the backslash is that if a double quote is to be included in a string, then there must be
some way of signalling to the Java interpreter that the end of the string has not been
encountered yet and that it should consider the double quote as just a character rather
than a delimiter.

String objects can respond to many messages; these include toUpperCase() and
toLowerCase (). The message answer from each of these messages (when sent to a
String object) is a String object showing the effect suggested by the name of
message. For example, sending the string "Milton Keynes" the message
toUpperCase () results in the message returning a String object "MILTON KEYNES".

Another message in the protocol of string objects concatenates (joins) two String
objects. To join two String objects, the message concat () is sent to a String object
receiver with another string object as the message argument. This results in a
message answer that is a String object made up from the combination, in order, of
the characters of the receiver and the argument. For example,

"Java".concat (" programming™) results in a String object "Java programming".
Since concatenation is used frequently when programming with String objects, a
shorthand alternative is provided by Java. Instead of using the message concat (), the
operator + (plus) placed between two strings will return a new string that is a
concatenation of those two strings. For example, "Java" + " programming" will return
the string "Java programming".

It is important to remember that strings are not primitive data values. This means that it is
possible for two distinct strings to end up with exactly the same characters (i.e. having
the same state) without the strings actually being the same object. Thus when an
expression such as:

stringl == string?2

(where stringl and string2 reference string objects) evaluates to false it does not
necessarily mean that the objects referenced by stringl and string2 are ‘different’ in
the sense of having different characters (or the same characters but in a different order).

It simply means that the two variables happen to reference distinct objects. It is quite
possible that these distinct objects may contain exactly the same characters, in exactly
the same order.

In order to find out if two string objects contain exactly the same characters in the same
order (rather than whether two variables reference the same String object) there is an

equals () message that you can use with strings. It is used as follows: The equals() message
can be used with objects
stringl.equals(string2) of any class. However, its
meaning varies from class
This message expression returns the value true if the receiver (stringl) and the to class. You will learn
argument (string2) both reference string objects that have the same characters in more about equals ()

. . : later in the course.
the same order (i.e. if the objects have the same state). ' !

For example, if the following code is executed:

String stringl = "cat";
String string2 = "cat";
String string3 = "dog";

then you will find that
stringl.equals(string2)

evaluates to true, as will
stringl.equals("cat")

while
stringl.equals(string3)

evaluates to false.

SAQ 7

Suppose that the following statement has been executed.

String fred = "bill";

What would be returned by the following message expressions?
(a) "fred".toUpperCase()
(b) fred.toUpperCase()

AN S VR
(a) "FRED" i.e. a string whose characters are 'F' 'R' 'E' 'D' in that order.
(b) "BILL"

Note the difference between the literal "fred" that is a string with characters "'£' 'r'
'e' 'd' and the variable fred that references a String "bill" with characters 'b'
A\l l A\l A\l l A\l |l l A\l .

SAQ 8
Explain why "h' and "h" are literal representations of different types.

ANSWER ..

The expression "h' is a literal that represents the single char value h, and "h" is a literal
representing a String object with just the single character 'h' init. So 'h' represents a
primitive data value not an object and "h" references an object that contains a single
primitive value in it.

Unit 3 Variables, objects and representations

Remember you can view
graphical representations
of Frog objects in the
Amphibians window
(accessible via the
Graphical Display menu).

The operator +

The operator + has an unusual property. If just one of its operands is a String object
then the other operand is automatically converted to a String object and the + is
interpreted as meaning concatenation. How the conversion of objects to strings is done
will be examined in Section 4. For primitive types, such as numbers, Booleans and
characters, the string version is just a string made up of the characters of the literal that
represents the value. For example:

"cat" + 's' evaluates to "cats" ('s' is converted to "s")
"The answer is " + 17 evaluates to "The answer is 17" (17 is converted to "17")
10 + "66" evaluates to "1066" (the number 10 is converted to the string "10")

"17>81is " + (17 > 8) evaluates to the string "17 > 8 is true"
(17 > 8 is in parentheses and therefore is evaluated first to give true; then true is
converted to "true" before being concatenated with "17 > 8 is ")

10 + 66 evaluates to the integer value 76 (there are no string operands so no conversion
takes place; here the + results in ordinary integer addition).

SAQ 9

What types and values do the following expressions evaluate to?

(@) "The answer to Life, the Universe and Everything is " + 42
(b) 76 + " Trombones led the big parade"

(c) 56 + 23

(d) "s6™ + 23

ANSWER ...
(a) The string "The answer to Life, the Universe and Everything is 42"

(b) The string "76 Trombones led the big parade"

(c) The integer 79

(d) The string "5623"

ACTIVITY 4

Launch Blued and select Open Project from the Project menu. Navigate to the folder
containing your M255 projects. Find the project named Unit3_Project_1 and open it. Then
select OUWorkspace from the Tools menu. Enter, select and execute the following
statements, one at a time.

int anInt;

String aString;

OUColour aColour;

char aChar;

Frog kermit = new Frog() ;
kermit.right();
kermit.setColour (OUColour.RED) ;

2 Expressions

Make sure Show Results is checked. Enter, select and execute each of the following
statements, noting the value that is returned in each case.

0 N O 0ok~ WD

9

10
11
12
13

anInt = kermit.getPosition();

aColour = kermit.getColour();

aString = "Milk".concat("Wood") ;

aString = "Milk ".concat ("Wood") ;

aString = "Milk".concat (" Wood");

aString = "Under Milk ".concat("Wood") ;
aString = "Milk " + "Wood";

aString = "It is " + "raining.";

aString = "He wouldn't say \"boo\" to a goose";
aString = "The End of the Line".toUpperCase();
String name = "Engelbert";

aString = name.toLowerCase() ;

aString = name;

You can, if you like, save the contents of the Code Pane to a file, by selecting Save from
the OUWorkspace’s File menu and giving the file a sensible name such as Activity4.txt.
The saved code can be reloaded into the Code Pane in a later session by selecting Open
from the File menu and navigating to the saved file.

DISCUSSION OF

ACTIVITY 4

anInt is assigned the int value 2.

aColour is assigned the object OUColour.RED.

aString is assigned the String object "MilkWood".

aString is assigned the String object "Milk Wood".

asString is assigned the String object "Milk Wood".

aString is assigned the string object "Under Milk Wood".
aString is assigned the String object "Milk Wood".

aString is assigned the String object "It is raining.".
aString is assigned the String object "He wouldn't say "boo" to a goose".
aString is assigned the String object "THE END OF THE LINE".
name is assigned the String object "Engelbert".

aString is assigned the Sstring object "engelbert".

aString is assigned the String object "Engelbert".

Unit 3 Variables, objects and representations

Variables, typing and assignment

So far in this unit we have introduced the concepts of data types, variables and
assignment. You have seen how variables must be declared as being of some particular
type, and how values are assigned to them using assignment statements (which
themselves might be involve either simple or complex expressions).

We now need to look at the restrictions that declaring a variable as a given data type
places on the values that can be assigned to that variable (and what happens if we
attempt to break these restrictions).

Assigning values of primitive types to
variables

You might think that if a variable has been declared to be of a certain type, then only values
of that type can be assigned to it. However, as you have seen, for operators like + it is not
necessary for both operands to be of the same type; for example, you can use + to add
two numbers of different types (an int and a double), and you can also use + to

concatenate a String object with a value of any type. Similarly with assignment, you will
find that it is sometimes possible to assign a value to a variable that is of a different type to
the variable’s declared type. In the next few activities you will investigate what is possible.

ACTIVITY 5

Launch BlueJ and from the Tools menu select OUWorkspace.

1 Enter and execute both these statements. Note what happens.

int anInt;
anInt =17.5;
2 Now enter and execute the following, then inspect aFloat.
float aFloat;
aFloat =17;
3 Enter and execute the following. Can you explain what happens?

anInt = aFloat;

4 Enter and execute the following. Can you explain what happens?
aFloat =17.0;

5 Enter and execute the following, then inspect aFloat.
aFloat =17.0F;

6 Enter and execute the following, then inspect aDouble.

double aDouble;
aDouble =17;

7 Enter and execute the following, then inspect aDouble.
aDouble = 17.5;

You can save the contents of the Code Pane to a file by choosing Save from the File
menu, and giving the file a sensible name such as Activity5.txt.

3 Variables, typing and assignment

DISCUSSION OF
ACTIVITY 5

1 An error message is written in the Display Pane:

Semantic error: line 2. Variable: Can't assign double to int

The message is telling you that 17.5 cannot be assigned to the variable anInt
because 17.5 is a double and anInt has been declared as an int.

Note that when you highlight and execute more than one line of code, error
messages from the OUWorkspace tell you which line the error was detected in.

2 The int value 17 is converted to a float by Java and assigned to aFloat.
An error message is written in the Display Pane:
Semantic error: Variable assignment: anInt: Can't assign
float to int

The message is telling you that a value of type float cannot be assigned to a
variable (anInt) that has been declared as an int.

4 An error message is written in the Display Pane:

Semantic error: Variable assignment: aFloat: Can't assign
double to float

The message is telling you that a value of type double cannot be assigned to a
variable (aFloat) that has been declared as a float. Remember (from Section 1)
that the default type of a decimal literal is type double. To specify a literal float you
must append the letter ‘F’, for example 17.0F.

5 This time the assignment works because 17.0F is a literal of type float. The
inspector confirms that aFloat is 17.0.

6 The int value 17 is converted to a double by Java and assigned to abDouble, which
is now 17.0.

7 The default type of a literal decimal is type double. Therefore 17.5 is of type double
and can be assigned to the variable aDouble. This is confirmed by the inspector.

Activity 5 shows that it is sometimes possible to assign a value of one numerical type to
a variable of a different numerical type. Thus you can assign an int value to a float
variable and a float value t0 a double variable; but you cannot assign a double value to
a float variable (even if it (17.0) is equal to an integer, 17).

If we arrange the most commonly used numerical types in the order
double, float, long, int

then it is permissible to assign a value of one type to a variable of any type to its left (as
well as to a variable of the same type) but you cannot assign a value to a variable of a
type to its right (even if the actual value seems to allow it). Thus although 17.0 equals 17
(an integer) you cannot store 17.0 in a variable of type int.

Note also that when you assign an int to a float the value is stored as a float and
cannot afterwards be assigned back to an int.

Unit 3 Variables, objects and representations

For the remainder of the
course we will not
necessarily prompt you to
save the contents of the
Code Pane after an
activity (but please use the
facility when you judge it to
be helpful).

However, it is sometimes possible to force a value of one type to be converted to a value
of another type, by using what is known as a cast. A cast comprises a type name
enclosed in parentheses. Thus you can use the cast (int) to ‘convert’ a non-integer
number into a value of type int. For example:

double aDouble;

int anInt;

aDouble = 17.6;

anInt = (int) aDouble;

The cast (int) coverts the value 17.6 stored in aDouble into an int by simply throwing
away everything after the decimal point. Thus it is the integer 17 that gets assigned to
the variable anInt.

ACTIVITY 6

If the OUWorkspace is still open from Activity 5 skip the following three declarations and
start the investigation, otherwise launch Blued and open the OUWorkspace. Then enter
and execute the following declarations:

int anInt;
float aFloat;
double aDouble;

Enter and execute the following statements in the OUWorkspace. If no error is reported,
inspect the relevant variable; in all cases try to explain what has happened.
1 anInt = (int) 17.8;
2 anlInt = (int) 17000000000.6;
3 aFloat = (float) 17.8;
4 aFloat = (float) 17E40;
5 aDouble = 17E40;
6 aDouble=17/5;
7 anInt=17;
aDouble = anInt / 5;
8 aFloat =17;
aDouble = aFloat / 5;
9 double anotherDouble = 17;
aDouble = anotherDouble / 5;
10 aDouble = (double) anInt / 5;
11 aDouble = (float) anInt / 5;
12 aDouble =17;
aFloat = aDouble / 5;
13 aDouble =17;
aFloat = (float) (aDouble / 5);

You can save the contents of the Code Pane to a file, giving the file a sensible name such
as Activity6.txt.

3 Variables, typing and assignment

DISCUSSION OF
ACTIVITY 6

In this discussion when we write, for example, ‘anInt is 17" we mean that inspecting
anInt shows it has the value 17.

1 anIntis 17.

2 anIntis2147483647. This is the biggest int that is possible — it is not much use to
us as an approximation to 17000000000.6. It would be better to use a variable of
type long if you wanted to store this value approximately as an integer.

3 aFloatis 17.8. This is just the same as you would get from aFloat = 17.8F, so it is
a bit pointless.

4 aFloat is Infinity. 17E40 is too big to be stored as a float. (Recall that E40 means
move the point 40 places to the right which in this case means following the 17 with
40 zeros.) As a result the value is stored as Infinity.

5 abDouble is 1.7E41. Note that when Java calculates a very large result it shows the
result using exponential notation with the number before the E lying between 1
and 10. In this case as you have assigned the value to a variable of type double, it is
stored accurately; double can cope with much larger numbers than float.

6 aDouble is 3.0. Although aDouble is a double the expression 17 / 5 involves
integer division so it evaluates to 3. This integer value may be assigned to aDouble
(of type double) without a cast. It is automatically converted to the double 3.0
before being assigned to aDouble.

7 aDouble is 3.0. Because anInt is an int, the explanation is just the same as for
part 6.

8 You should get something similar to aDouble is 3.4000000953674316. Since
aFloat is a float the expression aFloat / 5 is evaluated using floats and the
answer is a float. However, because of rounding errors, when this is converted to a
double there are some inaccuracies after the seventh decimal place, and thus your
number is unlikely to be identical to the one shown above. (Values of type float are
not stored as accurately as doubles.)

9 aDouble is 3.4. This time the calculation is done using doubles and so the rounding
error mentioned in part 8 is removed.

10 aDouble is 3.4. The cast (double) has higher precedence than division / and
so the int stored in anInt is converted to a double before the division is
done. Thus the answer is the same as in part 9. It would be clearer to write this as
aDouble = ((double) anInt) / 5;.

11 aDouble is 3.4000000953674316. (You may have quite different figures at the end.)
Notice that the rounding errors may not be the same as in part 8.

12 This gives an error message since aDouble / 5 gives a value of type double and
this cannot be assigned directly to aFloat, which is of type float.

13 aFloat is 3.4. The answer to aDouble / 5 is converted to a float by the cast
(float).

Assigning objects to reference type
variables

The previous subsection involved only values of primitive data types being assigned to
value type variables. In this subsection you will use the Frog and HoverFrog classes to
investigate how assignment is affected when the variables are reference type variables,
and the values being assigned to them are objects.

Unit 3 Variables, objects and representations

Launch Blued first if
necessary.

The inspector shows the
colour, rather than the
name of the colour.

ACTIVITY 7

From the Project menu of Blued select Open Project, then navigate to and open the
project named Unit3_Project_1. The main Blued window now displays three rectangles,
one labelled Frog, another labelled HoverFrog and another labelled Toad (see Figure 11).
These rectangles tell you that in this project the classes Frog, HoverFrog and Toad are
available and that you will be able to create instances of these classes in the
OUWorkspace.

From the Tools menu select OUWorkspace. Then enter and execute the following
declarations.

Frog kermit;

Frog gribbit;
HoverFrog happy;
HoverFrog bouncy;

You might find it helpful at this stage to open the OUWorkspace’s Graphical Display
menu, as this will allow you to see graphical representations of the Frog and HoverFrog
objects that will be created during this activity.

Enter each of the following statements in turn, select it and execute it. After each
execution inspect the objects referenced by each of the variables kermit, gribbit,
happy and bouncy and note any changes. If executing the statement results in an error
message being written in the Display Pane, make a note of the problem.

a) kermit = new Frog() ;

b) happy = new HoverFrog() ;
c
d

(
(
(
(
(e
(
(
(
(

)
) kermit.right();
) kermit.right();
) happy.setColour (OUColour.RED) ;
f

g) gribbit.setColour(OUColour.BLUE) ;

~

gribbit = kermit;

h) kermit.right();

|
(i
(k) happy.up();

(I) kermit.up();

bouncy = kermit;

= =

kermit = happy;

DISCUSSION OF
ACTIVITY 7

This discussion simply summarises the changes of state that take place. The next
subsection will give a fuller explanation using variable reference diagrams.

(a) kermit references a Frog with position setto 1 and colour set to
OUColour .GREEN. All the other variables hold null.

(b) happy references a HoverFrog with position set to 1, colour set to
OUColour.GREEN, and height set to 0.

c) The Frog object referenced by kermit now has position set to 2.
d) The Frog object referenced by kermit now has position set to 3.
e) The HoverFrog object referenced by happy now has colour set to OUColour .RED.

f) gribbit now references the same Frog object as kermit. It has position setto 3
and colour set to OUColour .GREEN.

3 Variables, typing and assignment

(g) The Frog referenced by both kermit and gribbit now has colour set to
OUColour.BLUE.

(h) The Frog referenced by both kermit and gribbit now has position set to 4.

(i) This produces an error message. kermit references a Frog object, and you cannot
assign a Frog object to a variable of type HoverFrog, SO bouncy still holds null.

(j) You can assign a HoverFrog object (the one referenced by happy) to a variable of
type Frog. SO kermit = happy works and results in both kermit and happy
referencing the HoverFrog that happy was referencing; it has position setto 1,
colour set to OUColour.RED, and height set to 0.

(k) The HoverFrog referenced by both happy and kermit now has height set to 1.

(I) This should have produced an error, but because of a peculiarity of the
OUWorkspace the code has worked and the HoverFrog object referenced by both
happy and kermit now has height set to 2.

The OUWorkspace’s Java interpreter is erroneously using the class of the object
referenced by the variable kermit (which is HoverFrog) to determine what
messages are valid, rather than the declared type of the variable kermit (which is
Frog). The Blued Java compiler (which you will encounter in Unit 4) correctly
determines what messages are valid based on the type of the variable, therefore the
compiler would reject the statement with the error message:

cannot find symbol - method up()
as the method up() is not part of the protocol of Frog.
It is hoped that this peculiarity of the OUWorkspace can be fixed in a future release.

The last activity was designed to show the following facts about assignment and
reference type variables.

» |f a variable is of type T (where T is a class such as Frog), then an instance of a
subclass of T (such as HoverFrog) can be assigned to the variable.

» Aninstance of a class T (such as Frog) cannot be assigned to a variable whose
type is a subclass of T (such as HoverFrog).

> |f avariable is of type T (where T is a class such as Frog), then only messages in the
protocol of T can be sent to the object referenced by that variable. Even if the
variable actually references an instance of a subclass of T (such as HoverFrog), the
Java interpreter will reject any attempt to send messages in the protocol of the
subclass that are not in the protocol of T.

Note that if a class U is a subclass of the class T or of any of T’s subclasses then we say
that U is a subtype of the type T. The important point to take from the above is:

» An object whose type is a subtype of the declared type of a variable can be
assigned to that variable.

m Visualising references to objects

It can often be useful to use variable reference diagrams to visualise what is going on
when dealing with reference type variables and assignment. We now repeat the
statements that were used in Activity 7 and after each show the state of the relevant
objects using variable reference diagrams. Note that in these diagrams we have added
a reminder of the type of each variable below its box.

After the variables have been declared, they all initially hold the value null.

_ Unit 3 Variables, objects and representations

kermit happy
(Frog) (HoverFroqg)

gribbit bouncy
(Frog) (HoverFrog)

Figure 13 All variables hold null

(a) kermit = new Frog();

kermit Frog happy
position OUColour
(Frog) > (HoverFrog)
colour D GREEN
gribbit bouncy
(Frog) (HoverFrog)

Figure 14 kermit references a Frog object

Note that in Figure 14, the instance variable colour of the Frog object is shown correctly
referencing an instance of 0UColour, and the instance variable position directly
holding the value 1. To prevent our variable reference diagrams in this discussion of
Activity 7 becoming too cluttered, we will simplify the representation of OUColour
objects to a box with the name of a colour in it.

kermit Frog happy
position
(Frog) colour [—+[GREEN (HoverFrog)
gribbit bouncy
(Frog) (HoverFrog)

Figure 15 kermit references a Frog object (simplified)

kermit now holds a reference to a Frog object. This is shown by the arrow between the
block of memory labelled by the variable kermit and the Frog object — put another way,
kermit now holds the address of the Frog object in memory.

3 Variables, typing and assignment

(b) happy = new HoverFrog() ;

kermit

Frog

+—

(Frog)

position
colour [F—[GREEN]

gribbit

(Frog)

Figure 16 Now happy references a HoverFrog object

(c) kermit.right();

kermit

Frog

—

(Frog)

position

colour [

gribbit

(Frog)

Figure 17 The position of the Frog object referenced by kermit has now been set to 2

(d) kermit.right();

kermit

Frog

—

(Frog)

position
colour E—»

gribbit

(Frog)

Figure 18 The position of the Frog object referenced by kermit has now been set to 3

happy

HoverFrog

[F—

(HoverFrog)

position
colour B
height [:]

bouncy

(HoverFrog)

happy

HoverFrog

[+——

(HoverFrog)

position
colour B
height [:]

bouncy

(HoverFrogqg)

happy HoverFrog
’ position
(HoverFrog) colour [E}—»GREEN
height [:]
bouncy
(HoverFrog)

kermit

—

(Frog)

gribbit

(Frog)

Unit 3 Variables, objects and representations

(e) happy.setColour(OUColour.RED);

Frog

position
colour E—»

happy

[JF—

(HoverFrog)

bouncy

(HoverFroqg)

HoverFrog

position

colour E RED

height [:]

Figure 19 The colour of the HoverFrog object referenced by happy has now been set to

OUColour.RED

(f) gribbit = kermit;

kermit

—

(Frog)

Frog
position
colour [

gribbit

A

[

(Frog)

happy

[JF—

(HoverFrog)

HoverFrog
position
colour [F[RED]

height [:]

bouncy

(HoverFroqg)

Figure 20 Now gribbit and kermit reference the same Frog object; bouncy still holds the

value null

(g) gribbit.setColour (OUColour.BLUE) ;

kermit

Frog

+—

(Frog)

position

gribbit

colour E—»
A

[

(Frog)

Figure 21 The colour of the Frog object referenced by both gribbit and kermit has now been

set to OUColour .BLUE

happy HoverFrog
EI—’ position
(HoverFrog) colour E-'
height [:]
bouncy
(HoverFrog)

3 Variables, typing and assignment

(h) kermit.right();

kermit Frog happy HoverFrog
position position
(Frog) colour [-»{BLUE] (HoverFrog) | colour [J—[ED]
yy height @
gribbit bouncy
B
(Frog) (HoverFrogqg)

Figure 22 The position of the Frog object referenced by both gribbit and kermit has now

been set to 4

(i) bouncy = kermit;

This produces an error message as you cannot assign a Frog object to a variable of

type HoverFrog.
(j) kermit = happy;

!

kermit Frog happy HoverFrog
Eﬁ position EI—’ position
(Frog) colour E—» (HoverFrog) colour E—»
yy height @
gribbit bouncy
E
(Frog) (HoverFrog)

Figure 23 kermit and happy now reference the same HoverFrog object; gribbit references a
Frog object and bouncy still holds the value null

(k) happy.up();

.

kermit Frog happy HoverFrog
position position
(Frog) colour [J-+{BLUE] (HoverFrog) | colour [J—»[FED]
yy height
gribbit bouncy
B
(Frog) (HoverFrogqg)

Figure 24 The height of the HoverFrog object referenced by both kermit and happy has now
been set to 1. bouncy still holds the value null

Unit 3 Variables, objects and representations

() kxermit.up();
This produces an error as, although kermit now references a HoverFrog object,
kermit has been declared as being of type Frog. The interpreter therefore refuses
to send a message to kermit that is not in the protocol of Frog objects.

In the above sequence of statements note that although there were four variables
involved only two objects were created.

Itis important to distinguish assigning an object to a variable from sending a message to
the object that a variable references. Consider the following example.

Example 1

Suppose the following statements have been executed (starting from a cleared
OUWorkspace).

Frog kermit = new Frog() ;

Frog gribbit;

kermit.right();
kermit.setColour (OUColour.RED) ;
gribbit = kermit;

The situation is shown in Figure 25.

kermit

+— Frog
silslot i position

O cotowr G-

Figure 25 kermit and gribbit are referencing the same Frog object

If we now send a message using either kermit or gribbit as the receiver, the

same object will be the actual receiver of the message. Thus
gribbit.right();

produces the situation shown in Figure 26.

kermit

+— Fros

e stoelie position
BN ESERE

Figure 26 kermit and gribbit are still referencing the same Frog object

The message-send
kermit.setColour (OUColour.BLUE) ;

results in Figure 27.

3 Variables, typing and assignment

kermit

+— Frog
sl position
| cotew [G-{EEE]

Figure 27 kermit and gribbit are now blue

On the other hand, if we assign a different object to one of the variables, then the
other one is unaffected. Thus

kermit = new Frog() ;

results in Figure 28.

!

kermit
[:] Frog Frog
sl position position

IEI colour E—» colour

EREE

Figure 28 kermit and gribbit are now referencing different Frog objects

Another technique for visualising references to objects is to make use of the Amphibians
graphical display window, which you will do in the next activity.

ACTIVITY 8

Launch Blued if necessary. From the Project menu navigate to and open the project
called Unit3_Project_1. From BluedJ’s Tools menu open the OUWorkspace. From the
Graphical Display menu of the OUWorkspace choose Open to bring up the Amphibians
window.

1 In the OUWorkspace declare two variables for Frog objects by typing and executing
the following:

Frog kermit;
Frog perseus;
Next create and assign a new Frog object to the variable kermit by executing the
code
kermit = new Frog() ;
2 Now make the object referenced by kermit turn brown and move it to the third stone
to the right by executing

kermit.right();

kermit.right();

kermit.setColour (OUColour .BROWN) ;
Next assign the Frog object referenced by kermit to the variable perseus by
executing the following statement:

perseus = kermit;

Unit 3 Variables, objects and representations

Now execute the following statements one by one and observe what happens in the
Amphibians window.

perseus.setPosition(1l);
perseus.right();
kermit.right();
perseus.right();
kermit.right();

What is the resulting behaviour in the Amphibians window? What is the resulting state
(use the inspector to inspect kermit and perseus)? How do you account for what
you observe?

Now execute the code

perseus = new Frog();
What do you observe in the Amphibians window?
Now execute

kermit.right();
What do you observe in the Amphibians window?
Now execute

perseus.setColour (OUColour.BLUE) ;
What do you observe in the Amphibians window?
Finally, execute the following assignment statement:

perseus = kermit;

What do you observe in the Amphibians window?

DISCUSSION OF

ACTIVITY 8

1

The code kermit = new Frog(); created a new instance of the class Frog, which
you could observe in the Amphibians window.

The statement perseus = kermit; assigned the address of the Frog object
referenced by kermit to the variable perseus. Now both variables, perseus and
kermit, reference the very same Frog object. It is important to realise that this
assignment did not alter in any way the fact that the variable kermi t still references
the same Frog object. You can have as many variables as you like referencing a
given object.

Because perseus and kermit reference the same object there is still only one Frog
object visible in the Amphibians window.

To demonstrate further that the assignment statement really did make the variable
named perseus reference the same Frog object that is referenced by kermit you
should have observed that sending messages using either the variable perseus or
the variable kermit made the same single Frog object change state (as observed
in the Amphibians window).

perseus = new Frog() ;

After the execution of this assignment statement, the variable perseus references a
new instance of Frog, which is displayed in the Amphibians window — there are now
two frogs in the Amphibians window.

kermit.right();

The variable kermit evidently still references the original Frog object. This is
demonstrated by the fact that when you send messages to kermit the original Frog
object responds.

3 Variables, typing and assignment

5 perseus.colour (OUColour.BLUE);
This demonstrates that the variable perseus really does reference a new Frog
object, as the second Frog object in the Amphibians window turns blue.

6 perseus = kermit;
As soon as this assignment statement is evaluated, the second Frog object
disappears from the Amphibians window. The variable perseus once again
references the same object as kermit, and the Frog object that was referenced by
perseus prior to the assignment statement is no longer available as it is no longer
referenced by a variable. At some later stage the Java Virtual Machine will remove it
from memory. The removal of unreachable objects is called garbage collection.

Assignment to value type variables

It is important to distinguish the way assignment works for reference type variables
(reference semantics) from what happens with value type variables (value semantics).

Example 2
Executing the following statements:

int myNumber = 17;
int yourNumber = 30;

produces the situation shown in Figure 29.

myNumber yourNumber

Figure 29 myNumber and yourNumber have different values

If you now execute
yourNumber = myNumber ;

then a copy of the value stored in myNumber is put into yourNumber, overwriting
the value 30.

myNumber yourNumber

Figure 30 myNumber and yourNumber have the same values

The two variables are completely independent of each other even although
they contain the same value. Compare this with the situation after

gribbit =kermit; was executed in Example 1, where the two variables ended
up referencing the same object.

_ Unit 3 Variables, objects and representations

If you now execute the statement
myNumber = myNumber + 5;

you get the situation shown in Figure 31.

myNumber yourNumber

Figure 31 myNumber and yourNumber have different values

To understand this, consider how myNumber = myNumber + 5; iS executed. First
the expression myNumber + 5 is evaluated; since myNumber currently holds the
value 17 this gives a value of 22. This value 22 is now assigned to (stored in) the
variable myNumber. Since the variable yourNumber is quite separate from
myNumber, yourNumber is not affected in any way.

4 Textual representations of objects and primitive values

Textual representations of
objects and primitive values

Throughout this unit you have seen how the value obtained from evaluating an
expression is displayed in the Display Pane of the OUWorkspace. When these values
have literal value equivalents, like numbers (e.g. 1), Booleans (e.g. true) and strings
(e.g. "Fred"), this is fairly straightforward, as Java knows how to display (as text) values
that have literal equivalents. But what about complex objects like Frog objects? If a
message returns a Frog object as its answer, how could that be displayed in the Display
Pane? How would Java know what to display? This section explains how to give an
object a textual representation, which can be used to describe that object in the Display
Pane.

m The message toString()

In Java every object responds to a message called toString(). On receiving such a
message an object will return as the message answer a textual representation of itself.

The nature of the textual representation varies with the class of the object. The textual
representation may indicate only the class of the object and its address in memory. This
is the case for Account objects; for example, the message expression

myAccount.toString();

might return the string shown in Figure 32.

"Account@bb0f79"

memory address

Figure 32 A textual representation of an Account object

This is the default representation, and is used if the programmer has not provided for a
more meaningful descriptive text in designing the class.

However, the textual representations of objects of other classes may provide information
on the state of the object as well as its class name. For example, more informative text
has been built into the design of the Frog class and replaces the default. Thus the
message expression

kermit.toString();

might return (depending on the state of the Frog object referenced by kermit) the
much more informative textual representation:

"An instance of class Frog: position 1, colour OUColour.GREEN"

Note, however, that Frog objects cannot be distinguished by their textual
representations, as all frogs with the same state would have the same textual

Unit 3 Variables, objects and representations

If the Show Results box is
checked, the Display Pane
always shows the value
returned from evaluating
the last expression in a
statement (or series of
statements).

representation. Account objects can, however, be distinguished, as the textual
representation of an Account object includes its unique address in memory.

In the next activity, message answers are revisited and you will examine the way in which
the message toString() is used to obtain the textual representation of an object.

ACTIVITY 9

Every object has a textual representation associated with it. You will now investigate how
textual representations are generated in the Display Pane by using the message
tosString(), which is a message to which all objects respond. If it is not already open,
launch Blued and, from the Project menu, open Unit3_Project_2. Opening the project
displays four rectangles, labelled Frog, HoverFrog, Toad and Account, in the main BluedJ
window. These rectangles tell you that this project has those classes available and that
you will be able to create instances of those classes in the OUWorkspace.
Open the OUWorkspace and make sure that Show Results is checked.
1 If the OUWorkspace does not have a variable named kermit, declare one now and

assign a new Frog object to it as follows:

Frog kermit = new Frog() ;

Next type and execute the following statement to declare a String variable:

String str;
Next type and execute:

str = kermit.toString();
What has been written in the Display Pane?

From the list of variables double-click on str to inspect it. What does the inspector
show?

2 Now type, select and execute a statement that consists of just the variable name
followed by a semicolon, for example:
kermit;
Note the textual representation of the result shown in the Display Pane.

Why do you think that the results shown in the Display Pane are similar for steps 1
and 2?

3 To confirm your ideas, repeat steps 1 and 2 with an Account object.

DISCUSSION OF
ACTIVITY 9

1 When you execute str = kermit.toString(); the text "An instance of class
Frog: position 1, colour OUColour.GREEN" is displayed in the Display Pane.
This string is the value to which the message expression kermit.toString()
evaluates.

Inspecting the variable str shows that the result of evaluating kermit.toString()
has been assigned to the variable str.

2 The result of evaluating just kermit; is the Frog object referenced by kermit, yet
the text An instance of class Frog: position 1, colour OUColour.GREEN (note
that there are no quotes around it) is displayed in the Display Pane! This text is the
contents of the string which is the value of kermit.toString(). How did this
happen?

4 Textual representations of objects and primitive values

The reason for this is that if the last expression in a statement (or series of
statements) evaluates to an object, the OUWorkspace automatically sends the
message toString() to that object so that the textual representation of that object
can be written in the Display Pane.

3 You should have found that if you declare an Account object, for example
myAccount, and it is returned as the value of an expression, the text displayed in the
Display Pane is the contents of the string myAccount.toString() ;.

To conclude, the Display Pane of the OUWorkspace displays the textual representation
of the value computed from the final evaluation in a statement or series of statements.
Just as the icons that represent the Frog, Toad and HoverFrog objects in the
Amphibians window and the various microworlds encountered in Units 1 and 2 are not
the objects themselves but are graphical representations, the results of evaluating
expressions that are shown in the Display Pane of the OUWorkspace are textual
representations of objects or primitive values. Note that displaying the results of
evaluating expressions is not a feature of Java but a feature of the OUWorkspace, a
programming tool written in Java that we have designed to let you test snippets of Java
code.

Unit 3 Variables, objects and representations

Summary

Variables and types

>

Data is stored (or information about where to find it) in named memory locations.
These named memory locations are called variables because they can contain
different values, at different times, during the execution of a program. Variable
names must follow the rules for Java identifiers.

A type is a set of values and the set of operations which are permitted on those
values. Java has two very different kinds of types — primitive data types and
reference types.

Value type variables hold the values of primitive types but reference type variables
reference objects.

Variables are declared to be of a particular type and can only be assigned values of
a compatible type.

A variable can only reference a single object at any one time, but many variables
can reference the same object. Variable reference diagrams can be useful for
visualising a series of assignments.

An object does not know what variables it is referenced by. Objects with no
references are garbage collected (destroyed) by the Java Virtual Machine.

Primitive data types can be considered to be general-purpose data types from
which objects are built.

In Java, any sequence of characters enclosed in double quotes is an instance of the
class string. The individual characters in a string are values of the primitive type
char.

Expressions

>

>

Expressions perform the work of a Java program. Among other things, expressions
are used to compute values and to help control the execution flow of a program. The
job of an expression is two fold: to perform the computation indicated by the
elements of the expression and to return some value that is the result of the
computation.

Expressions are built using operands and operators.

Sub-expressions can be combined using parentheses to create compound
expressions that evaluate to a single value.

An assignment statement assigns the value of the expression on the right-hand side
of the assignment operator (=) to the variable on the left-hand side of the operator.

A message that returns a message answer is called a message expression.

Objects

>
>

Objects are created by using the operator new and a constructor.

Every object has an associated textual description. The default description gives the
class and memory address of the object. A programmer may choose to provide a
fuller description for instances of some classes.

All objects understand the message toString() which returns the textual
representation of the receiver.

Summary

BlueJ and the OUWorkspace

» The Blued system encompasses a programming language, a library of classes and
a development environment. All commercial systems contain these three parts, with
the major variation being in the environment.

» The OUWorkspace is a tool (integrated into Blued) that enables the writing and
testing of code in a quick and convenient way.

» The Display Pane has two functions. First, it is where Java writes any error messages
if you make a mistake in any code you are testing in the Code Pane. The second
function of the Display Pane is to display the value of the final expression evaluated
in a statement (or series of statements) in the Code Pane. Both these features are
aspects of providing information to the programmer.

_ Unit 3 Variables, objects and representations
LEARNING OUTCOMES

After studying this unit you should be able to:

> explain the meaning of type;

> explain the difference between the values of primitive data types and the values of
classes (objects);

> explain what a variable is and how it is declared,;
» explain the difference between a value type variable and a reference type variable;

P> understand that once a variable has been declared for a certain type, only values of
a compatible type can be assigned to that variable;

> explain what is meant by assignment;

> draw variable reference diagrams and answer questions about the practical effects
of assignments;

> understand that objects not referenced by a variable are automatically garbage
collected, i.e. destroyed;

» launch Blued and open a specified project and then open the OUWorkspace;

> use the OUWorkspace to execute statements which evaluate expressions and
assign the results to variables;

> create instances of a class by using the new operator and a constructor;
> inspect an object;

> recognise and correct mistakes by reading error reports in the Display Pane of the
OUWorkspace;

> use the message tostring() to get the textual description of an object;

> evaluate arithmetic, string, Boolean and message expressions both simple and
compound;

» understand and control (using parentheses) the precedence of evaluation in Java;

> use sub-expressions and nesting to build compound expressions so that the

evaluated value from one sub-expression can be used as the operand for another
sub-expression.

5 Glossary

Glossary

assigh See assighment.

assignment When using objects, assignment is the process which results in the
variable on the left-hand side of the assignment operator referencing the object returned
by the expression on the right-hand side (this is called assignment using reference
semantics). When using values of primitive data types, assignment is the process that
results in the variable on the left-hand side containing a copy of the value returned by
the right-hand side (this is referred to as assignment using value semantics).

assignment statement A statement that tells Java to make a variable reference a
particular object or to hold a particular primitive value (see assignment).

compound expression An expression built up using other sub-expressions; for
example, the following is a compound expression: (3 + 2) * (6 - 3)

concatenation The joining of two strings. In Java the string concatenation operator is
+ (the plus sign). For example, "Milton " + "Keynes" evaluates to "Milton Keynes".

constructor A special type of message used to initialise a newly created object.

expression Code that evaluates to a single value. Expressions are formed from
variables, operators and messages.

garbage collection The process of destroying objects, which have become
unreachable because they are no longer referenced by variables, in order to reclaim
their space in memory. In certain programming languages, including Java, this process
is automatic.

identifier The name of a variable.

instance variable A variable that is common to all the instances of a class but whose
value is specific to each instance. Each instance variable either contains a reference to
an object or contains a value of some primitive type. For example, Frog objects have the
instance variables colour and position. The values of the instance variables of a
particular object represent the state of that object.

integrated development environment (IDE) A software tool that supports the
construction, compilation and execution of a program. Blued is an example of an IDE
that supports the development of programs in Java and includes libraries of classes and
facilities for debugging and program design.

literal A comprehensible textual representation of a primitive value or object. For
example, 'X' is a char literal, 4.237 is a double literal and "hello there!" is a
String literal.

message expression A message-send which evaluates to a value, i.e. the message
returns an answer.

new An operator used to create an object — used in conjunction with a constructor.

primitive data type A set of values together with operations that can be performed on
them. The primitive data types in Java provide a set of basic building blocks from which
all the more complex types of data can be built. There are three categories of primitive
data type: numbers, characters and Booleans.

Unit 3 Variables, objects and representations

reference semantics The situation whereby a variable holds the address of an
object, rather than a value. A reference type variable on the left-hand side of an
assignment statement always ends up referring to the object on the right-hand side (cf.
value semantics).

reference type variable A variable declared to reference an object of the declared or
compatible type.

statement A statement represents a single instruction for the compiler or interpreter to
translate into bytecode. In Java a statement must always end with a semicolon.

syntax The structure of statements in a given language.

value semantics The situation in which a variable holds a value, of some primitive
data type. A value type variable on the left-hand side of an assignment statement
always ends up holding a copy of the value on the right-hand side (cf. reference
semantics).

value type variable A variable declared to hold a value of the declared or compatible
primitive type.

variable A named ‘chunk’ or block of the computer's memory which can hold either a
value of some primitive type or the address (reference) of an object.

variable reference diagram A diagram showing a reference type variable pointing to
a representation of an object with the current values of its attributes.

Index

Index

A
ASCII 7

assignment statement 9

B
binary operator 21

Blued 9
boolean 8

byte 7

C
cast 38

char 7

compound expression 25

concatenate 32

constructor 14

D
decimal number 7

declaration 26
delimiter 32

double 7

E
equality operators 23

evaluate 21

expression 21

F
false 8

float 7

floating-point number 7

floating-point types 7

G
garbage collection 17

|
identifier 18

instance variables 17
int 7

integer division 21
integer types 6

integrated development
environment 5

K
keyword 18

L
literal 7

logical operators 23
long 7

M
message expression 30

N
nested expression 25

new 14
null 14

number types 6

O
operator 21

OUWorkspace 9

P
precedence rules 24

primitive data type 6

R
reference semantics 20

reference type variable 13

relational operators 23

S
short 7

statement 8-9
sub-expression 25

syntax 20
T

true 8
U
unary operator 22

Unicode 8

V
value semantics 20

value type variable 9
variable 6

variable reference diagram 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

