
3Unit
representations

Object-oriented

M255 Unit 3

Variables, objects and

programming with Java

UNDERGRADUATE COMPUTING

course M255

more

course

Copyright ª

or

electronic course

University

course

University course

University

written

2.1

This publication forms part of an Open University

Object-oriented programming with Java. Details of this and other

Open University courses can be obtained from the Student

Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn about the wide

range of courses and packs offered at all levels by The Open

University.

To purchase a selection of Open University materials visit

http://www.ouw.co.uk, or contact Open University Worldwide,

Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University

Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.

2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted or utilised in any form or by

any means, electronic, mechanical, photocopying, recording

otherwise, without written permission from the publisher or a licence

from the Copyright Licensing Agency Ltd. Details of such licences

(for reprographic reproduction) may be obtained from the Copyright

Licensing Agency Ltd of 90 Tottenham Court Road, London,

W1T 4LP.

Open University course materials may also be made available in

electronic formats for use by students of the University. All rights,

including copyright and related rights and database rights, in

materials and their contents are owned by or

licensed to The Open University, or otherwise used by The Open

as permitted by applicable law.

In using electronic materials and their contents you agree

that your use will be solely for the purposes of following an Open

of study or otherwise as licensed by The Open

or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website),

distribute, transmit or retransmit, broadcast, modify or show in

public such electronic materials in whole or in part without the prior

consent of The Open University or in accordance with the

Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth

Group, Wakefield.

ISBN 978 0 7492 5495 7

CONTENTS

Introduction 5

1 Data types and variables 6

1.1 Primitive data types 6

1.2 Variables of primitive data types 8

1.3 BlueJ and the OUWorkspace 9

1.4 Reference type variables and objects 13

1.5 Variable names 18

2 Expressions 21

2.1 Expressions involving primitive data types 21

2.2 Expressions involving objects 29

2.3 Strings 31

3 Variables, typing and assignment 36

3.1 Assigning values of primitive types to variables 36

3.2 Assigning objects to reference type variables 39

3.3 Visualising references to objects 41

4 Textual representations of objects and
primitive values 51

4.1 The message toString() 51

5 Summary 54

Glossary 57

Index 59

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

In Unit 2 you did a lot of practical work in self-contained microworlds, sending messages

to different objects in order to discover the nature of objects – that they have state, have

a protocol (the messages that they respond to) and that they are organised into classes.

In this unit we begin to lift the lid on how the behaviour and state of objects might be

implemented. You will learn that there are two categories of data types in Java – primitive

data types and classes. Values of primitive types are the nuts and bolts that can be

represented at the machine level – numbers (1234 or 564.33), or Boolean values like
true and false, or characters like ?, G and b. Instances of classes are, as you have
already learnt, objects. Ultimately, all objects (in Java) are represented at the machine

level using primitive values. For example, Account objects have the attributes balance
and holder. The attribute balance has a value of the primitive type int, and the
attribute holder has a value which is a String object. However this String object is
made up of values from the primitive type char. So, as will be demonstrated, ultimately

everything in Java is composed from these primitive types.

This unit will also introduce you to the concept of expressions, chunks of program code

that evaluate to a single value, and how that value can then be assigned to a variable so

that a program can remember the value for future use.

You will also be introduced to BlueJ, which is an example of an IDE – an integrated

development environment. Later on in the course you will use this IDE to modify

classes of objects and to create entirely new classes. In this unit, however, you will be

using BlueJ to access the ‘OUWorkspace’, a programming tool that the M255 course

team have integrated into BlueJ. This tool is designed to enable you to get used to the

syntax of Java and enable you to write and test snippets of Java code in a quick and

convenient way.

6 Unit 3 Variables, objects and representations

Data types and variables 1

All computer programs deal with data. Data comes in all shapes and sizes. For example,

it could be simple numbers such as temperature readings, or strings of characters such

as the names of account holders, or complex objects such as bank accounts or frogs. If

a program running on a computer is going to be able to make use of this data, the data

needs to be stored in the computer’s memory, and in order to access the stored data,

the program needs some way of keeping track of where the data is stored.

To help it to do this a program can make use of variables. A variable is simply a named

‘chunk’ or block of the computer’s memory where data (or a reference to the data) is

stored. By using the name of the variable in program code we are able to access the

data stored in the corresponding block of memory and also to change what is stored

there. It is because the value that is stored in a memory location can change that we use

the word variable for these named memory locations. For example, as you will see in the

next unit, the position of a Frog object is stored in a variable called position. The value
that is stored in position changes every time the frog moves to the right or the left. In

other words the value of position varies; position is a variable.

In this section we explain that Java has two categories of data, and how each category

is stored differently in a variable.

1.1 Primitive data types

Java distinguishes two sorts of data: values of primitive data types and instances of

classes (objects). You have already met examples of both. Thus numbers such as 5 and
56.35 are examples of values of primitive data types, whereas the frogs, hoverfrogs and

toads you interacted with in the microworlds in Unit 2 are objects – instances of the

Frog, HoverFrog and Toad classes.

A primitive data type is defined as a set of values together with operations that can be

performed on them. The primitive data types in Java provide a set of basic building

blocks from which all the more complex types of data can be built. There are three

categories of primitive data type:

c numbers;

c characters;

c Booleans.

There are various kinds of number types. First there are the integer types, byte,
short, int and long. The values of each of these types are integers (positive and
negative whole numbers and zero); the differences are in the range of values they

include and the amount of memory each requires. Thus a value of the byte type requires
only 8 bits of memory but can only be an integer in the range –128 to 127. The size and

range of the integer data types are summarised in the following table.

1 Data types and variables 7

Type Size Range

byte 8 bits –128 to 127

short 16 bits –32768 to 32767

int 32 bits –2147483648 to 2147483647

long 64 bits –9223372036854775808 to 9223372036854775807

In this course we use mainly the int data type for integer values.

However, not all numbers are whole numbers; in order to store decimal numbers such

as 17.34 we use floating-point types. There are two of these types in Java – float and
double. A value of the float type takes up 32 bits of memory while one of the double
type requires 64 bits. The double type not only covers a wider range of numbers (up to

over 17 followed by 307 zeros, i.e. 17610307, compared with the much smaller 3

followed by 38 zeros, i.e. 361038, for float) but, more importantly, has greater accuracy

(more significant figures of the number are stored).

In order to represent particular values of any of these primitive types in a program we

make use of what are called literals. A literal is just a textual representation of a

particular value of some type. Some of these are pretty obvious. Thus 17 is the literal that
represents the int 17. If you want to represent the same number 17 as a long you need
to use the literal 17L.

For floating-point numbers the default type is double. Thus the literal 1.7 represents the
double floating-point number 1.7. In order to specify a float you append an F; thus
1.7F represents a value 1.7 of type float. Note that these appended letters can be in
either upper case or lower case.

There is another way of representing floating-point numbers that is useful for very large

or very small numbers. This is known as exponential notation. For example,

3.17E15

represents the number 3 170 000 000 000 000 (stored as a double). The E15 means that

the point should be moved 15 places to the right, requiring 13 extra 0s to be added.

Similarly,

3.17E-15

represents the number 0.000 000 000 000 003 17, as the E-15 means the point has to be

moved 15 places to the left.

We said above that a primitive data type is a set of values together with operations that

can be performed on them. The operations on numbers include the familiar ones of

addition, subtraction, multiplication and division. We will look at these and other

operations in more detail in Section 2.

For characters Java uses just one primitive data type, char. The values of the type char
represent both printable (e.g. A, B, x, and %) and non-printable characters (sometimes

called control characters). In the Introduction you came across values of type char as
the individual letters in String objects. So for example the string "Java" is made up of

the characters 'J', 'a', 'v' and 'a'. Historically, characters were stored in 8 bits of
memory because they were represented at machine level by a seven-bit ASCII code,

which allowed for 128 characters. (ASCII stands for American Standard Code for

Information Interchange and was originally devised as a standard coding system to

allow text to be transferred from one device to another; the spare eighth bit was often

used to help check whether the code had been corrupted during transfer between the

There are no special
literals for representing the
smaller types of integer; to
store an integer as a byte
or a short you need to
assign the integer to a
variable of the appropriate
type.

An example of a non­
printable character would
be a tab or a carriage
return.

8 Unit 3 Variables, objects and representations

devices.) However, to code all the different characters that are used in all of the world’s

written languages requires many more characters than are available with a single byte.

As a result a new character representation, Unicode, has gradually superseded ASCII

since the late 1980s. Unicode characters are stored in 16 bits, and this is what Java

uses for the primitive type char.

There are two ways of representing particular values of the data type char. One, which

we used above, is to enclose the character in single quotes, for example 'c' or '%'. We

call this a character literal. The other method is to use the actual Unicode code for the

character. This is done by writing \u followed by the code in hexadecimal. Thus \u0063
represents the character whose code is 63 in hexadecimal (which is 99 in decimal); this

is the character 'c'. In this course we will normally use character literals such as 'c'
and not concern ourselves with Unicode codes.

Finally, Java uses the type boolean for Boolean data. There are only two values of this
type and they are represented by the literals true and false.

The operations available on all these types will be dealt with in Section 2.

1.2 Variables of primitive data types

Now that we have introduced the primitive data types we need to consider how Java

uses variables to hold values of these types in a program. Recall that a variable is a

named ‘chunk’ or block of memory. Before you use a variable in a Java program you

need to declare it; this will ensure that the variable is allocated a chunk of memory of a

suitable size to store the required type of value. To declare a variable in Java you simply

give the type of the variable and its name in a statement as shown in Figure 1. Note that

a semicolon (;) must be used at the end of every statement to indicate to the Java

interpreter that it has come to the end of the statement.

type name

int myNumber;

Figure 1 Declaring a variable

When this statement is executed it reserves a 32-bit block of the computer’s memory

(enough to store a value of type int) and records the identifier myNumber as the name of

this block of memory. We can illustrate this as follows:

Hexadecimal is the base­
16 number system, which
consists of 16 unique
symbols: the digits 0 to 9
and the letters A to F. For
example, the decimal
number 15 is represented
as F in the hexadecimal
numbering system. One
use of the hexadecimal
system is that it can
represent every byte (8
bits) as two consecutive
hexadecimal digits.

In general it is sensible to
assume that when a
variable is first declared it
is undefined (it has no
value). However, you will
learn later that there are
some contexts in which
variables are automatically
provided with default
values of the appropriate
types when they are
declared.

myNumber

Figure 2 The result of variable declaration

This shows a ‘blank’ block of memory (the empty rectangle) with the name myNumber
and is a visual representation of what has happened as a result of the declaration of the

variable myNumber. In particular the variable apparently has no value. This is because
we have not yet assigned a value to it.

1 Data types and variables 9

To assign a value to a variable you use the assignment operator =. For example, after the

variable myNumber has been declared as above you can assign the value 17 to it by
executing the statement

myNumber = 17;

This type of statement is called an assignment statement, and this example will cause

the value 17 to be stored in the variable myNumber. We can illustrate this as follows.

myNumber

17

Figure 3 The result of an assignment statement

Statements are the building blocks of Java programs. Each statement represents a

single instruction to the Java interpreter.

Note that the number is stored in the actual named block of memory.

Variables declared to hold values of some primitive data type are termed value type

variables. This is because the ‘chunk’ of memory they label holds a value, as is

illustrated in Figure 3.

Exercise 1

With pencil and paper, write two Java statements, one which will declare a character

variable called letter and then another that will assign the letter 'D' to the variable.

Solution ...

char letter;
letter = 'D';

1.3 BlueJ and the OUWorkspace

BlueJ encompasses a programming language, a library of classes and a development

environment. All commercial (object-oriented) programming systems contain these

three parts, with the major variation being in the environment. BlueJ is an example of a

Java environment developed for teaching to which we (the course team) have added a

general-purpose programming tool called the OUWorkspace.

The only part of the BlueJ system that you will use in this unit is our addition, the

OUWorkspace, so details of other elements of the BlueJ system will be left until Unit 4.

Once you have launched BlueJ, you can open the OUWorkspace by selecting

OUWorkspace from the Tools menu. The OUWorkspace is an important part of this

course; it is a tool that enables you to write and test arbitrary Java statements in a quick

and convenient way. You can think of a statement as a single instruction that has to be

carried out by the computer when the statement is executed. You saw in Subsection 1.2

some examples of simple Java statements for declaring variables and assigning values

to them. Remember that simple Java statements are all terminated with a semicolon.

10 Unit 3 Variables, objects and representations

ACTIVITY 1

Launch BlueJ by double-clicking the BlueJ icon, which is on your Windows desktop. Then

select OUWorkspace from the BlueJ Tools menu.

Figure 4 Opening the OUWorkspace

After selecting OUWorkspace from the Tools menu, the window shown in Figure 5 should

open.

Figure 5 The OUWorkspace

The OUWorkspace has many similarities to the Accounts World used in Unit 2 ; however,

it is more flexible and powerful, and will be used throughout the rest of the course.

The top pane in the OUWorkspace is called the Code Pane. This is where you type

statements that you want executed. Statements are not executed until they have been

highlighted (selected) and their execution requested by choosing Execute Selected from

the Action menu.

Below the Code Pane there are two further panes – on the left there is the Display Pane.

This has two functions. First, it is where the OUWorkspace’s Java interpreter will write

any error messages if you make a mistake in any statement(s) you are testing in the

1 Data types and variables 11

Code Pane. For example, if you attempt to assign a value to a variable (x) before the
variable has been declared, the Java interpreter that is used to parse and execute code in

the Code Pane will write Semantic error: Assignment to undeclared variable: x in
the Display Pane. The second function of the Display Pane is to display the value of the

last expression evaluated in a statement (or series of statements). This will occur only if

you check the Show Results check box.

To the right of the Display Pane is the Variables Pane. This pane will display any variables

declared in the Code Pane.

1	 Type the following code into the Code Pane (remembering the semicolons).

int myNumber;

myNumber = 17;

Ensure that the Show Results check box is checked.

Now highlight both lines of code and execute them by selecting Execute Selected

from the Action menu.

What do you see in the Display Pane (bottom left) and in the Variables Pane (bottom

right)?

What happens when you double-click the variable name in the Variables Pane?

2 Close the Inspector window and type in the following statement.

myNumber = 45;

Select and execute the statement. Inspect the variable myNumber.

3	 Clear the Code Pane and the Display Pane by choosing the appropriate items from
the Action menu.

Now enter the following statement into the Code Pane, highlight it and then execute it.

yourNumber = 34;

What happens? Try to explain it.

4 Enter and execute the following statement.

int yourNumber;

Describe what happens.

5 Enter and execute statements that will declare a character variable called choice
and give it the value 'Q'.

DISCUSSION OF
ACTIVITY 1

1	 After executing the code

int myNumber;

myNumber = 17;

the Variables Pane displays the name of the variable you have just declared

(myNumber) and the Display Pane shows the number 17 – the result of executing

myNumber = 17;. This is shown in Figure 6.

12 Unit 3 Variables, objects and representations

Figure 6 Executing code in the OUWorkspace

Although code is normally entered in the top left corner of the Code Pane, we have

shown the snippet starting a little lower in Figure 6 to allow the Action menu to be

displayed.

When you double-click myNumber in the Variables Pane, an Inspector window
opens, as shown in Figure 7.

Figure 7 An Inspector window showing the value of the variable myNumber

2	 The Display Pane should show the result 45 and the inspector should also show that
myNumber has the value 45. Both of these confirm that the value of the variable

myNumber has changed from its previous value of 17.

3	 Executing the code

yourNumber = 34;

results in the Display Pane showing the following error message:

Semantic error: Assignment to undeclared variable: yourNumber

This error message is informing you that the variable yourNumber has not been
declared, and therefore you cannot assign a value to it.

4 When you execute the statement

int yourNumber;

yourNumber appears in the Variables Pane.

5 The statements you need to declare a character variable called choice and give it
the value 'Q' are:

char choice;
choice = 'Q';

1 Data types and variables 13

1.4 Reference type variables and objects

We noted at the end of Subsection 1.2 that variables declared to hold values of some

primitive data type are termed value type variables. In this section we introduce you to

another type of variable, reference type variables.

Reference type variables are variables which are declared to hold objects. As you saw

in Unit 2, objects are instances of classes. Each class defines a reference type. For

example the class Frog defines a reference type called Frog. The values that can be
assigned to variables declared to be of the reference type Frog are simply the objects

that are instances of the class Frog, or subclasses of that class.

There are a number of important differences between objects and values of primitive

data types:

c The values of primitive data types are predefined; they already exist. The

programmer never has to create primitive values like 42 or 3.14592 or 'X'. They are
built into the language. You just use them. In contrast, objects have to be created as

required.

c You can create as many different instances (objects) of a class as you want. For

example, there is no limit to the number of Frog objects that you can create. (You will
see how to create a Frog object shortly.) Thus the number of instances of a class is

potentially infinite. This is in contrast to a primitive data type which only has a finite

number of values.

c A programmer can invent new classes of objects. You will find out how to make new

classes in Unit 4. It is not possible to make new primitive data types in Java.

c Objects usually take up much more memory than values of primitive data types. This

is because an object will normally have a number of attributes each of which will be

another object or a value of some primitive data type. For example, a Frog object
has two attributes: position, which holds a value of the primitive type int, and
colour, which references an OUColour object.

c The space needed to store an object is also unpredictable because we cannot know

at compile-time what class of object will actually be dynamically assigned to a

variable at run-time. If a variable has been declared to hold, for example, Frog
objects, it is legal to assign to it an instance of the class HoverFrog; instances of a
subclass can be assigned to variables declared for its superclass. However,

HoverFrog objects take up more storage than Frog objects (they have an extra
attribute height). Indeed the class of an object held by a particular reference type
variable may change at various times during the course of execution.

The last point is an important one. It means that we cannot always know in advance how

much storage space a reference type variable may require. For this reason the variables

that we use with objects work in a completely different way from variables that hold

values of primitive data types. A reference type variable does not hold the actual object;

instead the reference type variable contains a reference (the address) to where the

object is stored in memory. We can illustrate this by using a variable reference

diagram. Figure 8 shows a variable gribbit referencing a particular instance of the
class Frog. The diagram shows that the variable holds a reference rather than the actual

Frog by having an arrow coming out of the gribbit variable box pointing to a
representation of the Frog object. Similarly while the attribute position of the Frog
object holds the int value 5, the attribute colour references an OUColour object (which
in this case represents the colour brown).

14 Unit 3 Variables, objects and representations

position
colour

Frog

OUColour5

gribbit

BROWN

Figure 8 A variable reference diagram

Exercise 2

Why do you think that the position of the frog in Figure 8 is simply shown as a number in a

box, whereas the colour is shown using an arrow pointing to another box?

Solution ...

The position of a Frog object is represented by an int value; this value is stored in a box
labelled position. However, the colour of a Frog object is represented by an instance
of the class OUColour; so by using the arrow we are able show the colour box
referencing the OUColour object rather than containing it.

Reference type variables are declared in the same way as value type variables. First you

give the name of the type (the class) and then the name of the variable. Thus

Frog kermit;

declares a reference type variable called kermit that can be used to reference
instances of the class Frog. When a reference variable is first declared it does not

reference anything; it simply holds the special value null.

kermit
null

Figure 9 The result of reference variable declaration

In order to give the variable kermit a sensible value, you first need to create a Frog
object for it to reference. You do this by using a special operator new together with
something called a constructor. As its name suggests, the operator new is used for
creating new objects. A constructor is a piece of code for initialising the state of an

object of a class when it is created. The constructors for a class are written by the

programmer who implements the class; every class must have at least one constructor.

The constructor for the Frog class is Frog(). It is used in conjunction with the operator
new as follows.

new Frog();

The operator new first creates a new Frog object. It knows that it has to create a Frog
object from the name of the constructor that follows; the name of a constructor is always

the same as the name of the class whose objects it initialises. The code of the

constructor Frog() is then invoked and this code sets the attributes of the new Frog
object to their initial values (1 and OUColour.GREEN).

However, if you want to use this new Frog object in a program you need to have some

way of keeping track of it. You do this by assigning it to a variable as soon as it has been

1 Data types and variables 15

created. To assign the new Frog object to the variable kermit you need to execute the
following statement.

kermit = new Frog();

Note that you need to do the assignment and creation together in one statement. If we

used a separate statement to create the Frog object, then we would have no way of
getting hold of it afterwards and would not be able to assign it to any variable.

The end result of executing the two statements

Frog kermit;

kermit = new Frog();

is to produce the situation illustrated in Figure 10.

kermit

position
colour

Frog

OUColour

GREEN

1

Figure 10 A variable reference diagram showing a new Frog object, kermit

SAQ 1

Describe the three steps that take place when the statement

kermit = new Frog();

is executed.

ANSWER ...

First, the operator new causes a new instance of Frog to be created.

Second, the constructor Frog() causes the new instance of Frog to have its position

attribute initialised to 1 and its colour attribute initialised to OUColour.GREEN.

Finally, the assignment operator = causes the new, initialised instance of Frog to be

assigned to the variable kermit.

ACTIVITY 2

In this activity, once you have launched BlueJ you will need to open a project from the

Project menu. Do not worry too much about this for now – all this does in the context of

this unit is to allow you to create instances of classes that have been defined by the

course team and that are not part of the standard Java libraries.

Launch BlueJ and select Open Project from the Project menu. Navigate to the folder

called M255 projects. Double-click on the Block1 folder and then on the project named

Unit3_Project_1. Opening the project displays a number of icons in the main BlueJ

window: one document icon and three rectangular class icons labelled HoverFrog, Frog

and Toad. The inheritance relationship between the HoverFrog and Frog classes is
indicated by an open arrowhead (see Figure 11).

If you already have BlueJ
running with an open
OUWorkspace window,
close the OUWorkspace
before continuing.

16 Unit 3 Variables, objects and representations

Figure 11 BlueJ project window

The rectangular class icons indicate that in this project the classes HoverFrog, Frog and
Toad are available and that you will be able to create instances of them in the

OUWorkspace.

From BlueJ’s Tools menu select OUWorkspace. The OUWorkspace window that opens

has a menu bar with four menus: File, Edit, Action and Graphical Display.

Figure 12 The OUWorkspace window associated with projects containing classes whose objects
can be displayed graphically

1 Enter the following statement in the Code Pane and execute it.

Frog kermit;

Inspect the variable kermit.

2 Now enter and execute the statement

kermit = new Frog();

Inspect the variable kermit.

1 Data types and variables 17

3	 Now enter and execute the statements

kermit.right();

kermit.right();

kermit.setColour(OUColour.BROWN);

Inspect kermit.

4	 Next enter and execute the statement

kermit = new Frog();

and inspect kermit once again.

5	 From the Graphical Display menu of the OUWorkspace choose Open. Once you
have done this, a new window labelled Amphibians should appear behind the
OUWorkspace. What can you see in this window? Arrange the windows conveniently
then, using the OUWorkspace, try sending some messages to kermit by typing and
executing them in the Code Pane. Try things like:

kermit.right();

kermit.setColour(OUColour.PURPLE);

kermit.left();

What do you observe in the Amphibians graphics window?

6	 In the OUWorkspace declare a variable called gribbit and assign to it a new Frog
object. What do you see in the graphical display?

DISCUSSION OF
ACTIVITY 2

1	 The variable kermit appears in the Variables Pane of the OUWorkspace. Inspecting

kermit shows that its value is null.

2	 Inspecting kermit now shows that it references an instance of the Frog class, that
its attribute position has the value 1, and that its attribute colour has the value
OUColour.GREEN. These attributes are implemented as special variables called

instance variables that are declared by the programmer of the Frog class to hold a
Frog object’s state.

3	 Inspecting kermit now shows that its attribute position has the value 3 and that its
attribute colour has the value OUColour.BROWN. In programming terms we say that

its instance variable position has been set to 3 and that its instance variable
colour has been set to OUColour.BROWN.

4	 Inspecting the object referenced by kermit now shows that its instance variable
position has been set to 1 and that its instance variable colour has been set to
OUColour.GREEN. The reason for this sudden change in colour and position is
that the code

kermit = new Frog();

has made kermit reference a new Frog object. The frog that kermit referenced
initially, in parts 2 and 3, is no longer accessible as no variable now references it.

The object that kermit referenced in parts 2 and 3 is now available for garbage
collection.

5	 When you opened the Amphibians window from the Graphical Display menu it

displayed a graphical representation of the Frog object referenced by kermit.
Sending state changing messages in the OUWorkspace to the Frog object
referenced by kermit resulted in the Amphibians window graphically displaying

those state changes.

6	 Assignment of a new Frog object to gribbit is accompanied by the display of a

second frog in the Amphibians window.

18 Unit 3 Variables, objects and representations

The Amphibians window that you encountered in Activity 2 models the (possibly empty)

collection of variables shown in the Variables Pane of the OUWorkspace. Hence, as

soon as you created a new Frog object and assigned it to the variable gribbit, it was
displayed in the Amphibians window. However, the Amphibians window only knows how

to display Frog, HoverFrog and Toad objects graphically. It ignores any variables that
hold values of primitive types or any variables that reference non-amphibian-like

objects. Note also that, since this window only monitors the variables in the Variables

Pane of the OUWorkspace, it has no buttons or text boxes. You will learn more about

how all this happens in Unit 4.

Please note that you can open an Amphibians window from the OUWorkspace to view

graphical representations of Frog, HoverFrog and Toad objects in any project that
includes those classes.

1.5 Variable names

Variables should be given names (more technically called identifiers) that tell a reader

what their purpose is. There is not a totally free choice, because Java imposes rules, but

these will seldom prevent you from using a suitable name. The rules listed below are a

little tighter than what the Java language specifies, but we believe following them will

help to make your code more readable.

M255 conventions for identifiers are as follows.

c The first character should be an upper- or lower-case letter (that is, A...Z, a...z).

c Subsequent characters may be an upper- or lower-case letter or a digit (0, 1, 2...9).

c Identifiers are not allowed to have any spaces in them.

c You may not use a keyword, which is a word that already has a special meaning in

Java. The following table includes all the keywords; these cannot be used as

identifiers (please note the American spelling used for the keyword synchronized).

abstract double int strictfp

assert else interface super

boolean enum long switch

break extends native synchronized

byte final new this

case finally package throw

catch float private throws

char for protected transient

class goto public try

const if return void

continue implements short volatile

default import static while

do instanceof

c Finally, you cannot use true, false or null as variable names because they are

reserved words that are literals used to indicate values.

1 Data types and variables 19

Note that the above conventions mean that you cannot have an identifier that starts with

a digit, and an identifier cannot contain single or double quotes. Although Java does

allow two other characters ($ and _) in identifiers there are many characters that must

not be used so it is simplest just to use ordinary alphabetic letters.

In M255 we would also encourage you to respect the following style guidelines when

choosing identifiers for your variables. Keeping to these guidelines should make your

programs much easier to read and (if necessary) debug.

c Although there is no lower or upper limit on the number of characters that can be

used in an identifier, we would urge you to avoid very short identifiers, such as a, b,
x, ch because they are not very informative.

c Identifiers composed entirely of letters are usually the most meaningful to human

readers, though it might sometimes be appropriate to use digits in identifiers for a

number of similar values, for example frog1, frog2, frog3. Always choose
meaningful names; that is, identifiers which give some indication as to the role

played by the variable.

c Start your identifiers with lower-case letters. This helps to distinguish them from

classes, which start with an upper-case letter. Where an identifier is composed of

two or more English words or abbreviations, then we suggest the use of a single

upper-case letter to mark the start of each word after the first. We have used this

style of identifier (known as a camel-backed identifier) for myVar and yourVar. Here
are a few more examples: totalCost, dateToday and myFamilyName.

SAQ 2

Which of the following are valid variable identifiers in Java? Give a reason in each of the

cases where you consider that the text is not an identifier.

(a) kermit

(b) hover frog

(c) hoverFrog1

(d) my+Frog

(e) myAcc

(f)	 3.2

(g) "iAmAVariable"

(h) MyNumber

ANSWER ...

(a) kermit is a valid variable identifier.

(b) hover frog is not valid; it contains a space character.

(c) hoverFrog1 is a valid variable identifier.

(d)	 my+Frog is not a valid identifier since it contains a + character which is not a letter or
a digit.

(e) myAcc is a valid variable identifier.

(f)	 3.2 is not valid; it does not start with a letter; in fact it is a number literal.

(g) "iAmAVariable" is not valid; it does not start with a letter; in fact it is a string literal.

(h)	 MyNumber is valid. However, it breaks an almost universal programming convention

that variable names should start with a lower-case letter.

20 Unit 3 Variables, objects and representations

In this subsection you have seen that Java deals with two kinds of data – values of

primitive data types and instances of classes (objects). You have learnt how to declare

variables for both of these data types (value type variables and reference type

variables) and how to assign values of the appropriate type to these variables.

You have also learnt that the attributes of objects are implemented by instance

variables.

An assignment statement is always of the form

aVariable = something;

where ‘something’ represents a simple literal value or a newly created object. You will

see in Section 2 that more complex expressions can be used on the right-hand side of

an assignment statement.

Although assignment statements always have the same form (we say they all have the

same syntax), what an actual assignment statement means (its semantics) depends on

the type of the variable (and the value that is being assigned to it).

When a value of some primitive data type is assigned to a value type variable then the

assignment causes the actual value to be stored in the variable. We call this value

semantics. However, if the value is an object being assigned to a reference type

variable then the object is not stored in the variable; instead the variable holds a

reference to where the object is stored. This is called reference semantics.

2 Expressions 21

Expressions2

An expression is something that can be evaluated to produce a single value. A helpful

way to think of an expression is that it is anything that could appear on the right-hand side

of an assignment statement. An assignment statement always looks like the following.

someVariable = someExpression;

The value that an expression evaluates to may be of a primitive data type or it may be an

object. Evaluate just means ‘find the value of’. The simplest examples of expressions in

Java are literals such as 17 or 'c'. The literal 17 evaluates to the int value 17; the
character literal 'c' evaluates to the character c (a value of type char). An example of

an expression that evaluates to an object is new Frog().

A variable that has been assigned a value is also an example of a simple expression.

Thus, if myNumber has been assigned the value 34, then, when the expression myNumber
is evaluated, it returns the value 34. Similarly if a Frog object has been assigned to the
variable kermit, then, when kermit is evaluated, it will return as its value the Frog
object that it references.

2.1 Expressions involving primitive data types

You can build more complex expressions involving values of primitive data types by

combining literals and variables using operators. The operators most people are

familiar with are the arithmetical operators that are used with numbers. For example,

17 + 12

is an expression built from the two literals 17 and 12 using the operator + (addition). The
value it returns when evaluated is 29. In this expression we call 17 and 12 the operands
and + the operator. We call + a binary operator because it has two operands.

In the above expression both operands are integers (in fact they are of type int);
however, you can also use addition with values of type float and double and, indeed,
with a mixture of different types of numbers. The type of the value returned by the

evaluation of such expressions will depend on the type of the operands. For example,

1.7 + 3.4 evaluates to a value of type double.

5 + 1.7 also evaluates to a value of type double as the 5 gets converted by

the Java interpreter from an int to a double before the addition is done.

5 + 17 evaluates to a value of type int as both the operands are of type int.

The other arithmetic operators are similar. These are – (subtraction), * (multiplication)

and / (division). Examples of expressions using them are the following.

17 – 5 evaluates to the int value 12.

7.1 – 5 evaluates to the double value 2.1.

3 * 2 evaluates to the int value 6.

1.5 * 2 evaluates to the double value 3.0.

6 / 2 evaluates to the int value 3.

7 / 2 evaluates to the int value 3 (note this is not 3.5; when you divide an

int by an int the answer produced is an int and any remainder is simply

ignored – this is called integer division).

7.0 / 2 evaluates to the double value 3.5.

22 Unit 3 Variables, objects and representations

The only surprising thing in the above examples is the integer division that takes place

when 7 / 2 is evaluated. Java provides another operator, the remainder or modulus

operator, %, which gives the value of the remainder when one integer is divided by

another. For example,

7 % 2 evaluates to the int value 1 (the remainder when 7 is divided by 2),

17 % 3 evaluates to the int value 2,

5 % 17 evaluates to the int value 5 (do not confuse this with 5 / 17 which

gives 0).

One other arithmetical operator that is sometimes useful is the negation operator. This is

just a minus sign (as used for subtraction) but instead of being put between two

numbers it is put in front of single number and produces the negative of that number

when the expression is evaluated. This is an example of a unary operator as it has only

one operand. For example,

– 7 evaluates to the int value –7,

– (–7) evaluates to the int value 7.

All these operators have numbers as operands and when evaluated return numbers as

their values. However, there is another group of operators that can have numerical

operands but return Boolean values when the expression is evaluated. These are:

== (equal to),

!= (not equal to),

< (less than),

<= (less than or equal to),

> (greater than),

>= (greater than or equal to).

Here are some examples of using them.

Expression Value

3 == 3 true

7.1 == 2.5 false

7 == 7.0 true

3 != 3 false

7.1 != 2.5 true

2 < 3 true

2 <= 3 true

3 <= 3 true

4 < 3 false

4 > 3 true

Note that the operators consisting of two symbols, such as >=, must not have a space

between the symbols. Although not necessary, it is good practice to have space on

each side of a binary operator.

2 Expressions

The equality operators (== and !=) can actually be used with operands of any type.
When used with objects as operands, == will answer true if both sides evaluate to the
same object.

The relational operators (<, <=, > and >=) can also be used with operands of type char.
Thus an expression using < evaluates to true if the Unicode code of the character
on the left is less than that of the character on the right. For our purposes it is sufficient

to know that Unicode codes are arranged in the following order '0' '1' '2' ... '9'
... (other characters) ... 'A' 'B' ... 'Z' ... (other characters) ... 'a' 'b' ...
'z'

There are three important operators that can be used with Booleans only. These are

&& (logical and), || (logical or), and ! (not). These logical operators work as follows.

Expression Value

In all the examples above, the operands in the expressions are literals. However, the

operands do not need to be literals; an operand can be a variable or indeed any

expression that evaluates to a value of an appropriate type.

Before you can use a variable in an expression you need to ensure that it has been

declared and given a value. In order to ensure that a variable has a value it is often

sensible to give it an initial value when it is declared. You can combine declaration and

assignment in a single statement. Two examples are

int myNumber = 15;
Frog kermit = new Frog();

Examples of expressions involving myNumber declared and initialised as above are

myNumber + 12
myNumber < 17

23

Note that ! is a unary
operator (like the negation
operator –).

true && true true

true && false false

false && true false

false && false false

false || false false

true || true true

true || false true

false || true true

! true false

! false true

24 Unit 3 Variables, objects and representations

Exercise 3

Assume that myNumber and yourNumber have been declared and initialised by executing
the following statements.

int myNumber = 17;

int yourNumber = 5;

What are the values of the following expressions?

(a) myNumber – 15

(b) myNumber * yourNumber

(c) myNumber / yourNumber

(d) yourNumber > myNumber

(e) yourNumber != myNumber

Solution ...

(a) 2

(b) 85

(c) 3

(d) false

(e) true

When you use one expression as an operand in another expression, it is sensible to

enclose the expression being used as an operand in parentheses (round brackets)

unless it is a simple literal or variable. This will avoid any misunderstanding about which

part of the expression should be evaluated first. For example, to evaluate the expression

(17 – 5) – 2

we first evaluate 17 – 5 to get 12; this is then the value of the first operand for the right­
hand subtraction, which becomes 12 – 2 giving the value 10.

On the other hand, in the expression

17 – (5 – 2)

it is the 5 – 2 that gets evaluated first giving the value 3 for the second operand of the
left-hand subtraction, which becomes 17 – 3 giving the value 14.

If you simply write 17 – 5 – 2 then it might not be clear which of the evaluations is meant.

In fact, there are rules (called precedence rules) that determine the order in which

things are worked out when there are no parentheses to help determine the order.

According to these rules 17 – 5 – 2 would be worked out as if it were (17 – 5) – 2.

Expressions involving different operators can also be misinterpreted if parentheses are

not used. For example, the correct way to evaluate 17 + 3 * 2 is to treat it as 17 +(3 * 2)
which gives 23 and not as (17 + 3) * 2 which would give 40. This is because *
(multiplication) has a higher precedence than + (addition) and so, in the absence of
parentheses, multiplication is done before addition.

The following table summarises the order of precedence for the operators you have met so

far in this subsection. However, it is always better to use parentheses in a complex

expression to make the order of evaluation clear. This helps the readability of the code that

you write as well as making it less likely that you will make mistakes with the precedence

rules. In the table the operators in any row all have higher precedence than those in the rows

below. Apart from the assignment operator, if binary operators of equal precedence appear

(without parentheses) in succession in an expression they are evaluated from left to right.

2 Expressions 25

creation

multiplicative

additive

relational

equality

logical AND

logical OR

assignment

new

* /

+ ­

< > <= >=

== !=

&&

||

=

You may be surprised to find assignment (=) included in the above table. In fact

although we usually think of assignment as a statement, in other words an instruction to

do something, an assignment statement does in fact return a value when it is executed,

so it is also an expression. The value it returns is simply the value that it assigns to the

variable on the left-hand side of the =.

You can find a precedence table showing all the operators in Java in the Java

Handbook. You may wish to consult this when additional operators are introduced later

in the course.

When an expression is built up using other expressions as its operands we say that the

operand expressions are sub-expressions of a compound expression. For example, in

the compound expression

(3 + 2) *6

the left-hand operand to the * operator (3 + 2) is an example of a sub-expression.

Such sub-expressions can themselves be made up of further sub-expressions, a little

like Russian dolls; for example, in the compound expression

4 *(5 + (6 / 2))

we say that (6 / 2) is nested within the sub-expression (5 + (6 / 2)).

Such nested expressions should be read from the inside out. So, in this example, 6 is
first divided by 2. Then 5 is added to that result which is finally multiplied by 4.

More generally, as each nested expression is evaluated, the resulting value is passed

up to the next level, so that by the time the outer level is reached the entire compound

expression will evaluate to a single value.

There is no limit to the level of nesting; however, it is sensible to limit the amount of

nesting since if too much nesting is used it can become very difficult for a human to

interpret the expression. As code becomes less readable it is easier to make mistakes.

Exercise 4

In your head, or using pencil and paper, evaluate each of the following expressions.

(a) 3 *(7 + 2)

(b) (3 * 7) + 2

(c) (7 – (5 – 2)) >(8 / 2)

(d) (3 <= 7) && (7 < 9)

(e) (6 + 4) / (6 – 4)

26 Unit 3 Variables, objects and representations

Solution ...

(a)	 The expression (7 + 2) is evaluated first and then multiplied with 3 to give the
value 27.

(b) The expression (3 * 7) is evaluated first and then added to 2 to give 23.

(c)	 The expression (5 – 2) is evaluated first to give the value 3. This value is then
subtracted from 7 to give a final value for the left-hand operand of 4. Next (8 / 2) is

evaluated to give a value for the right-hand operand as 4. So the operator > has final
values of 4 on both the left- and right-hand sides and (4 > 4) evaluates to false.

(d) The expression (3 <= 7) is evaluated first (3 less than or equal to 7) which evaluates
to true. Then (7 < 9) is evaluated which also evaluates to true. As the final values
of the operands of the && operator both evaluate to true, the result of the operation
is also true.

(e)	 The expression (6 + 4) is evaluated first to give the value 10. Next (6 – 4) is
evaluated to give the value 2. The operand / then works with the value 10 on the left­
hand side and 2 on the right-hand side to return the value 5.

Exercise 5

Although we recommend that you use parentheses to make the order of evaluation clear,

there are some forms of expression where the parentheses are very often omitted. Again,

in your head or using pencil and paper, evaluate each of the following.

(a)	 3 * 2 + 11

(b)	 3 + 2 * 7

(c)	 25 – 6 – 2

Solution ...

(a)	 As * has a higher precedence than +, 3 * 2 is evaluated first to give 6 which is then
added to 11 to give 17.

(b) As * has a higher precedence than +, 2 * 7 is evaluated first to give 14 which is then
added to 3 to give 17.

(c)	 This expression is evaluated strictly from left to right as both operators have the

same precedence (they are both –). Therefore 25 – 6 is evaluated first to give 19.
Then 2 is subtracted from 19 to give 17.

ACTIVITY 3

Launch BlueJ, if not already open, and then from the Tools menu select OUWorkspace.

Enter, select and execute the following variable declarations, one at a time.

int anInt;
double aDouble;
boolean aBool;
int myNumber = 17;
int yourNumber = 5;

In each of the following statements an expression is evaluated and then assigned to a

variable of an appropriate type. When an assignment statement is executed, the value

assigned is returned as the answer. Make sure that Show Results is checked; you will

then be able to read the value of the expression that was evaluated from its textual

representation in the Display Pane. Enter and execute each of the following statements in

turn – make sure that the parentheses are in pairs.

2 Expressions 27

1 anInt = myNumber – 15;

2 anInt = myNumber * yourNumber;

3 anInt = myNumber / yourNumber;

4 aDouble = myNumber / yourNumber;

5 aBool = yourNumber > myNumber;

6 aBool = yourNumber != myNumber;

7 anInt = myNumber % yourNumber;

8 aDouble = 7 / 2;

9 aDouble = 7.0 / 2;

10 anInt = 3 * (7 + 2);

11 anInt = (3 * 7) + 2;

12 aBool = (7 – (5 – 2)) >(8 / 2);

13 aBool = (3 <= 7) && (7 < 9);

14 anInt = (6 + 4) / (6 – 4);

15 anInt = 3 *(2 + 11);

16 anInt = (3 + 2) * 7;

17 anInt = 25 – (6 – 2);

In the next two statements we have deliberately introduced errors. In each case a bracket

(parenthesis) is missing. Type in the statements just as you see them and then execute

them, one at a time. Can you understand the error messages?

18 anInt = 22 / 11) + 4;

19 aBool = (22 / 11 + 4;

DISCUSSION OF
ACTIVITY 3

1 anInt is assigned the value 2.

2 anInt is assigned the value 85.

3 anInt is assigned the value 3.

4 myNumber / yourNumber evaluates to 3 which is converted to 3.0 before being

assigned to aDouble.

5 aBool is assigned the value false.

6 aBool is assigned the value true.

7 anInt is assigned the value 2.

8 7 / 2 evaluates to 3 (integer division) which is converted to 3.0 before being
assigned to aDouble.

When you execute

aDouble = 7 / 2;

the Display Pane will display 3, yet inspecting aDouble will show that it has the value
3.0. The reason for this is that the Display Pane shows the result of integer division,
which is an integer. Java converts this int value into a double value (3.0) before
assigning that value to the variable aDouble.

9 aDouble is assigned the value 3.5.

10 anInt is assigned the value 27.

11 anInt is assigned the value 23.

12 aBool is assigned the value false.

13 aBool is assigned the value true.

28 Unit 3 Variables, objects and representations

In this course we tend to
avoid the use of ++ and - ­
because of the confusion
they can cause.

14 anInt is assigned the value 5.

15 anInt is assigned the value 39.

16 anInt is assigned the value 35.

17 anInt is assigned the value 21.

18 When the left parenthesis of a pair is omitted, the interpreter reports an error which is

written in the Display Pane:

Syntax error: column 14. Encountered:)

What this error is reporting is that the interpreter has read the line of code from left to

right and has come across a right parenthesis at column 14, i.e. the 14th character

in the line, without a matching left parenthesis.

19	 When the right parenthesis of a pair is omitted, the following error report is written in

the Display Pane:

Syntax error: column 19. Encountered: ;

What this error is reporting is that the interpreter has reached the end of the

statement (delimited by the ; at column 19) and has encountered some error – not

very informative!

Finally, it is worth noting that there are two commonly used postfix operators ++ and - ­
that can be used with numeric variables. They work as follows.

Suppose myNumber is a variable of any number type (int, long, float, double or
whatever). Then the statement

myNumber++;

is an instruction to increase the value stored in myNumber by 1.

myNumber- -;

decreases the value stored in myNumber by 1.

These operators have a higher precedence than the unary minus (negation).

SAQ 3

What is the value of myNumber after the following statements have been executed?

int myNumber = 17;
myNumber = myNumber – 11;
myNumber++;

ANSWER ...

myNumber holds the value 7.

It is tempting to say that the expression myNumber++ is equivalent to the expression
myNumber + 1 but this is not strictly true. This is because evaluating myNumber++
returns the value of myNumber before it has the 1 added to it; whereas the expression
myNumber + 1 returns the value after the 1 has been added. So, for example, in the

following code:

int myNumber, result;
myNumber = 17;
result = myNumber++;

result is assigned the value 17 and myNumber is incremented to 18.

2 Expressions 29

Compare that with this code:

int myNumber, result;

myNumber = 17;

result = myNumber + 1;

result is assigned the value 18 and myNumber remains holding the value 17.

2.2 Expressions involving objects

You have seen how operators are used with values of primitive data types to build up

complex expressions from simple ones. However, with objects the only kinds of

expression we have mentioned explicitly are ones of the form

kermit

and

new Frog()

In the first a variable referencing an object is used; it evaluates to the object that it

references. In the second an expression consisting of the operator new and the
constructor Frog() is used as the operand; this expression evaluates to a newly created
and initialised Frog object. Notice that the new operator has a constructor of a class as
its operand and returns a value that is an instance of that class.

Unlike values of primitive data types, objects are not normally used with operators. The

only common operators generally available for use with objects are the equality

operators == and !=. For example, if kermit and gribbit are reference type variables
then

kermit == gribbit

will evaluate to true if the operands reference or evaluate to the same object; otherwise

it will evaluate to false. The operator != is the opposite of ==.

However, there is another type of expression, one that does not involve operators, that is

used with objects. As you will recall from Unit 2, when a message is sent to an object an

answer may be returned. For example, if kermit is a Frog object then the message­

send

kermit.getColour()

returns an answer which is the value of the colour attribute of kermit. Similarly if

myAccount is an instance of Account then the message-send

myAccount.debit(100)

returns an answer which is either true or false depending on the balance and
overdraft limit of the receiver.

On the other hand, message-sends such as

kermit.right()

and

myAccount.credit(100)

do not return answers; they simply change the state of the receiver.

30 Unit 3 Variables, objects and representations

SAQ 4

Some message-sends return answers, some change the state of the receiver and some

do both. Give an example of message-send that can do both.

ANSWER ...

myAccount.debit(100) will do both, assuming that myAccount is an instance of
Account with a big enough balance to allow 100 to be taken from it. It will return the

answer true and change the state of myAccount by reducing its attribute balance
by 100.

A message-send that returns an answer is called a message expression.

SAQ 5

Which of the following are message expressions? You can assume that kermit
references a Frog object; myAccount references an Account object; and myNumber
references an int.

(a)	 kermit.left()

(b)	 myAccount.getBalance()

(c)	 myAccount.credit(50)

(d)	 kermit.getPosition()

(e)	 myNumber > myAccount.getBalance()

(f)	 myAccount.debit(kermit.getPosition())

(g)	 myAccount.debit(70) == true

(h)	 kermit.getPosition() + 2

(i)	 myAccount.getBalance() * (kermit.getPosition() + 2)

ANSWER ...

(a) No, the message left() does not return a message answer.

(b) Yes, the message getBalance() returns the balance of an Account object.

(c) No, the message credit() does not return a message answer.

(d) Yes, the message getPosition() returns the position of a Frog object.

(e) No, the whole expression is a Boolean expression. However, the right-hand operand

of this expression is a message expression, which evaluates to an integer.

(f)	 Yes, the message debit() returns either true or false. In this example the

argument to the debit()message is also a message expression which evaluates to

an integer.

(g) No, the whole expression is a Boolean expression. However, the left-hand operand

of this expression is a message expression, which evaluates to a Boolean value.

(h) No, the whole expression is an arithmetic expression. However, the left-hand

operand to the + operator is a message expression which evaluates to an integer.

(i)	 No, the whole expression is an arithmetic expression. The left-hand operand to the *
operator is a message expression which evaluates to an integer. The right-hand

operand to the * operator is a sub-expression, (kermit.getPosition() + 2),
which also evaluates to an integer. Inside the sub-expression,

kermit.getPosition() is a message expression which evaluates to an integer.

2 Expressions 31

A very important point to note is that you cannot tell simply by looking at a message­

send whether or not it is a message expression. In other words, unless you know what

the message-send ‘means’ or ‘does’ you cannot work out whether or not it returns an

answer. Often the name might give a clue, but sometimes message names can be

misleading. Before you can use a message correctly by writing a message-send you

need to know what it does when sent to that type of receiver and whether or not it returns

an answer.

It is important to realise that a message-send can be used as a statement on its own

whether or not it returns a message answer.

For example, both the following are Java statements:

kermit.left();
kermit.getPosition();

Both are instructions to send a message in the protocol of Frog to an instance of Frog.
However, it would be unusual to find the second one in a genuine program since it does

nothing useful. The whole purpose of the message-send kermit.getPosition() is to

return the value of the receiver’s position, but in the above statement the message

answer that is returned is simply ignored. So the statement achieves nothing. You would

only send the message getPosition() to a Frog object if you were going to:

c assign the message answer to a suitable variable for use later in the program; for

example, you might write:

int aNumber = kermit.getPosition();

or similarly as part of a more complex expression such as:

int frogSum = kermit.getPosition() + gribbit.getPosition();

c use the message answer as the argument to another message such as:

gribbit.setPosition(kermit.getPosition());

2.3 Strings

Although many classes such as Frog and Account are developed by programmers for

particular applications, there are some classes that are used for creating objects that,

like primitive data types, are useful in most if not all applications. There are many sorts of

these general-purpose classes and they are provided in various libraries as part of the

Java language. One important general-purpose class is the String class.

Instances of the String class model sequences of characters. In other words, an

instance of String is a collection of characters in a particular order. In Java a string can
be represented by enclosing its characters in double quotes. For example, "cat" is a
string literal representing a String object whose characters are 'c', 'a' and 't' in that
order. Other examples of strings are "Hello Mum", "Whitehall 1212" and
"013683795".

String objects are used for many purposes; for example, as file names, names of

products for sale, addresses of businesses, descriptions of holiday resorts. You have

already met String objects in the Account class – the value of the attribute holder of
an Account object is a String object. Thus executing the statement

myAccount.setHolder("Grendel Barty");

makes the holder attribute of myAccount reference a 13-character String object
whose characters are 'G' 'r' 'e' 'n' 'd' 'e' 'l' ' ' 'B' 'a' 'r' 't' 'y'.

32 Unit 3 Variables, objects and representations

SAQ 6

Note that the
OUWorkspace uses a
Java interpreter rather
than a compiler. In Unit 4
you will begin to use
BlueJ’s Java compiler.

In the String object "Grendel Barty", write down the following:

(a) the first character

(b) the fourth character

(c) the eighth character

ANSWER ...

(a) 'G'

(b) 'n'

(c) ' ' (a space)

Note the difference between the representations of strings and characters: a String
literal (or string literal) is a sequence of characters enclosed in double quotes, and a

char literal (or character literal) is an individual character enclosed in single quotes. A
more technical way of expressing this is to say that String literals are delimited by

double quotes and individual char literals are delimited by single quotes. The term

delimit is more accurate than enclosed because the quotes are used to tell the Java

interpreter where a string starts and ends so that the interpreter can determine that the

series of characters is not a variable name or a keyword. In a similar way the semicolon

(;) is a delimiter, as it tells the Java interpreter where a single program statement ends.

If you wish to include the double quotes character in a string literal, a backslash (\) must

precede each double quote, as in "say \"hello \" to me", for example. The reason for

the backslash is that if a double quote is to be included in a string, then there must be

some way of signalling to the Java interpreter that the end of the string has not been

encountered yet and that it should consider the double quote as just a character rather

than a delimiter.

String objects can respond to many messages; these include toUpperCase() and

toLowerCase(). The message answer from each of these messages (when sent to a

String object) is a String object showing the effect suggested by the name of

message. For example, sending the string "Milton Keynes" the message

toUpperCase() results in the message returning a String object "MILTON KEYNES".

Another message in the protocol of String objects concatenates (joins) two String
objects. To join two String objects, the message concat() is sent to a String object
receiver with another String object as the message argument. This results in a

message answer that is a String object made up from the combination, in order, of

the characters of the receiver and the argument. For example,

"Java".concat(" programming") results in a String object "Java programming".
Since concatenation is used frequently when programming with String objects, a
shorthand alternative is provided by Java. Instead of using the message concat(), the
operator + (plus) placed between two strings will return a new string that is a
concatenation of those two strings. For example, "Java" + " programming" will return
the string "Java programming".

It is important to remember that strings are not primitive data values. This means that it is

possible for two distinct strings to end up with exactly the same characters (i.e. having

the same state) without the strings actually being the same object. Thus when an

expression such as:

string1 == string2

(where string1 and string2 reference String objects) evaluates to false it does not
necessarily mean that the objects referenced by string1 and string2 are ‘different’ in
the sense of having different characters (or the same characters but in a different order).

2 Expressions 33

It simply means that the two variables happen to reference distinct objects. It is quite

possible that these distinct objects may contain exactly the same characters, in exactly

the same order.

In order to find out if two string objects contain exactly the same characters in the same

order (rather than whether two variables reference the same String object) there is an
equals() message that you can use with strings. It is used as follows:

string1.equals(string2)

This message expression returns the value true if the receiver (string1) and the
argument (string2) both reference String objects that have the same characters in

the same order (i.e. if the objects have the same state).

For example, if the following code is executed:

String string1 = "cat";
String string2 = "cat";
String string3 = "dog";

then you will find that

string1.equals(string2)

evaluates to true, as will

string1.equals("cat")

while

string1.equals(string3)

evaluates to false.

SAQ 7

Suppose that the following statement has been executed.

String fred = "bill";

What would be returned by the following message expressions?

(a) "fred".toUpperCase()

(b) fred.toUpperCase()

ANSWER ...

(a) "FRED" i.e. a string whose characters are 'F' 'R' 'E' 'D' in that order.

(b) "BILL"

Note the difference between the literal "fred" that is a string with characters 'f' 'r'
'e' 'd' and the variable fred that references a String "bill" with characters 'b'
'i' 'l' 'l'.

SAQ 8

Explain why 'h' and "h" are literal representations of different types.

ANSWER ...

The expression 'h' is a literal that represents the single char value h, and "h" is a literal
representing a String object with just the single character 'h' in it. So 'h' represents a
primitive data value not an object and "h" references an object that contains a single
primitive value in it.

The equals() message
can be used with objects
of any class. However, its
meaning varies from class
to class. You will learn
more about equals()
later in the course.

34 Unit 3 Variables, objects and representations

The operator +
The operator + has an unusual property. If just one of its operands is a String object
then the other operand is automatically converted to a String object and the + is
interpreted as meaning concatenation. How the conversion of objects to strings is done

will be examined in Section 4. For primitive types, such as numbers, Booleans and

characters, the string version is just a string made up of the characters of the literal that

represents the value. For example:

"cat" + 's' evaluates to "cats" ('s' is converted to "s")

"The answer is " + 17 evaluates to "The answer is 17" (17 is converted to "17")

10 + "66" evaluates to "1066" (the number 10 is converted to the string "10")

"17 > 8 is " + (17 > 8) evaluates to the string "17 > 8 is true"

(17 > 8 is in parentheses and therefore is evaluated first to give true; then true is

converted to "true" before being concatenated with "17 > 8 is ")

10 + 66 evaluates to the integer value 76 (there are no string operands so no conversion

takes place; here the + results in ordinary integer addition).

Remember you can view
graphical representations
of Frog objects in the
Amphibians window
(accessible via the
Graphical Display menu).

SAQ 9

What types and values do the following expressions evaluate to?

(a) "The answer to Life, the Universe and Everything is " + 42

(b) 76 + " Trombones led the big parade"

(c) 56 + 23

(d) "56" + 23

ANSWER ...

(a) The string "The answer to Life, the Universe and Everything is 42"

(b) The string "76 Trombones led the big parade"

(c) The integer 79

(d) The string "5623"

ACTIVITY 4

Launch BlueJ and select Open Project from the Project menu. Navigate to the folder

containing your M255 projects. Find the project named Unit3_Project_1 and open it. Then

select OUWorkspace from the Tools menu. Enter, select and execute the following

statements, one at a time.

int anInt;

String aString;

OUColour aColour;

char aChar;

Frog kermit = new Frog();

kermit.right();

kermit.setColour(OUColour.RED);

1

2

3

4

5

6

7

8

9

10

11

12

13

2 Expressions 35

Make sure Show Results is checked. Enter, select and execute each of the following

statements, noting the value that is returned in each case.

1 anInt = kermit.getPosition();

2 aColour = kermit.getColour();

3 aString = "Milk".concat("Wood");

4 aString = "Milk ".concat("Wood");

5 aString = "Milk".concat(" Wood");

6 aString = "Under Milk ".concat("Wood");

7 aString = "Milk " + "Wood";

8 aString = "It is " + "raining.";

9 aString = "He wouldn't say \"boo \" to a goose";

10 aString = "The End of the Line".toUpperCase();

11 String name = "Engelbert";

12 aString = name.toLowerCase();

13 aString = name;

You can, if you like, save the contents of the Code Pane to a file, by selecting Save from

the OUWorkspace’s File menu and giving the file a sensible name such as Activity4.txt.

The saved code can be reloaded into the Code Pane in a later session by selecting Open

from the File menu and navigating to the saved file.

DISCUSSION OF
ACTIVITY 4

anInt is assigned the int value 2.

aColour is assigned the object OUColour.RED.

aString is assigned the String object "MilkWood".

aString is assigned the String object "Milk Wood".

aString is assigned the String object "Milk Wood".

aString is assigned the String object "Under Milk Wood".

aString is assigned the String object "Milk Wood".

aString is assigned the String object "It is raining.".

aString is assigned the String object "He wouldn't say "boo" to a goose".

aString is assigned the String object "THE END OF THE LINE".

name is assigned the String object "Engelbert".

aString is assigned the String object "engelbert".

aString is assigned the String object "Engelbert".

36 Unit 3 Variables, objects and representations

Variables, typing and assignment 3

So far in this unit we have introduced the concepts of data types, variables and

assignment. You have seen how variables must be declared as being of some particular

type, and how values are assigned to them using assignment statements (which

themselves might be involve either simple or complex expressions).

We now need to look at the restrictions that declaring a variable as a given data type

places on the values that can be assigned to that variable (and what happens if we

attempt to break these restrictions).

3.1 Assigning values of primitive types to
variables

You might think that if a variable has been declared to be of a certain type, then only values

of that type can be assigned to it. However, as you have seen, for operators like + it is not
necessary for both operands to be of the same type; for example, you can use + to add
two numbers of different types (an int and a double), and you can also use + to
concatenate a String object with a value of any type. Similarly with assignment, you will

find that it is sometimes possible to assign a value to a variable that is of a different type to

the variable’s declared type. In the next few activities you will investigate what is possible.

ACTIVITY 5

Launch BlueJ and from the Tools menu select OUWorkspace.

1 Enter and execute both these statements. Note what happens.

int anInt;
anInt = 17.5;

2 Now enter and execute the following, then inspect aFloat.

float aFloat;

aFloat = 17;

3 Enter and execute the following. Can you explain what happens?

anInt = aFloat;

4 Enter and execute the following. Can you explain what happens?

aFloat = 17.0;

5 Enter and execute the following, then inspect aFloat.

aFloat = 17.0F;

6 Enter and execute the following, then inspect aDouble.

double aDouble;
aDouble = 17;

7 Enter and execute the following, then inspect aDouble.

aDouble = 17.5;

You can save the contents of the Code Pane to a file by choosing Save from the File

menu, and giving the file a sensible name such as Activity5.txt.

3 Variables, typing and assignment 37

DISCUSSION OF
ACTIVITY 5

1 An error message is written in the Display Pane:

Semantic error: line 2. Variable: Can't assign double to int

The message is telling you that 17.5 cannot be assigned to the variable anInt

because 17.5 is a double and anInt has been declared as an int.

Note that when you highlight and execute more than one line of code, error

messages from the OUWorkspace tell you which line the error was detected in.

2 The int value 17 is converted to a float by Java and assigned to aFloat.

3 An error message is written in the Display Pane:

Semantic error: Variable assignment: anInt: Can't assign
float to int

The message is telling you that a value of type float cannot be assigned to a
variable (anInt) that has been declared as an int.

4 An error message is written in the Display Pane:

Semantic error: Variable assignment: aFloat: Can't assign
double to float

The message is telling you that a value of type double cannot be assigned to a
variable (aFloat) that has been declared as a float. Remember (from Section 1)

that the default type of a decimal literal is type double. To specify a literal float you
must append the letter ‘F’, for example 17.0F.

5 This time the assignment works because 17.0F is a literal of type float. The
inspector confirms that aFloat is 17.0.

6 The int value 17 is converted to a double by Java and assigned to aDouble, which
is now 17.0.

7 The default type of a literal decimal is type double. Therefore 17.5 is of type double
and can be assigned to the variable aDouble. This is confirmed by the inspector.

Activity 5 shows that it is sometimes possible to assign a value of one numerical type to

a variable of a different numerical type. Thus you can assign an int value to a float
variable and a float value to a double variable; but you cannot assign a double value to
a float variable (even if it (17.0) is equal to an integer, 17).

If we arrange the most commonly used numerical types in the order

double, float, long, int

then it is permissible to assign a value of one type to a variable of any type to its left (as

well as to a variable of the same type) but you cannot assign a value to a variable of a

type to its right (even if the actual value seems to allow it). Thus although 17.0 equals 17
(an integer) you cannot store 17.0 in a variable of type int.

Note also that when you assign an int to a float the value is stored as a float and
cannot afterwards be assigned back to an int.

38 Unit 3 Variables, objects and representations

However, it is sometimes possible to force a value of one type to be converted to a value

of another type, by using what is known as a cast. A cast comprises a type name

enclosed in parentheses. Thus you can use the cast (int) to ‘convert’ a non-integer

number into a value of type int. For example:

double aDouble;
int anInt;
aDouble = 17.6;
anInt = (int) aDouble;

The cast (int)coverts the value 17.6 stored in aDouble into an int by simply throwing

away everything after the decimal point. Thus it is the integer 17 that gets assigned to
the variable anInt.

ACTIVITY 6

If the OUWorkspace is still open from Activity 5 skip the following three declarations and

start the investigation, otherwise launch BlueJ and open the OUWorkspace. Then enter

and execute the following declarations:

int anInt;
float aFloat;
double aDouble;

Enter and execute the following statements in the OUWorkspace. If no error is reported,

inspect the relevant variable; in all cases try to explain what has happened.

1 anInt = (int) 17.8;

2 anInt = (int) 17000000000.6;

3 aFloat = (float) 17.8;

4 aFloat = (float) 17E40;

5 aDouble = 17E40;

6 aDouble = 17 / 5;

7 anInt = 17;

aDouble = anInt / 5;

8 aFloat = 17;

aDouble = aFloat / 5;

9 double anotherDouble = 17;

aDouble = anotherDouble / 5;

10 aDouble = (double) anInt / 5;

11 aDouble = (float) anInt / 5;

12 aDouble = 17;

aFloat = aDouble / 5;

13 aDouble = 17;

aFloat = (float)(aDouble / 5);

For the remainder of the You can save the contents of the Code Pane to a file, giving the file a sensible name such
course we will not
necessarily prompt you to

as Activity6.txt.

save the contents of the
Code Pane after an
activity (but please use the
facility when you judge it to
be helpful).

3 Variables, typing and assignment 39

DISCUSSION OF
ACTIVITY 6

In this discussion when we write, for example, ‘anInt is 17’ we mean that inspecting

anInt shows it has the value 17.

1	 anInt is 17.

2	 anInt is 2147483647. This is the biggest int that is possible – it is not much use to

us as an approximation to 17000000000.6. It would be better to use a variable of
type long if you wanted to store this value approximately as an integer.

3	 aFloat is 17.8. This is just the same as you would get from aFloat = 17.8F, so it is

a bit pointless.

4	 aFloat is Infinity. 17E40 is too big to be stored as a float. (Recall that E40 means

move the point 40 places to the right which in this case means following the 17 with
40 zeros.) As a result the value is stored as Infinity.

5	 aDouble is 1.7E41. Note that when Java calculates a very large result it shows the
result using exponential notation with the number before the E lying between 1
and 10. In this case as you have assigned the value to a variable of type double, it is
stored accurately; double can cope with much larger numbers than float.

6	 aDouble is 3.0. Although aDouble is a double the expression 17 / 5 involves
integer division so it evaluates to 3. This integer value may be assigned to aDouble
(of type double) without a cast. It is automatically converted to the double 3.0
before being assigned to aDouble.

7	 aDouble is 3.0. Because anInt is an int, the explanation is just the same as for

part 6.

8	 You should get something similar to aDouble is 3.4000000953674316. Since
aFloat is a float the expression aFloat / 5 is evaluated using floats and the
answer is a float. However, because of rounding errors, when this is converted to a
double there are some inaccuracies after the seventh decimal place, and thus your

number is unlikely to be identical to the one shown above. (Values of type float are
not stored as accurately as doubles.)

9	 aDouble is 3.4. This time the calculation is done using doubles and so the rounding

error mentioned in part 8 is removed.

10	 aDouble is 3.4. The cast (double) has higher precedence than division / and
so the int stored in anInt is converted to a double before the division is
done. Thus the answer is the same as in part 9. It would be clearer to write this as

aDouble = ((double) anInt) / 5;.

11 aDouble is 3.4000000953674316. (You may have quite different figures at the end.)

Notice that the rounding errors may not be the same as in part 8.

12 This gives an error message since aDouble / 5 gives a value of type double and
this cannot be assigned directly to aFloat, which is of type float.

13 aFloat is 3.4. The answer to aDouble / 5 is converted to a float by the cast
(float).

3.2 Assigning objects to reference type
variables

The previous subsection involved only values of primitive data types being assigned to

value type variables. In this subsection you will use the Frog and HoverFrog classes to
investigate how assignment is affected when the variables are reference type variables,

and the values being assigned to them are objects.

40 Unit 3 Variables, objects and representations

Launch BlueJ first if
necessary.

The inspector shows the
colour, rather than the
name of the colour.

ACTIVITY 7

From the Project menu of BlueJ select Open Project, then navigate to and open the

project named Unit3_Project_1. The main BlueJ window now displays three rectangles,

one labelled Frog, another labelled HoverFrog and another labelled Toad (see Figure 11).

These rectangles tell you that in this project the classes Frog, HoverFrog and Toad are
available and that you will be able to create instances of these classes in the

OUWorkspace.

From the Tools menu select OUWorkspace. Then enter and execute the following

declarations.

Frog kermit;
Frog gribbit;
HoverFrog happy;
HoverFrog bouncy;

You might find it helpful at this stage to open the OUWorkspace’s Graphical Display

menu, as this will allow you to see graphical representations of the Frog and HoverFrog
objects that will be created during this activity.

Enter each of the following statements in turn, select it and execute it. After each

execution inspect the objects referenced by each of the variables kermit, gribbit,
happy and bouncy and note any changes. If executing the statement results in an error

message being written in the Display Pane, make a note of the problem.

(a) kermit = new Frog();

(b) happy = new HoverFrog();

(c) kermit.right();

(d) kermit.right();

(e) happy.setColour(OUColour.RED);

(f)	 gribbit = kermit;

(g) gribbit.setColour(OUColour.BLUE);

(h) kermit.right();

(i)	 bouncy = kermit;

(j) kermit = happy;

(k) happy.up();

(l) kermit.up();

DISCUSSION OF
ACTIVITY 7

This discussion simply summarises the changes of state that take place. The next

subsection will give a fuller explanation using variable reference diagrams.

(a)	 kermit references a Frog with position set to 1 and colour set to
OUColour.GREEN. All the other variables hold null.

(b)	 happy references a HoverFrog with position set to 1, colour set to
OUColour.GREEN, and height set to 0.

(c) The Frog object referenced by kermit now has position set to 2.

(d) The Frog object referenced by kermit now has position set to 3.

(e) The HoverFrog object referenced by happy now has colour set to OUColour.RED.

(f) gribbit now references the same Frog object as kermit. It has position set to 3
and colour set to OUColour.GREEN.

3 Variables, typing and assignment 41

(g) The Frog referenced by both kermit and gribbit now has colour set to
OUColour.BLUE.

(h) The Frog referenced by both kermit and gribbit now has position set to 4.

(i) This produces an error message. kermit references a Frog object, and you cannot
assign a Frog object to a variable of type HoverFrog, so bouncy still holds null.

(j) You can assign a HoverFrog object (the one referenced by happy) to a variable of
type Frog. So kermit = happy works and results in both kermit and happy
referencing the HoverFrog that happy was referencing; it has position set to 1,
colour set to OUColour.RED, and height set to 0.

(k) The HoverFrog referenced by both happy and kermit now has height set to 1.

(l) This should have produced an error, but because of a peculiarity of the

OUWorkspace the code has worked and the HoverFrog object referenced by both
happy and kermit now has height set to 2.

The OUWorkspace’s Java interpreter is erroneously using the class of the object

referenced by the variable kermit (which is HoverFrog) to determine what

messages are valid, rather than the declared type of the variable kermit (which is
Frog). The BlueJ Java compiler (which you will encounter in Unit 4) correctly

determines what messages are valid based on the type of the variable, therefore the

compiler would reject the statement with the error message:

cannot find symbol - method up()

as the method up() is not part of the protocol of Frog.

It is hoped that this peculiarity of the OUWorkspace can be fixed in a future release.

The last activity was designed to show the following facts about assignment and

reference type variables.

c If a variable is of type T (where T is a class such as Frog), then an instance of a
subclass of T (such as HoverFrog) can be assigned to the variable.

c An instance of a class T (such as Frog) cannot be assigned to a variable whose
type is a subclass of T (such as HoverFrog).

c If a variable is of type T (where T is a class such as Frog), then only messages in the

protocol of T can be sent to the object referenced by that variable. Even if the
variable actually references an instance of a subclass of T (such as HoverFrog), the
Java interpreter will reject any attempt to send messages in the protocol of the

subclass that are not in the protocol of T.

Note that if a class U is a subclass of the class Tor of any of T’s subclasses then we say
that U is a subtype of the type T. The important point to take from the above is:

c An object whose type is a subtype of the declared type of a variable can be

assigned to that variable.

3.3 Visualising references to objects

It can often be useful to use variable reference diagrams to visualise what is going on

when dealing with reference type variables and assignment. We now repeat the

statements that were used in Activity 7 and after each show the state of the relevant

objects using variable reference diagrams. Note that in these diagrams we have added

a reminder of the type of each variable below its box.

After the variables have been declared, they all initially hold the value null.

42 Unit 3 Variables, objects and representations

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

(Frog) (HoverFrog)
null null

nullnull

Figure 13 All variables hold null

(a) kermit = new Frog();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour

(Frog) (HoverFrog)
null

Frog

null

OUColour

GREEN

null1

Figure 14 kermit references a Frog object

Note that in Figure 14, the instance variable colour of the Frog object is shown correctly
referencing an instance of OUColour, and the instance variable position directly
holding the value 1. To prevent our variable reference diagrams in this discussion of

Activity 7 becoming too cluttered, we will simplify the representation of OUColour
objects to a box with the name of a colour in it.

gribbit

(Frog)

kermit happy

bouncy

position
colour GREEN

1

(Frog) (HoverFrog)
null

Frog

null

(HoverFrog)
null

Figure 15 kermit references a Frog object (simplified)

kermit now holds a reference to a Frog object. This is shown by the arrow between the
block of memory labelled by the variable kermit and the Frog object – put another way,
kermit now holds the address of the Frog object in memory.

3 Variables, typing and assignment 43

(b) happy = new HoverFrog();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour GREEN

1 position
colour
height

1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

null

GREEN

Figure 16 Now happy references a HoverFrog object

(c) kermit.right();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour GREEN

2 position
colour
height

1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

null

GREEN

Figure 17 The position of the Frog object referenced by kermit has now been set to 2

(d) kermit.right();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour GREEN

3 position
colour
height

1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

null

GREEN

Figure 18 The position of the Frog object referenced by kermit has now been set to 3

44 Unit 3 Variables, objects and representations

(e) happy.setColour(OUColour.RED);

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour GREEN

3 position
colour
height

RED
1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

null

Figure 19 The colour of the HoverFrog object referenced by happy has now been set to
OUColour.RED

(f) gribbit = kermit;

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour GREEN

3 position
colour
height

RED
1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

Figure 20 Now gribbit and kermit reference the same Frog object; bouncy still holds the
value null

(g) gribbit.setColour(OUColour.BLUE);

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour BLUE

3 position
colour
height

RED
1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

Figure 21 The colour of the Frog object referenced by both gribbit and kermit has now been
set to OUColour.BLUE

3 Variables, typing and assignment 45

(h) kermit.right();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour BLUE

4 position
colour
height

RED
1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

Figure 22 The position of the Frog object referenced by both gribbit and kermit has now
been set to 4

(i) bouncy = kermit;

This produces an error message as you cannot assign a Frog object to a variable of
type HoverFrog.

(j) kermit = happy;

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour BLUE

4 position
colour
height

RED
1

(Frog)

0

(HoverFrog)
null

Frog HoverFrog

Figure 23 kermit and happy now reference the same HoverFrog object; gribbit references a
Frog object and bouncy still holds the value null

(k) happy.up();

gribbit

(Frog)

kermit happy

(HoverFrog)

bouncy

position
colour BLUE

4 position
colour
height

RED
1

(Frog)

1

(HoverFrog)
null

Frog HoverFrog

Figure 24 The height of the HoverFrog object referenced by both kermit and happy has now
been set to 1. bouncy still holds the value null

46 Unit 3 Variables, objects and representations

(l)	 kermit.up();

This produces an error as, although kermit now references a HoverFrog object,
kermit has been declared as being of type Frog. The interpreter therefore refuses
to send a message to kermit that is not in the protocol of Frog objects.

In the above sequence of statements note that although there were four variables

involved only two objects were created.

It is important to distinguish assigning an object to a variable from sending a message to

the object that a variable references. Consider the following example.

Example 1

Suppose the following statements have been executed (starting from a cleared

OUWorkspace).

Frog kermit = new Frog();

Frog gribbit;

kermit.right();

kermit.setColour(OUColour.RED);

gribbit = kermit;

The situation is shown in Figure 25.

gribbit

kermit

position
colour

Frog

RED
2

Figure 25 kermit and gribbit are referencing the same Frog object

If we now send a message using either kermit or gribbit as the receiver, the
same object will be the actual receiver of the message. Thus

gribbit.right();

produces the situation shown in Figure 26.

gribbit

kermit

position
colour

3

Frog

RED

Figure 26 kermit and gribbit are still referencing the same Frog object

The message–send

kermit.setColour(OUColour.BLUE);

results in Figure 27.

3 Variables, typing and assignment 47

gribbit

kermit

position
colour BLUE

3

Frog

Figure 27 kermit and gribbit are now blue

On the other hand, if we assign a different object to one of the variables, then the

other one is unaffected. Thus

kermit = new Frog();

results in Figure 28.

gribbit

kermit

position
colour BLUE

3

Frog

position
colour GREEN

1

Frog

Figure 28 kermit and gribbit are now referencing different Frog objects

Another technique for visualising references to objects is to make use of the Amphibians

graphical display window, which you will do in the next activity.

ACTIVITY 8

Launch BlueJ if necessary. From the Project menu navigate to and open the project

called Unit3_Project_1. From BlueJ’s Tools menu open the OUWorkspace. From the

Graphical Display menu of the OUWorkspace choose Open to bring up the Amphibians

window.

1	 In the OUWorkspace declare two variables for Frog objects by typing and executing
the following:

Frog kermit;
Frog perseus;

Next create and assign a new Frog object to the variable kermit by executing the
code

kermit = new Frog();

2 Now make the object referenced by kermit turn brown and move it to the third stone
to the right by executing

kermit.right();

kermit.right();

kermit.setColour(OUColour.BROWN);

Next assign the Frog object referenced by kermit to the variable perseus by
executing the following statement:

perseus = kermit;

48 Unit 3 Variables, objects and representations

Now execute the following statements one by one and observe what happens in the
Amphibians window.

perseus.setPosition(1);

perseus.right();

kermit.right();

perseus.right();

kermit.right();

What is the resulting behaviour in the Amphibians window? What is the resulting state
(use the inspector to inspect kermit and perseus)? How do you account for what
you observe?

3	 Now execute the code

perseus = new Frog();

What do you observe in the Amphibians window?

4	 Now execute

kermit.right();

What do you observe in the Amphibians window?

5	 Now execute

perseus.setColour(OUColour.BLUE);

What do you observe in the Amphibians window?

6	 Finally, execute the following assignment statement:

perseus = kermit;

What do you observe in the Amphibians window?

DISCUSSION OF
ACTIVITY 8

1	 The code kermit = new Frog(); created a new instance of the class Frog, which
you could observe in the Amphibians window.

2	 The statement perseus = kermit; assigned the address of the Frog object
referenced by kermit to the variable perseus. Now both variables, perseus and
kermit, reference the very same Frog object. It is important to realise that this

assignment did not alter in any way the fact that the variable kermit still references
the same Frog object. You can have as many variables as you like referencing a

given object.

Because perseus and kermit reference the same object there is still only one Frog
object visible in the Amphibians window.

To demonstrate further that the assignment statement really did make the variable

named perseus reference the same Frog object that is referenced by kermit you
should have observed that sending messages using either the variable perseus or
the variable kermit made the same single Frog object change state (as observed
in the Amphibians window).

3	 perseus = new Frog();
After the execution of this assignment statement, the variable perseus references a
new instance of Frog, which is displayed in the Amphibians window – there are now

two frogs in the Amphibians window.

4	 kermit.right();
The variable kermit evidently still references the original Frog object. This is
demonstrated by the fact that when you send messages to kermit the original Frog
object responds.

3 Variables, typing and assignment 49

5	 perseus.colour(OUColour.BLUE);
This demonstrates that the variable perseus really does reference a new Frog
object, as the second Frog object in the Amphibians window turns blue.

6	 perseus = kermit;
As soon as this assignment statement is evaluated, the second Frog object
disappears from the Amphibians window. The variable perseus once again
references the same object as kermit, and the Frog object that was referenced by
perseus prior to the assignment statement is no longer available as it is no longer

referenced by a variable. At some later stage the Java Virtual Machine will remove it

from memory. The removal of unreachable objects is called garbage collection.

Assignment to value type variables
It is important to distinguish the way assignment works for reference type variables

(reference semantics) from what happens with value type variables (value semantics).

Example 2

Executing the following statements:

int myNumber = 17;
int yourNumber = 30;

produces the situation shown in Figure 29.

myNumber

17

yourNumber

30

Figure 29 myNumber and yourNumber have different values

If you now execute

yourNumber = myNumber;

then a copy of the value stored in myNumber is put into yourNumber, overwriting
the value 30.

17

myNumber

17

yourNumber

Figure 30 myNumber and yourNumber have the same values

The two variables are completely independent of each other even although

they contain the same value. Compare this with the situation after

gribbit = kermit;was executed in Example 1, where the two variables ended

up referencing the same object.

50 Unit 3 Variables, objects and representations

If you now execute the statement

myNumber = myNumber + 5;

you get the situation shown in Figure 31.

22

myNumber yourNumber

17

Figure 31 myNumber and yourNumber have different values

To understand this, consider how myNumber = myNumber + 5; is executed. First
the expression myNumber + 5 is evaluated; since myNumber currently holds the
value 17 this gives a value of 22. This value 22 is now assigned to (stored in) the
variable myNumber. Since the variable yourNumber is quite separate from

myNumber, yourNumber is not affected in any way.

4 Textual representations of objects and primitive values 51

4 Textual representations of objects and primitive values

Throughout this unit you have seen how the value obtained from evaluating an

expression is displayed in the Display Pane of the OUWorkspace. When these values

have literal value equivalents, like numbers (e.g. 1), Booleans (e.g. true) and strings
(e.g. "Fred"), this is fairly straightforward, as Java knows how to display (as text) values
that have literal equivalents. But what about complex objects like Frog objects? If a
message returns a Frog object as its answer, how could that be displayed in the Display
Pane? How would Java know what to display? This section explains how to give an

object a textual representation, which can be used to describe that object in the Display

Pane.

4.1 The message toString()

In Java every object responds to a message called toString(). On receiving such a

message an object will return as the message answer a textual representation of itself.

The nature of the textual representation varies with the class of the object. The textual

representation may indicate only the class of the object and its address in memory. This

is the case for Account objects; for example, the message expression

myAccount.toString();

might return the string shown in Figure 32.

class name

"Account@bb0f79"

memory address

Figure 32 A textual representation of an Account object

This is the default representation, and is used if the programmer has not provided for a

more meaningful descriptive text in designing the class.

However, the textual representations of objects of other classes may provide information

on the state of the object as well as its class name. For example, more informative text

has been built into the design of the Frog class and replaces the default. Thus the
message expression

kermit.toString();

might return (depending on the state of the Frog object referenced by kermit) the
much more informative textual representation:

"An instance of class Frog: position 1, colour OUColour.GREEN"

Note, however, that Frog objects cannot be distinguished by their textual
representations, as all frogs with the same state would have the same textual

52 Unit 3 Variables, objects and representations

representation. Account objects can, however, be distinguished, as the textual
representation of an Account object includes its unique address in memory.

In the next activity, message answers are revisited and you will examine the way in which

the message toString() is used to obtain the textual representation of an object.

ACTIVITY 9

Every object has a textual representation associated with it. You will now investigate how

textual representations are generated in the Display Pane by using the message

toString(), which is a message to which all objects respond. If it is not already open,

launch BlueJ and, from the Project menu, open Unit3_Project_2. Opening the project

displays four rectangles, labelled Frog, HoverFrog, Toad and Account, in the main BlueJ

window. These rectangles tell you that this project has those classes available and that

you will be able to create instances of those classes in the OUWorkspace.

Open the OUWorkspace and make sure that Show Results is checked.

1 If the OUWorkspace does not have a variable named kermit, declare one now and
assign a new Frog object to it as follows:

Frog kermit = new Frog();

Next type and execute the following statement to declare a String variable:

String str;

Next type and execute:

str = kermit.toString();

What has been written in the Display Pane?

From the list of variables double-click on str to inspect it. What does the inspector
show?

2 Now type, select and execute a statement that consists of just the variable name
followed by a semicolon, for example:

kermit;

Note the textual representation of the result shown in the Display Pane.

Why do you think that the results shown in the Display Pane are similar for steps 1
and 2?

3 To confirm your ideas, repeat steps 1 and 2 with an Account object.

DISCUSSION OF
ACTIVITY 9

If the Show Results box is 1 When you execute str = kermit.toString(); the text "An instance of class
checked, the Display Pane
always shows the value
returned from evaluating

Frog: position 1, colour OUColour.GREEN" is displayed in the Display Pane.
This string is the value to which the message expression kermit.toString()

the last expression in a evaluates.
statement (or series of
statements). Inspecting the variable str shows that the result of evaluating kermit.toString()

has been assigned to the variable str.

2 The result of evaluating just kermit; is the Frog object referenced by kermit, yet
the text An instance of class Frog: position 1, colour OUColour.GREEN (note
that there are no quotes around it) is displayed in the Display Pane! This text is the

contents of the string which is the value of kermit.toString(). How did this
happen?

3

4 Textual representations of objects and primitive values 53

The reason for this is that if the last expression in a statement (or series of

statements) evaluates to an object, the OUWorkspace automatically sends the

message toString() to that object so that the textual representation of that object

can be written in the Display Pane.

You should have found that if you declare an Account object, for example

myAccount, and it is returned as the value of an expression, the text displayed in the
Display Pane is the contents of the string myAccount.toString();.

To conclude, the Display Pane of the OUWorkspace displays the textual representation

of the value computed from the final evaluation in a statement or series of statements.

Just as the icons that represent the Frog, Toad and HoverFrog objects in the
Amphibians window and the various microworlds encountered in Units 1 and 2 are not

the objects themselves but are graphical representations, the results of evaluating

expressions that are shown in the Display Pane of the OUWorkspace are textual

representations of objects or primitive values. Note that displaying the results of

evaluating expressions is not a feature of Java but a feature of the OUWorkspace, a

programming tool written in Java that we have designed to let you test snippets of Java

code.

54 Unit 3 Variables, objects and representations

Summary5
Variables and types
c Data is stored (or information about where to find it) in named memory locations.

These named memory locations are called variables because they can contain

different values, at different times, during the execution of a program. Variable

names must follow the rules for Java identifiers.

c A type is a set of values and the set of operations which are permitted on those

values. Java has two very different kinds of types – primitive data types and

reference types.

c Value type variables hold the values of primitive types but reference type variables

reference objects.

c Variables are declared to be of a particular type and can only be assigned values of

a compatible type.

c A variable can only reference a single object at any one time, but many variables

can reference the same object. Variable reference diagrams can be useful for

visualising a series of assignments.

c An object does not know what variables it is referenced by. Objects with no

references are garbage collected (destroyed) by the Java Virtual Machine.

c Primitive data types can be considered to be general-purpose data types from

which objects are built.

c In Java, any sequence of characters enclosed in double quotes is an instance of the

class String. The individual characters in a string are values of the primitive type

char.

Expressions
c	 Expressions perform the work of a Java program. Among other things, expressions

are used to compute values and to help control the execution flow of a program. The

job of an expression is two fold: to perform the computation indicated by the

elements of the expression and to return some value that is the result of the

computation.

c	 Expressions are built using operands and operators.

c	 Sub-expressions can be combined using parentheses to create compound

expressions that evaluate to a single value.

c	 An assignment statement assigns the value of the expression on the right-hand side

of the assignment operator (=) to the variable on the left-hand side of the operator.

c	 A message that returns a message answer is called a message expression.

Objects
c	 Objects are created by using the operator new and a constructor.

c	 Every object has an associated textual description. The default description gives the

class and memory address of the object. A programmer may choose to provide a

fuller description for instances of some classes.

c	 All objects understand the message toString() which returns the textual

representation of the receiver.

Summary 55

BlueJ and the OUWorkspace
c The BlueJ system encompasses a programming language, a library of classes and

a development environment. All commercial systems contain these three parts, with

the major variation being in the environment.

c The OUWorkspace is a tool (integrated into BlueJ) that enables the writing and

testing of code in a quick and convenient way.

c The Display Pane has two functions. First, it is where Java writes any error messages

if you make a mistake in any code you are testing in the Code Pane. The second

function of the Display Pane is to display the value of the final expression evaluated

in a statement (or series of statements) in the Code Pane. Both these features are

aspects of providing information to the programmer.

56 Unit 3 Variables, objects and representations

LEARNING OUTCOMES

After studying this unit you should be able to:

c explain the meaning of type;

c explain the difference between the values of primitive data types and the values of

classes (objects);

c explain what a variable is and how it is declared;

c explain the difference between a value type variable and a reference type variable;

c understand that once a variable has been declared for a certain type, only values of

a compatible type can be assigned to that variable;

c explain what is meant by assignment;

c draw variable reference diagrams and answer questions about the practical effects

of assignments;

c understand that objects not referenced by a variable are automatically garbage

collected, i.e. destroyed;

c launch BlueJ and open a specified project and then open the OUWorkspace;

c use the OUWorkspace to execute statements which evaluate expressions and

assign the results to variables;

c create instances of a class by using the new operator and a constructor;

c inspect an object;

c recognise and correct mistakes by reading error reports in the Display Pane of the

OUWorkspace;

c use the message toString() to get the textual description of an object;

c evaluate arithmetic, string, Boolean and message expressions both simple and

compound;

c understand and control (using parentheses) the precedence of evaluation in Java;

c use sub-expressions and nesting to build compound expressions so that the

evaluated value from one sub-expression can be used as the operand for another

sub-expression.

5 Glossary 57

Glossary
assign See assignment.

assignment When using objects, assignment is the process which results in the

variable on the left-hand side of the assignment operator referencing the object returned

by the expression on the right-hand side (this is called assignment using reference

semantics). When using values of primitive data types, assignment is the process that

results in the variable on the left-hand side containing a copy of the value returned by

the right-hand side (this is referred to as assignment using value semantics).

assignment statement A statement that tells Java to make a variable reference a

particular object or to hold a particular primitive value (see assignment).

compound expression An expression built up using other sub-expressions; for

example, the following is a compound expression: (3 + 2) *(6 - 3)

concatenation The joining of two strings. In Java the string concatenation operator is

+ (the plus sign). For example, "Milton " + "Keynes" evaluates to "Milton Keynes".

constructor A special type of message used to initialise a newly created object.

expression Code that evaluates to a single value. Expressions are formed from

variables, operators and messages.

garbage collection The process of destroying objects, which have become

unreachable because they are no longer referenced by variables, in order to reclaim

their space in memory. In certain programming languages, including Java, this process

is automatic.

identifier The name of a variable.

instance variable A variable that is common to all the instances of a class but whose

value is specific to each instance. Each instance variable either contains a reference to

an object or contains a value of some primitive type. For example, Frog objects have the
instance variables colour and position. The values of the instance variables of a
particular object represent the state of that object.

integrated development environment (IDE) A software tool that supports the

construction, compilation and execution of a program. BlueJ is an example of an IDE

that supports the development of programs in Java and includes libraries of classes and

facilities for debugging and program design.

literal A comprehensible textual representation of a primitive value or object. For

example, 'X' is a char literal, 4.237 is a double literal and "hello there!" is a
String literal.

message expression A message-send which evaluates to a value, i.e. the message

returns an answer.

new An operator used to create an object – used in conjunction with a constructor.

primitive data type A set of values together with operations that can be performed on

them. The primitive data types in Java provide a set of basic building blocks from which

all the more complex types of data can be built. There are three categories of primitive

data type: numbers, characters and Booleans.

58 Unit 3 Variables, objects and representations

reference semantics The situation whereby a variable holds the address of an

object, rather than a value. A reference type variable on the left-hand side of an

assignment statement always ends up referring to the object on the right-hand side (cf.

value semantics).

reference type variable A variable declared to reference an object of the declared or

compatible type.

statement A statement represents a single instruction for the compiler or interpreter to

translate into bytecode. In Java a statement must always end with a semicolon.

syntax The structure of statements in a given language.

value semantics The situation in which a variable holds a value, of some primitive

data type. A value type variable on the left-hand side of an assignment statement

always ends up holding a copy of the value on the right-hand side (cf. reference

semantics).

value type variable A variable declared to hold a value of the declared or compatible

primitive type.

variable A named ‘chunk’ or block of the computer’s memory which can hold either a

value of some primitive type or the address (reference) of an object.

variable reference diagram A diagram showing a reference type variable pointing to

a representation of an object with the current values of its attributes.

C

59Index

Index

A

ASCII 7

assignment statement 9

B

binary operator 21

BlueJ 9

boolean 8

byte 7

cast 38

char 7

compound expression 25

concatenate 32

constructor 14

D

decimal number 7

declaration 26

delimiter 32

double 7

E

equality operators 23

evaluate 21

expression 21

F

false 8

float 7

floating-point number 7

floating-point types 7

G

garbage collection 17

I

identifier 18

instance variables 17

int 7

integer division 21

integer types 6

integrated development

environment 5

K

keyword 18

L

literal 7

logical operators 23

long 7

M

message expression 30

N

nested expression 25

new 14

null 14

number types 6

O

operator 21

OUWorkspace 9

P

precedence rules 24

primitive data type 6

R

reference semantics 20

reference type variable 13

relational operators 23

S

short 7

statement 8–9

sub-expression 25

syntax 20

T

true 8

U

unary operator 22

Unicode 8

V

value semantics 20

value type variable 9

variable 6

variable reference diagram 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

