
U
ni

t

Object concepts

2

Object-oriented
programming with Java

M255 Unit 2
UNDERGRADUATE COMPUTING

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,
PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:
tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by The Open
University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;
fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall
Milton Keynes
MK7 6AA

First published 2006. Second edition 2008.

.2006, 2008 The Open UniversityªCopyright

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,
W1T 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by The Open
University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an Open
University course of study or otherwise as licensed by The Open
University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by The Charlesworth
Group, Wakefield.

0 ISBN 978 0 7492 5494

 2.1

CONTENTS

Introduction 5

6

1.1 6

1.2 8

1.3 8

1.4 9

12

2.1 Hoverfrogs 12

2.2 Subclasses 14

2.3 15

17

3.1 17

3.2 18

21

4.1 21

4.2 23

4.3 23

4.4 The class 26

27

1 Classes and protocols

Frogs and toads

Objects of different classes

Classes and writing software

Polymorphism

2 Classes and subclasses

Programming and subclasses

3 Message arguments

Messages and arguments

Message names

4 Message answers, enquiry messages and
collaborating objects

Message answers

Accessor pairs of messages

Collaborating objects

Frog

5 A bank account class

5.1 t objects 29

5.2 t objects 33

5.3 t objects 34

5.4 38

41

Glossary 43

Index 45

Creating and inspecting Accoun

Exploring the protocol of Accoun

Collaborating Accoun

Recap of terminology

6 Summary

M255 COURSE TEAM
Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction

Unit 1.

c

c

c
–

c –

receiver;

c n –

a
l

central

a
Unit 1.

g and

(t

SAQ 1

Unit 1 ?

Unit 1

This unit builds upon the object concepts introduced in

Here we will look further at messages and discuss:

how an object’s response to a message may depend on the state of its attributes;

how some messages need extra information in the form of arguments;

how some messages change the state of the receiver, while others simply return a
message answer often the value of one of the receiver’s attributes;

polymorphic messages messages that objects of more than one class may
respond to, but that might yield different behaviour depending on the class of the

object collaboratio how, once an object is sent a message, that object may then
need to send messages to another object(s) to help it carry out the behaviour
associated with that message.

We also introduce the superclass/subclass relationship between classes, whereby
subclass inherits the protocol and attributes of its superclass but then defines additiona
attributes and behaviour for its instances. This superclass/subclass relationship is

to object-oriented programming and results in robust and economical code.

Much of your work in this unit will involve practical activities and you will be using
variety of microworlds from the Amphibian Worlds application introduced in
However, in addition to Frog objects, these microworlds are also inhabited by
HoverFro Toad objects.

In Section 5 you will also use a simple programming tool, called Accounts World, which
has been developed specifically for this unit. In addition to allowing you to write Java
code this programming tool will enable you to create objects for the first time Accoun
objects).

All of the concepts introduced in this unit will be revisited and explored from different
points of view in subsequent units.

What description is given in for an object

ANSWER...

describes an object as a self-contained unit of software that holds data and knows
how to process that data. Each object is able to communicate with other objects via
messages.

6 Unit 2 Object concepts

1 Classes and protocols

This section explores the ideas of class and protocol, which were introduced in Unit 1.
We also look at the initialisation of an object. The term polymorphism is defined.

In Unit 1 you looked at a simple microworld called Two Frogs. In this unit you will explore
a whole series of similar worlds, all involving various kinds of amphibian. As we go on we
shall gradually introduce additional features designed to illustrate important ideas in
object-oriented programming. This may give the impression that the classes concerned
are changing; in fact it is simply that the full protocol of the class is only being revealed in
stages.

1.1 Frogs and toads
For the next activity you will be using the Amphibian Worlds application and, in
particular, its Two Frogs and Toad microworld. This has a new species – toads –
represented by instances of a new class, Toad. In the microworld, the icons you see
are, of course, a graphical representation of Frog and Toad objects. The visual
representation of a Toad object in the Graphics Pane is slightly different from that of a
Frog object; this reflects the way that the program designer has chosen to portray these
objects in the user interface. It is a cosmetic difference that emphasises the different
behaviours of Frog and Toad objects. (In a different graphical interface this particular
difference in appearance might not be used.)

In Activities 1 and 2 you will be thinking about the class of the Toad objects and the class
of the Frog objects.

ACTIVITY 1

Launch the Amphibian Worlds application from your desktop and choose Two Frogs and
Toad from the Microworld menu.

1 	You will see three objects, referenced by the variables frog3, frog4 and toad1. For
each object, what are the initial values of the attributes position and colour?
(Another way of phrasing this is to ask how each object has been initialised.)

2 	Does toad1 respond to the message jump()? Does toad1 behave in the same way
as the Frog objects (frog3 and frog4)? To find out, select toad1 and send it some
messages. You can do this by clicking the message buttons or writing the Java code
in the Code Pane. Try sending the same messages to one of the Frog objects and to
toad1. Note particularly how the Frog objects and toad1 respond to the messages
left(), right() and home().

3 	What evidence is there that the objects toad1, frog3 and frog4 belong to different
classes?

DISCUSSION OF
ACTIVITY 1

1 	When the microworld is first opened, toad1 is brown and is in position 11, whereas
both frog3 and frog4 are green and in position 1. In other words, Frog objects
are initialised with position 1 and colour GREEN, but the object toad1 is initialised
with position 11 and colour BROWN.

1 Classes and protocols 7

2 	You saw in Unit 1 that the objects referenced by frog1 and frog2 behave
identically in response to the same messages – they are instances of the same
class, Frog. The indications that the object referenced by toad1 and the Frog
objects may belong to different classes lie in the observations that the two kinds of
object behave differently in response to the messages left(), right() and
home(), and that only the Frog objects respond to the message jump().

In response to the messages left() and right(), the Frog objects move position
by one unit, whereas the object referenced by toad1 moves position by two units.
The object referenced by toad1 does not respond to the message jump(), whereas
the two Frog objects jump and land in their original position. On this evidence we
suspect that toad1 does not belong to the Frog class.

3 	The differences observed between toad1 and the two Frog objects are not
conclusive evidence that they belong to different classes, but they are sufficient for
us to suspect that they do. The implementation of this Amphibian world is, however,
that toad1 belongs to the Toad class whereas frog3 and frog4 belong to the Frog
class.

Frog and Toad objects look slightly different, as the Graphics Pane has been designed
to display them differently in order to help the viewer. Their visual representation is
distinct from their state. You can tell this, as opening an Inspector window on either a
Frog or a Toad object shows that there is no attribute that records what icon should be
used to represent it. Unlike the colour and position, the icon used in the Graphics Pane
is not part of the object’s state.

ACTIVITY 2

The protocol of instances of a class is the set of messages these instances (objects)
understand.

In this activity you will once again be using the Two Frogs and Toad microworld in the
Amphibian Worlds application.

1 	Determine as much of the protocol of Toad objects as you can by sending each
message to the object referenced by toad1 using the buttons in the microworld. How
does this compare with the protocol of Frog objects?

2 	Select toad1 in the scrollable pane and click on the Inspect button. An Inspector
window will open on toad1. What attributes has the object referenced by toad1, and
how do these compare with those of the Frog objects?

Close any open Inspector windows before proceeding.

DISCUSSION OF
ACTIVITY 2
1 	When you select toad1 and send it in turn each of the messages given by the

buttons in the microworld, you find that it behaves in the following ways in response
to the following messages.

left() – moves two positions to the left

right() – moves two positions to the right

home() – moves to (or remains on) the rightmost black ‘stone’

green() – turns green (unless already green)

brown() – turns brown (unless already brown)

croak() – croaks audibly (and displays a red ‘!’)

When any of the messages up(), down() or jump() is sent to a Toad object
(toad1), an error report appears in the Display Pane saying that the object cannot

2

8 Unit 2 Object concepts

respond to the message. The messages up(), down() and jump() are not in the

protocol of Toad objects.

As already noted, Frog and Toad objects respond to the messages left(),

right() and home() in different ways. Neither Frog nor Toad objects respond to

the messages up() or down(). The Frog objects respond to the message jump(),

but the Toad object does not. From the messages we know about, the protocol for

the Toad object contains only left(), right(), home(), green(), brown() and

croak().

Although the Toad and Frog objects belong to different classes, behaving

differently in response to the messages left(), right() and home(), this

does not prevent them from behaving identically in response to some

messages, e.g. green() and brown().

The information displayed in the Inspector window that opens on toad1 when you

press the Inspect button after highlighting the variable toad1 shows that toad1 has

the same attributes as the Frog objects – position and colour.

Initial state of an object
When the microworld Two Frogs and Toad is opened, it creates one Toad and two Frog
objects, each with appropriate state. You saw in the Graphics Pane that the Toad object
icon was a different colour and in a different initial position from the Frog object icons
– and each icon reflects the state of the corresponding software object. We say that the
Toad and Frog objects are initialised differently, i.e. their states are different when they
are newly created. It is useful to regard a class as something that provides the ‘template’
for each of its instances.

1.2 Objects of different classes
You have seen that Frog and Toad objects do not have the same protocol, since Toad
objects do not respond to the message jump(). Both Frog and Toad objects respond to
the messages left(), right(), home(), green(), brown() and croak(). In the cases
of the messages green() and brown() the behaviours are the same. However, you
found that although both Frog and Toad objects respond to the messages left(),
right() and home(), their behaviours are different. How a message is interpreted
depends on the class to which the object that receives the message belongs.

In inspecting the Frog and Toad objects, you have seen that the variables frog3 and
frog4 reference instances of the class Frog and that toad1 references an instance of
the class Toad. It is important to distinguish between an instance of a class (for example,
frog1) and its class (in this case, Frog). The class is the ‘factory’ for creating instances
of the class.

Although Frog and Toad objects have the same attributes, they have different yet
overlapping protocols, and behave in a different way in response to some of the same
messages. From our discussion of classes in the previous unit, these differences
indicate that Frog and Toad objects belong to different classes.

1.3 Classes and writing software
Adopting the idea of classes can save a programmer work. One of the goals of software
development is to avoid replicating the same code over and over again.

1 Classes and protocols 9

When building object-oriented software, the programmer may have to specify the
behaviour of many objects that must collaborate to make some system or program work
(for example, the character objects in a word-processed document). In particular, it will
be necessary to specify somehow the attributes that each object will have and the
messages to which each object will respond.

It would be perfectly possible to build every object afresh from the ground up, by
providing all the code necessary to specify the attributes and behaviour – but, when a
program can involve thousands of objects, this would be unbearably tedious. Moreover,
we would probably make many errors, and every individual object would need to be
tested separately to make sure it was correct. So we look for a way to save effort by
writing code only once and reusing it. This is what classes do for us. In any given
program you find very often a group of objects that are essentially the same. For
example, in a payroll program you would expect to find many objects representing
employees. In a drawing program there might be many objects that represent
rectangles. When writing a program, whenever you identify that a set of objects all
belong to a common classification, with the same attributes and behaviour, you can
define a template for this kind of object. The attributes and behaviour will need to be
specified just once, in the class definition, and then you can use the class to generate an
object of that particular kind whenever you like.

Then, however many instances of that class are created, each will automatically have
the same attributes and respond to the protocol for the class in the same way, with no
additional work on the part of the programmer.

Moreover, once you have tested your code and know it is correct you can rely on all the
objects belonging to that class working as intended; you do not need to test them
individually.

Of course, different instances of the same class may acquire different states (for
example, frog1 may have its colour attribute set to GREEN, while frog2 has the value of
this attribute as BROWN.

If the attributes or any part of the protocol needs to be changed, the change need be
made only once – to the class. The change will automatically apply to all instances of
the class.

The idea of class is a key part of object-oriented software development. Identifying
common properties at the planning stage, so that objects can be grouped appropriately
into classes, enables programs to be written in a concise and economical way.

1.4 Polymorphism
You have seen that Frog objects and Toad objects respond to some messages with the
same name, even though they behave differently in response to some of these
messages. In fact, it is unusual for two classes to have such similar protocols as these
Frog and Toad objects. There are typically major differences in the protocols of any two
chosen classes. However, it is not unusual for a particular message to be in the protocol
of more than one class. Thus while different classes rarely share exactly the same
protocol, it is not unusual for protocols to overlap. Such overlaps can be very useful. To
take an example, in the graphical interface in the microworld, the nearly complete
overlap of the protocols of the Frog and Toad objects means that they can share the
same buttons.

In a word processor it might be helpful if the user could double the size of items such as
characters, words, pictures and paragraphs by using one key. A sensible way of
organising this in object-oriented software is to have character objects, word objects,

picture objects and paragraph objects (instances of different classes) all understand the
message doubleSize().

There is a special term for a message to which objects of more than class can respond.
We say that the message is polymorphic. There is no need for the response to be the
same for the different classes; in fact it probably will not be. For example, Frog and Toad
objects react in their own different ways to the message home(). Polymorphic messages
are very common in object-oriented programming. You will see later that polymorphism
is very useful. Any message to which objects of more than one class can respond is said
to be polymorphic or to show polymorphism.

10 Unit 2 Object concepts

SAQ 2

and
is N is 1.

SAQ 3

e

e
s r, , e and h.

SAQ 4

and

respond.

r

In your own words, what does it mean to say that an instance of a class is initialised?

ANSWER...

Instances of a class have attributes. It is usual for a newly created object to have its
attributes initialised to some initial values. For example, the instances of the class Frog
have the attributes colour position. The instances of the class Frog are initialised
so that the value of colour GREE and the value of position

In a certain word processor, characters, words, paragraphs and pictures all understand
the messag doubleSize(), although these objects are instances of different classes.
What word is used to describe this kind of situation?

ANSWER...

The messag doubleSize() is polymorphic with respect to instances of the
(hypothetical) classe Characte Word Pictur Paragrap

Explain the word polymorphism, using an example from the Toad Frog classes as
an illustration.

ANSWER...

A polymorphic message is a message to which objects of more than one class can

The message left() is polymorphic as it can be sent to instances of different classes.
All instances of the class Frog interpret the message left() by subtracting 1 from the
current value of thei position, whereas instances of the class Toad subtract 2 from the

Imagine that all the staff in a company have gone to a general staff meeting. At the

end of the meeting, the speaker says: “Thank you everyone for coming. Now I’ll let

you get back to whatever you have to do next.”

The members of the audience will all understand this and they will each know what

to do next. Customer Services staff will go back to dealing with customers, Accounts

staff will resume keeping track of accounts, Deliveries staff will continue where they

left off arranging deliveries, and so on.

Everyone will respond to the same instruction, but they will respond differently,

according to what department they come from. The speaker does not have to ask

each person where they work and then tell them what to do; the speaker does not

need to know how to do the jobs, or even what the various jobs are. Each member of

the audience will know for themselves what to do, without being told.

e)
and

11

current value. The messag green(is also polymorphic. It is understood by instances
of more than one class, for example, Toad Frog objects. The behaviour caused by
sending green() to either a frog or a toad is the same.

1 Classes and protocols

It is considered good style to give a message a descriptive name. Although the
computer would not care if you used an arbitrary name such as messageF9B(),
human beings who want to understand the program find meaningful names extremely
helpful! The message name left(), for example, is descriptive of what it does.

12 Unit 2 Object concepts

2.1 Hoverfrogs

We now explore classes and subclasses. We also introduce the term superclass. An
object’s response to a message sometimes depends on its state when the message is
received; this state-dependent behaviour is illustrated in Activity 4.

2 Classes and subclasses

In this section you will meet a new species of amphibian – the hoverfrog.

ACTIVITY 3

Launch the Amphibian Worlds application and then choose HoverFrogs from the
Microworld menu. In this microworld there are two HoverFrog objects, referenced by the
variables hoverFrog1 and hoverFrog2. (You will see a rotor blade on the head of the
graphical representation of each HoverFrog object.)

You will now explore the messages to which HoverFrog objects respond, and how they
behave in response to these messages. The results you obtain will help you to decide
how HoverFrog objects are related to Frog objects.

1	 Do HoverFrog objects respond to the same messages and behave in the same way
as Frog or Toad objects? To find out, send some messages to the HoverFrog
objects and observe the effects.

2 	What is the protocol of the HoverFrog objects (to the extent shown in this
microworld)? Describe the resulting behaviour for each message in the protocol.

DISCUSSION OF
ACTIVITY 3
1 A HoverFrog object can respond to the same messages to which Frog and Toad

objects can respond, and it responds to all of these messages in the same way as a
Frog object. In addition, a HoverFrog object can respond to messages to which a
Frog object cannot respond, namely up() and down().

2 	The protocol for the HoverFrog objects as shown in the microworld HoverFrogs is
left(), right(), home(), up(), down(), jump(), green(), brown() and croak().
The usual behaviour of the HoverFrog objects in response to each of these
messages is shown below.

left() – moves one position to the left

right() – moves one position to the right

home() – moves to (or remains on) the leftmost black ‘stone’ (which then turns
yellow)

up() – moves up by one on the six ‘steps’ above the ‘stone’

down() – moves down by one on the six ‘steps’ above the ‘stone’

jump() – jumps and lands again on the same ‘stone’

green() – turns green (unless already green)

brown() – turns brown (unless already brown)

croak() – croaks audibly (and displays a red ‘!’)

2 Classes and subclasses 13

a g
, and

g
.

ACTIVITY 4

and – s and

a g

the state.

a g

state.

g and
a g

a g
a object?

and a g

a g a
object?

In the discussion of Activity 3, the descriptions of the behaviour of HoverFro object in
response to the messages up() down() jump() were incomplete. The discussion
took no account of the fact that the response to these messages varies according to the
state of the HoverFro object when it receives the message. Exploration of state­
dependent behaviour forms the basis of the next activity

This activity explores how the behaviour of an object sometimes varies according to the
state it has when it receives a message.

Launch the Amphibian Worlds application and then open the microworld HoverFrogs.
Experiment with the up() down() messages send each of the message up()
down() in succession to the same object and note the object’s behaviour. Then expand
the descriptions given in the discussion of Activity 3 for the behaviour of HoverFro

object in response to these messages, taking into account the way that this depends on
receiver’s

In the same way, give an improved description of the behaviour of HoverFro object in
response to the message jump() that takes account of its dependency on the receiver’s

Can you guess an attribute that HoverFro objects possess that Frog Toad objects
do not? Make a guess before being tempted to look at the attributes of HoverFro

object with an inspector.

Select a variable that references HoverFro object and press the Inspect button. What
are the attributes of HoverFrog

Send the up() down() messages to HoverFro object, inspecting its state after
each message. What sort of values can be held by the attribute that is changing in
response to these messages? Is HoverFro object initialised identically to Frog

DISCUSSION OF
ACTIVITY 4

What is missing in the discussion of Activity 3 is an account of the behaviour of a
HoverFrog object when it is at its minimum height (on a stone) and the message down()
is sent to it, and when it is at its maximum height and the message up() is sent to it. In
both cases no visible action results. Also, when a HoverFrog object is not at its minimum
height the message jump() has no visible effect.

up() – moves up by one on the six ‘steps’ above the ‘stone’ (unless already at maximum
height)

down() – moves down by one on the six ‘steps’ above the ‘stone’ (unless already at
minimum height)

jump() – jumps and lands again on the same ‘stone’ (provided it is at minimum height)

HoverFrog objects have attributes colour, position and height.

By experimenting with a HoverFrog object and using the inspector you should have
discovered that the attribute height only ever holds integer values of 0 to 6.

In the Graphics Pane, HoverFrog objects appear to be initialised identically to the Frog
objects. However, this is not strictly correct, as a HoverFrog object has an additional
attribute, height, which is initialised to 0.

message or to a g a g object

0 to 6 or
a g t

14

State-dependent behaviour
You have seen that the way that an object responds to a message may not depend just
on its class. It may also depend on its state. In other words, the behaviour of an object in
response to a message may be state-dependent.This can be illustrated by sending the

up() down() HoverFro object. In the microworld, HoverFro

icon in the Graphics Pane does not reflect a response to any message requesting it to
go higher than ‘step 6’ or lower than ‘step 0’. This is because the messages that affect
the attribute height can only give it integer values from . So any up() down()
message to HoverFro object that attempted to set the value of heigh beyond these
limits left the value unchanged.

Unit 2 Object concepts

A subclass may have a
different initialisation from
its superclass. It may
seem as if Frog and
HoverFrog objects have
the same initialisation, but
this is not strictly true as
HoverFrog objects have
an additional attribute that
has to be given an initial
value.

2.2 Subclasses
In our particular Amphibian world, Frog and Toad objects have to ‘remember’ only two
things that are changeable: their colour and their position. Hence they have only the two
attributes, colour and position, that we considered earlier. In order to be able to
respond sensibly to the up() and down() messages, a HoverFrog object needs an
extra attribute, height. Initialisation of HoverFrog objects is also different in that the
height attribute is set to 0.

A HoverFrog object can respond to all the messages that a Frog object can respond to,
and it behaves in exactly the same way as a Frog object in response to these
messages. However, it can also respond to extra messages to which a Frog object
cannot respond, namely up() and down(). Furthermore, as noted above, HoverFrog
objects have all the attributes of Frog objects and an additional attribute height.

It is clear that there is a relationship between HoverFrog objects and Frog objects. A
HoverFrog object can do what a Frog object can do, but more, it has all the same
attributes, and more; and this is true for all instances of the Frog and HoverFrog
classes. In fact, the programmer took the Frog class as a basis and added the extra
attribute and protocol required to define the HoverFrog class. The relationship between
two such classes is described by saying that the HoverFrog class is a subclass of the
Frog class, and the Frog class is the superclass of the HoverFrog class. The fact that
the HoverFrog class is a subclass of the Frog class does not mean that a HoverFrog
object is ‘less’ than a Frog object. The term ‘subclass’ indicates that the subclass is
derived from the superclass. A HoverFrog object has at least the attributes and protocol
of a Frog object.

The relationship between the Frog and HoverFrog classes is summarised below.

(a)	 The protocol of HoverFrog objects includes that of Frog objects.

(b)	 HoverFrog and Frog objects respond in the same way to the messages common to
their protocols.

(c)	 Instances of the HoverFrog class have the attributes of instances of the Frog class.

(d)	 HoverFrog objects have an additional attribute.

(e)	 There are messages in the protocol of HoverFrog objects that are not in the protocol
of Frog objects.

(f)	 The common attributes of the instances of both classes are initialised in the same
way.

Not all the points listed above are a necessary part of the superclass/subclass
relationship. In later units you will see that it is possible to program a subclass so that its
attributes are initialised differently from the corresponding ones in the superclass. You
will also see that instances of a subclass may respond to a message in a way that is
different from the way instances of the superclass would respond to that message.

2 Classes and subclasses 15

superclass of
HoverFrog

subclass of
Frog

Figure 1 Relationship between the Frog, HoverFrog and Toad classes

The Frog class cannot be a superclass of the Toad class, because instances of Toad
cannot respond to jump() messages. So could the Toad class be a superclass of the
Frog class? Well frogs and toads behave differently in response to left() and right()
messages – in the light of the above discussion, the situation where the Toad class is the
superclass of Frog is not precluded but would not be good practice (you will learn more
about this in Unit 6).

Our use of subclasses should reflect our usual views of the way objects relate: whilst it
would be reasonable to say a hoverfrog is a frog we would not normally say a frog is a
toad or vice versa.

Why is this class/subclass relationship important? Frog objects and HoverFrog objects
have aspects of their protocol and attributes in common. As you will see in the next
subsection, you need to define these common aspects just once – for the superclass
(Frog). Then, the fact that HoverFrog is a subclass of Frog automatically ensures that
HoverFrog objects also have this common behaviour.

2.3 Programming and subclasses
.

f
g

and (e
a

(g
(g

(

(g ().
g

((and

SAQ 5

a g a

(a) f

(c)

Using subclasses when building programs enables you to save on programming effort
When building object-oriented software, the programmer has to specify somehow what
the objects of each class will be able to do. But sometimes it turns out that the objects o
some prospective class (the HoverFro objects in our example) need to be able to do
everything that objects of some existing class can already do (the Frog objects). In
addition, objects of the prospective class may need to be able to respond to some extra
messages (up() down()), and may have extra attributes height). In such a cas

there is a simple way to save work: the programmer can declare the new class to be
subclass of the existing class HoverFro as a subclass of Frog). This ensures that
objects of the new class HoverFro) have, as a minimum, the same attributes and
protocol as the existing class Frog). This will happen automatically as a consequence
of declaring the new class HoverFro) to be a subclass of the existing class Frog
The subclass HoverFro is said to inherit these attributes and this protocol from the
superclass Frog. All the programmer needs to do subsequently is to determine any
additional attributes height) and messages up() down()) for the subclass.

Which word or phrase best fits in the following sentence?

The protocol of HoverFro object ... the protocol of Frog object.

is part o

(b) is similar to

includes

16

(g
g g

SAQ 6

g ?

g

ANSWER...

The missing word is includes. HoverFro is a subclass of the class Frog. The instance
protocol of HoverFro includes the protocol of Frog. As you have seen, HoverFro
objects understand some additional messages to which Frog objects do not respond.)

What criteria do you think the programmer has applied in deciding to create the class
HoverFro as a subclass of the class Frog

ANSWER...

The programmer required the instances of the class HoverFro to have all the attributes
of the class Frog, to respond to all the messages of the instances of the class Frog, and
to behave in an identical way in response to most of these messages.

Unit 2 Object concepts

3 Message arguments 17

3.1

This section introduces message arguments, which allow the sender to include
information in messages.

Messages and arguments

3 Message arguments

Messages become a much more powerful mechanism when you allow them to include
extra information. For example, previously there were separate messages for turning an
object green or brown. A message that sets the colour of an object and allows you to
state the colour required allows a much more general approach. When a message
requires extra information for it to make sense, each required piece of information is
called an argument of the message.

In our microworlds we have made it possible for you to send messages with arguments
through the use of menus. When some more information is required from the user after a
button is pressed, a menu will be presented. You must choose an item from the menu
before the message triggered by the button can be sent. In Activity 5 you will meet the
setColour() button that presents a menu of colours from which one is chosen as the
message argument. The use of an argument makes available a wider choice of colours
than previously.

ACTIVITY 5

From the Amphibian Worlds application open the microworld Frog & HoverFrog. This
microworld contains three new buttons: setColour(), upBy() and downBy(). These buttons
are menu buttons – in each case a menu will be displayed when the button is pressed.
You need to make a choice from the menu. (Remember to highlight a variable referencing
a frog or hoverfrog before sending a message.)

1 	Explore the setColour() button by using it to send messages to the Frog and
HoverFrog objects.

Do objects of both classes respond to setColour()? Which colours are available?

2 	Send messages using the upBy() and downBy() buttons.

Do both kinds of object respond to a press of these buttons? What information do you
have to supply before an object will hover?

3 	On the screen you can see more of the protocol of the Frog objects. What is the
name of the additional message that has been revealed in this activity? What is the
protocol of Frog objects, as revealed in this and previous activities?

DISCUSSION OF
ACTIVITY 5
1 	Both the HoverFrog and Frog objects understand the message sent by pressing

the setColour() button. Before you can send a message using one of the upBy(),
downBy(), or setColour() menu buttons, you have to provide some information.

The menu for the setColour() button offers a choice of colours: OUColour.BLUE,
OUColour.BROWN, OUColour.GREEN, OUColour.PURPLE, OUColour.RED and
OUColour.YELLOW.

18 Unit 2 Object concepts

2 	Only HoverFrog objects respond to a press of the upBy() or downBy() buttons.

The menus for the upBy() and downBy() buttons offer a choice of 1, 2, ..., 6. These
determine how many ‘steps’ up or down you want a HoverFrog object to move.

3 	The protocol of the Frog objects is the set of messages that the objects understand.
You can now see that the message name setColour() is in the protocol of Frog
objects. The protocol of Frog objects as revealed in this activity is left(), right(),
home(), jump(), green(), brown(), croak() and setColour(). Frog objects do
not know how to respond to messages for hovering.

Some books call an	 Each piece of information you supplied is called a message argument (or just
argument a parameter.	 argument). When an argument is required for a message that a button sends, a menu is

presented.

You will learn about class
variables in Unit 7.

The equivalent Java code of selecting the button setColour() and choosing
OUColour.RED has the textual form setColour(OUColour.RED). You supply extra
information between the brackets to form the message. Some messages always require
information to be specified before they can be sent. It is not possible to end such a
message without providing the information. The information (here a chosen colour)
forms an integral part of the message.

You may have been wondering what arguments such as OUColour.GREEN and
OUColour.RED are, exactly. Well, we have created a set of OUColour objects for you to
use. These objects are held by the OUColour class as class variables. All you need to
know now is that to get hold of one of these ready-made colours, you just type the name
of the class, followed by a full stop and then the colour you want (in capitals): for
example, OUColour.YELLOW.

3.2 Message names
We have said that when a message requires an argument, the message is incomplete
until an argument is chosen. Thus left() is a message, whereas setColour() is not a
message until an argument is provided. That means that it is not accurate to talk about
‘the message setColour()’, since this will not be a message until you pick a particular
argument. But what if you want to talk about the entire family of messages represented
by setColour(), irrespective of the choice of a particular argument? It would be helpful
to have words to make this distinction.

The term message name is used for this purpose. For example, the message name for
the message setColour(OUColour.RED) is setColour().

The phrase ‘message name’ is also used with a message that does not take an
argument. In this case, the distinction between message and message name is less
obviously useful, but the distinction still exists. So, for example, you might say either of
the following.

‘Frog objects understand the message left().’

‘I sent a message to a Frog object using the message name left().’

Thus the message name for the message setColour(OUColour.PURPLE) is
setColour(), while the message name for the message left() is just left().

In summary, a message is something you send, but a message name is the name of a
message or family of messages. So, when we give the instance protocol of HoverFrog
as left(), right(), home(), up(), down(), jump(), green(), brown(), croak(),
setColour(), upBy() and downBy(), we are giving the protocol in terms of message
names.

SAQ 7

(a) e ?

e ?

(a))

(b)

SAQ 8

(a)

(b)

(a))

(b)

What is the message name in the messag setColour(OUColour.YELLOW)

(b) What is the message name in the messag jump()

ANSWER...

setColour(

jump()

What is the message name in each of the following?

frog1.setColour(OUColour.BROWN)

hoverFrog2.green()

ANSWER...

setColour(

green()

3 Message arguments 19

If the microworld Frog & HoverFrog is not open, open it now.

In the Java programming language, there is a convention for supplying arguments.
Where a message requires an argument, you write the message name followed by the
argument in the brackets that always follow.

setColour(OUColour.RED)

In the Code Pane, to send a message to change the colour of an object, it is necessary
first to type the name of the variable referencing the receiver, then a dot, and then the
message name with the argument in brackets, followed by a semicolon. For example,

frog5.setColour(OUColour.RED);

Then press the Execute button.

Try sending some colour-changing messages to both frog5 and hoverFrog3 using the
Code Pane. If you make a mistake and obtain an error report in the Display Pane, clear
the Display Pane by pressing the Clear button and then check the spelling, spacing and
capital letters in your typing. (Colour objects have names in upper-case letters and must
be preceded by OUColour.)

Type frog5.setColour(); – with the argument omitted – and press the Execute button.
You will see that the error report appears in the Display Pane.

DISCUSSION OF
ACTIVITY 6

The objects referenced by frog5 and hoverFrog3 should have changed colour in
accordance with the messages you sent.

ACTIVITY 6

20 Unit 2 Object concepts

ACTIVITY 7

To make hoverFrog3 hover using the message upBy(), an argument has to be supplied;
the argument here is a number chosen from the integers 1 to 6.

So the following is typed in the Code Pane to form a message asking hoverFrog3 to
move up two ‘steps’, i.e. by two units:

hoverFrog3.upBy(2);

Send this message. Check that your typing matches the above exactly, taking particular
care with the spacing, semicolon and capitalisation, before pressing the Execute button.

Try sending several versions of the same message with other arguments, and also try
sending some messages using downBy().

What is the protocol of HoverFrog objects, as revealed in this and previous activities?

DISCUSSION OF
ACTIVITY 7

The protocol of HoverFrog objects as revealed in this activity is left(), right(),
home(), up(), down(), jump(), brown(), green(), croak(), setColour(), upBy()
and downBy().

SAQ 9

(a)

(b)

(a)

(b)

What is the difference in general between a message and a message name? What is the
difference between a message and a message name when the message has no
arguments?

ANSWER...

A message name is the textual form of a message except that any arguments it takes
are not shown. If a message takes no arguments anyway, the message and its name will
be indistinguishable.

SAQ 10

What is the message name in each of the following?

oldBicycle.remove(bell)

oldBicycle.remove(bell, newBicycle)

ANSWER...

remove()

remove()

4 Message answers, enquiry messages and collaborating objects 21

4
objects

Message answers, enquiry
messages and collaborating

We start this section with two activities that look at answers generated in response to some
messages. We then look at accessor messages, distinguishing between a message that
modifies the state of an object and a message that interrogates the object’s state. We
conclude this section by discussing collaborating objects and sequence diagrams.

4.1 Message answers
In the following activities you will explore messages that request information from the
receiver. These activities show that message answers can be used by objects that need
to collaborate (typically to share information).

ACTIVITY 8

From the Amphibian Worlds application open the Three Frogs microworld. The Graphics
Pane in this microworld shows representations of three Frog objects – frog6, frog7,
frog8 – and has two new buttons, labelled getColour() and sameColourAs(). You will see
that some messages result in a message answer, but some do not.

Select a Frog object and send it the message getColour() by pressing the button labelled
getColour(). Look at the text in the Display Pane and make a note of what you read.

Now send the same object the message setColour(OUColour.RED) using the button
labelled setColour() and look at the Display Pane: has any text been added?

Use the Code Pane to type and execute some similar examples. Look in the Display
Pane after each line has been executed.

What are the differences in the behaviour of the Frog objects in response to messages
with names getColour() and setColour()?

DISCUSSION OF
ACTIVITY 8

When the getColour() button is pressed, some text describing the colour of the selected
Frog object, for example OUColour.GREEN, appears in the Display Pane. The message
getColour() seems to be asking the receiver frog ‘What is the value of your colour
attribute?’ and the message is answered. Similarly, if you type frog6.getColour() in
the Code Pane, the Display Pane shows the text OUColour.GREEN.

What you see in the Display Pane is a textual – as opposed to a graphical –
representation of the message answer returned in reply to the message. Hence, for
example, you will see the text OUColour.GREEN rather than a patch of greenish hue.

When a Frog object is sent the message setColour(OUColour.RED) it responds by
changing its colour attribute to OUColour.RED, and nothing appears in the Display
Pane. A setColour() message does not return an answer.

In contrast, the message getColour() does not change the state of the receiver; it
returns as the message answer the value of the attribute colour.

22 Unit 2 Object concepts

ACTIVITY 9

We shall now ask you to examine the sameColourAs() menu button and the message
named sameColourAs() in the microworld Three Frogs.

The sameColourAs() button is used to send a sameColourAs() message to a Frog
object requesting it to change its colour to the same colour as another Frog, Toad or
HoverFrog object. The argument specifies the object from which you want the receiver to
take its new colour.

1 	Select the variable frog6 and press the button labelled green().
Select the variable frog7 and press the button labelled brown().

2 	Select the variable frog6, press the button labelled sameColourAs() and select the
variable frog7 from the menu. This sends the message sameColourAs(frog7) to
the selected receiver frog6. You can use the button labelled setColour() to send
messages to the three Frog objects so that each is a different colour again. Practise
sending similar messages.

3 	Now use the Code Pane to send messages to the three Frog objects so that each is a
different colour. For example, the following lines, on execution, will change the colour
of frog6 to purple and frog7 to brown.

frog6.setColour(OUColour.PURPLE);

frog7.brown();

Now type a line in the Code Pane similar to the one below and execute it.

frog6.sameColourAs(frog7);

4 	Send other messages using the sameColourAs() message name.

DISCUSSION OF
ACTIVITY 9

In part 2 the receiver changed colour to that of the Frog object specified as the
argument to the message – frog6 was initially green, and changed from green to brown
in response to the sameColourAs(frog7) message. In part 3 you used the Code Pane
to send setColour() and sameColourAs() messages.

For one object (frog7, for example) to be used as an argument for a message to
another object (frog6, for example) involves the collaboration of the argument object
and the receiver.

,), ,
, , ,),),) and

.

SAQ 11

What is the protocol of Frog objects as revealed in the microworld Three Frogs?

ANSWER...

The protocol of Frog objects as revealed in this activity is left() right(home()

jump() green() brown() croak(setColour(getColour(
sameColourAs()

4 Message answers, enquiry messages and collaborating objects 23

4.2 Accessor pairs of messages
e)

)

a
. In

)
to a

to D n

A t

) and)
)

(a))

(b) r(

(a)

a
.

The messag getColour(has a different purpose from the previous messages you
have seen. In sending the message getColour(, you are not interested in changing
the state of the receiver object. Instead you are interested in obtaining information about
its state.

When the message getColour() is sent to Frog object, it replies with information
about its colour. The requested information is returned as the message answer
sending this message, you ask the Frog object for the value of its colour attribute. It is
usual to say that the message getColour(‘returns the colour of the receiver’. In
sending the message setColour(OUColour.RED) Frog object, you request the
receiver to set its attribute colour OUColour.RE . Note that you are not requesting a

answer, and no answer is given.

It is common in this way for the protocol for an object to include pairs of messages: one
that gets the value of an attribute of the receiver object, and one that allows that attribute
to be set. getter message and the corresponding setter message (as the get and se
messages are termed) together form what is called a pair of accessor messages. In our
example we have getColour(setColour(), where getColour(is the getter
message name and setColour(the setter message name.

SAQ 12

What, if anything, is returned as the message answer when you send the following
messages to a Frog object that is brown and is on the leftmost ‘stone’?

getColour(

setColou OUColour.RED)

ANSWER...

OUColour.BROWN

(b) No answer is returned.

A message answer is
sometimes called
message reply

4.3 Collaborating objects
The message right() sent to a Frog object requests a straightforward response from
the receiver object: no other objects are involved. Often, however, before an object can
act on a message it has to collect some information from another object or objects; it
does this by sending them messages. The required information comes back as answers
to the messages sent, enabling the object to deal fully with the initial message. In such
cases, several objects are ‘collaborating’ by sending messages to each other. (This is
not the only form of collaboration; some objects might collaborate by taking
responsibility for particular bits of required behaviour.)

Message answers can also provide information that is to be used with a later message.
Sometimes the information is the value of a particular attribute of an object. For example,
if a Frog object needs to know the colour of another Frog object, it would have to send
the other Frog object a message and the information would be returned as the message
answer. There is no reason why message answers should not be used as message
arguments in subsequent messages.

Two Frog objects collaborate when frog1.sameColourAs(frog2) is executed, as
described below.

24

a

a
– e

) d ,

r).

) 1

1

Exercise 1

t 1 1
)

.

As 1 2.
2

1

1

) to 2 s 1

1

1

) 2 as a
)

a

The message named sameColourAs() when sent to Frog object requests it to change
its colour to be the same as another Frog object. The argument for sameColourAs()
specifies the Frog object from which the receiver takes its new colour. There is nothing
new about asking Frog object to change its colour, but in all previous cases the
message indicated explicitly what the new colour should be as in the messag

setColour(OUColour.RED . However, in using the message name sameColourAs()

an argument specifies another Frog object that has the required information (as the
value of its attribute colou

A technique that is often used to follow a sequence of messages between collaborating
objects is to put yourself in the place of the receiver of the message. To follow the
sequence of messages when the message sameColourAs(frog2 is sent to frog , this
technique requires you to put yourself in the place of frog . You are asked to use this
important technique in Exercise 1.

Imagine that you are the objec frog . If you as frog are sent the message
sameColourAs(frog2 , describe informally the messages you would have to send and
the answers you would use in order to satisfy this request

Solution...

frog , you have been asked to change your colour to the same colour as frog
Now, as a human, you can, of course, see the colour of frog by looking at the graphical
interface provided. But, as frog , you have no way of ‘seeing’ such information. The
only way that you, as frog , can find out that colour is to send the message
getColour(frog . The colour will be provided to you, a frog , as a message
answer. Now you are nearly, but not quite, finished.

You, as frog , still need to change your own colour to the colour given by the message
answer. But you cannot just effect this by magic. As you know, the only way you can get
an object to do anything is to send it a message. This is often the best way to achieve
something even when the object in question is you. Hence the sensible way for you, as
frog , to change your own colour in line with the message answer is to send yourself
the message setColour(using as argument the colour you got from frog
message answer. (The message named setColour(is used with an argument to
request the receiver object to change colour.)

Sending a message to yourself may seem a strange way for an object to behave, but it is
in line with the rules by which objects communicate. Nothing forbids an object sending
message to itself. Often it is the simplest (and sometimes the only) way for an object to
get something done.

Unit 2 Object concepts

The interaction between the objects when the statement frog1.sameColourAs(frog2);
is typed into the Code Pane by a user and then executed, can be seen in diagrammatic
form in Figure 2. This kind of diagram is sometimes known as a sequence diagram. The
user originates the chain of messages, and will see an effect in the form of a change to
the visible frog1 icon. It is the collaborations between the software objects, rather than
between the user (you) and user interface, that are important here.

In Figure 2, vertical lines, called lifelines, represent the objects named above them, solid
arrows represent messages from sender to receiver, and dashed arrows represent
message answers. Time runs vertically downwards. It is assumed that the attribute
colour of frog2 has the value OUColour.GREEN.

4 Message answers, enquiry messages and collaborating objects 25

user

getColour()

frog1 frog2

sameColourAs(frog2)

OUColour.GREEN

setColour(OUColour.GREEN)

Exercise 2

that 1) and
of 2

), 1
) to 2 1

)

s

Figure 2 A sequence diagram

Answer Exercise 1 again using Figure 2, this time stating more formally the messages
frog would have to send on receipt of the message sameColourAs(frog2

what message answers would be involved. Assume that the attribute colour frog

has the value OUColour.GREEN.

Solution...

On receipt of the message sameColourAs(frog2 frog sends the message
getColour(frog . The answer to this message is OUColour.GREEN. Now frog
sends the message setColour(OUColour.GREEN to itself.

In order to get the desired effect, the message answer from the first message is used a

the argument to the second message.

In Figure 2, the messages sent from one object to another are shown in order down the
page. The messages are ordered from top to bottom. Reading from top to bottom, the
sequence is as follows.

(a)	 The user (you are no longer frog1!) sends the message sameColourAs(frog2) to
frog1.

(b)	 frog1 sends the message getColour() to frog2.

(c)	 frog2 returns as the message answer the value of its attribute colour
(OUColour.GREEN) to frog1.

(d) Finally, frog1 sends itself the message setColour(OUColour.GREEN), where the
argument OUColour.GREEN is the message answer from the previous message.

In the above example, the user sends a single message sameColourAs(frog2) to
frog1. The message causes frog1 to respond by sending two messages in turn. The
first of these messages is to frog2 and has the purpose of eliciting information in the
form of a message answer, and the second is to itself. The user does not directly specify
the new colour for frog1; rather, frog1 had to ask frog2 for the information. Then frog1
changes its own colour (by sending a message to itself). In this example, the user

a r objects
e

of .

26

caused Frog object to send a message to anothe Frog object. The two Frog
worked together in order to do something you (the user) requested. This is an exampl

collaborating objects

Unit 2 Object concepts

4.4 The classFrog
Before proceeding to another scenario, we shall summarise the key features of a class in
terms of the Frog class.

A class groups together objects that the programmer considers to be similar. Instances
of the same class respond to the same set of messages (the instance protocol), have the
same attributes and respond in the same way to each message.

All instances of the class Frog are created with the same attributes colour and
position, but each Frog object is an ‘individual’ in that the values of its attributes
belong to itself. So frog1 may have position as 1 and colour as OUColour.BROWN,
whereas the attributes of frog2 may have the values 2 and OUColour.BLUE. The
protocol for the Frog objects is defined in the class Frog, so all instances understand
the messages left(), right(), home(), jump(), brown(), green(), croak(),
getColour(), setColour() and sameColourAs(), and respond in the same way to
each message. The initialisation of each instance is also defined in the class Frog so
that each Frog object is initialised with the value of position as 1 and the value of
colour as OUColour.GREEN.

5 A bank account class 27

5 A bank account class

In this section we reinforce the notions of object, message and message answer by
using them in an everyday situation.

This is done with reference to a particular application, a simple banking system, which is
designed to handle very basic bank accounts. Such an account will normally require a
certain amount of information to be associated with it. In this example the accounts are
very simple and the only information they will store will be the name of the account
holder, the account number and the current balance. These accounts will be modelled
using Account objects, one object for each customer. An Account object will have the
following attributes: holder, number and balance. Figure 3 shows how such an
Account object can be represented by an object-state diagram.

holder

number

balance

Class bject: Account

Protocol: (omitted)

" nce"

"2011"

12.6

of o

D. I

Figure 3 An object-state diagram of an Account object

The object shown in Figure 3 has attributes holder, number and balance, and each
currently has a value – "D. Ince", "2011" and 12.6, respectively. Note that account
numbers are treated as textual rather than as numeric quantities.

The diagram reflects the fact that this object belongs to a class called Account. There is
space in the diagram for the protocol of the object, i.e. a listing of the messages to which
the class Account objects can respond. The space for the protocol is blank for now;
later in this unit you will discover what messages an Account object can understand.

A banking system can be modelled (in part) as a set of Account objects, each of which
corresponds to someone’s account with the bank. Some means of referring to each
Account object is required. A solution would be to have suitably named variables, each
referencing an account object, just as was done earlier with Frog objects. The Account
object represented by Figure 3 can be referenced by a variable called e.g. myAccount.
That this particular variable refers to a particular object is symbolised in Figure 4 by
means of an arrow pointing from the variable name to the object.

Note the use of a capital A
in the middle of the
variable name myAccount.
This convention is
common in programming –
when a variable name or
message name is
composed of two or more
English words, or
abbreviations, the first
word starts with a lower­
case letter, and a single
upper-case letter is used
to mark the start of each
subsequent word.

Always take care with
capitals when typing, since
Java distinguishes
between upper-case and
lower-case letters.

28 Unit 2 Object concepts

holder

number

balance

myAccount

Class bject: Account

Protocol: (omitted)

" nce"

"2011"

12.6

of o

D. I

Figure 4 A named Account object

You will carry out the activities in this section using a simple programming tool for
Account objects called Accounts World, which allows you to create new Account
objects, and to send messages to them.

Figure 5 The Accounts World programming tool

The Accounts World has three panes. The top pane in the Accounts World is called the
Code Pane. This is where you type statements that you want to be executed. Statements
are not executed until they have been highlighted (selected) and their execution
requested by choosing Execute Selected from the Action menu. To the right of the code
pane are two buttons. The button labelled Add Account is used to create Account
objects (you will be prompted for a variable name when you click this button). The other
button, labelled Protocol, is used to open another window, which you can use to get
information on the protocol of Account objects.

Below the Code Pane there are two further panes. On the left there is the Display Pane.
This has two functions. Firstly, it is where the Accounts World’s Java interpreter will write
any error messages if you make a mistake in any statement(s) you are testing in the
Code Pane. For example, if you attempt to send a message to an Account object, which
is not in its protocol (such as misspelling the getBalance() message, we encounter

5 A bank account class 29

later, as geetBalance()) the Java interpreter that is used to parse and execute code in
the Code Pane will write Semantic error: Message geetBalance() not understood
by class 'Account' in the Display Pane. The second function of the Display Pane is to
display the value of the last expression evaluated in a statement (or series of
statements). This will occur only if you check the Show Results check box. To the right of
the Display Pane is the Variables Pane. This pane will display any variables declared in
the Code Pane.

Remember that when you close the Accounts World any objects you created will be lost.

5.1 t objectsCreating and inspecting Accoun
Most of your study time in this subsection will be taken up with practical activities.

These activities are intended to give you a flavour of how objects and messages can be
used to represent an everyday situation: the use of bank accounts. In the Amphibian
microworlds you worked with objects that had already been created for you; here you
will create new objects and send messages to them. In doing so, you will be introduced
to terminology about code in Java that will be very important later in the course.

Typing and dealing with errors
You may find that unexpected problems arise when you try to execute code that you
have typed. This is often the result of incorrect typing. To help avoid these errors you
may like to read the following guide and return to it if you receive error reports.

Error messages may result from Java not understanding what you have typed in when
you try to execute the code, or from a typing error causing you apparently to ask Java to
send a strange message to a strange object. The error messages displayed in the
Display Pane may not always make much sense, but do not worry – in the majority of
cases, the solution can be found among the following points, which you should glance
over before you start. So take note of the following tips before typing into the Code Pane
or when you get an error message in the Display Pane.

1 Check spelling, capitalisation (or its absence), spaces and punctuation. All of these
can alter the meaning of a variable name or message.

2 Make sure you are selecting the desired text, the whole of the desired text and
nothing but the desired text when you execute it.

3 By convention all message names begin with lower-case letters, but message
names may include upper-case letters (e.g. getNumber()).

4 	Use the Variables Pane to check you are using the name of the variable referencing
the Account object exactly as you declared it when you created it. You may have
typed it in differently from the way it appears in this text. In particular, check spelling
and capitalisation.

5 When you are creating a new Account object, you are asked to supply a name for a
variable to reference it. Make sure that the name contains no spaces.

6 Use the protocol for the Account class to check you are spelling message names
correctly.

7 	Later, you will meet messages with multiple arguments. There should be commas
separating multiple arguments. Java does not require a space after such a comma
and before the following argument, but please include one for clarity.

30 Unit 2 Object concepts

ACTIVITY 10

Here you are going to create a new Account object, referenced by a variable called
myAccount. In the Accounts World click on the Add Account button. In the window that
opens you will need to give the name for a variable to reference the new object. Use the
name myAccount (be careful about capitalisation) and then press the OK button.

This creates a new Account object referenced by the variable named myAccount. You
have now created an Account object, but you do not know yet what state it is currently in.
A quick way to find out is to use an inspector. To examine the state of the object
referenced by myAccount, double-click its variable name in the Variables Pane. An
Inspector window will be opened on the newly created Account object. Use the Inspector
window to answer the following two questions.
1 What is the initial state of the object referenced by myAccount?
2 Has the name of the variable myAccount had any effect on the value of the holder

attribute of the object?

When you have finished, close the Inspector window.

Keep the Accounts World open, as the Account objects will be used in the next activity.

DISCUSSION OF
ACTIVITY 10

When you created your new Account object you should have seen the name of the
variable you created appear in the Variables Pane.

1 	The holder and number attributes of the new Account object are given as "" (the
empty string). The balance is given as 0.0. When an Account object is created, its
attributes are always initialised in this way.

2 	As the inspector shows, the name of the variable referencing an Account object and
its holder have no connection – they are entirely different things.

ACTIVITY 11

You have created an Account object, but to change its state, or get it to do anything else,
you will need to send it messages. In our banking system, an account belongs to
someone (represented by the holder attribute of an Account object) and the account
has an account number and current balance. To make a start, you are going to make the
holder of the account be someone named "Grendel Barty" with an account number of
"1234", and you are going to credit the account with a sum of 100.

Return to the Accounts World, and send the message setHolder("Grendel Barty") to
myAccount (taking care not to forget the quotes). That is, you will need to type in the
Code Pane the following.

myAccount.setHolder("Grendel Barty");

To execute the message, select it and right-click, and choose the menu item Execute Selected.

Recall, from Unit 1, that this is known as a message-send and consists of a receiver (the

object being sent a message), followed by a full stop and then a message. In the above

expression, the receiver is the object referenced by myAccount and the message is

setHolder("Grendel Barty").

Then type in and execute the message-send

myAccount.setNumber("1234");

and then

myAccount.credit(100);

Inspect myAccount and note what you see.

5 A bank account class 31

DISCUSSION OF
ACTIVITY 11

When you double-clicked myAccount, an inspector was created that showed the current
state of the Account object referenced by the variable myAccount. As a result of your
messages the inspector should report that the holder is "Grendel Barty", the number
is "1234" and the balance is 100.0.

ACTIVITY 12

In the Accounts World, create two more Account objects. In particular, create a new
Account object referenced by a variable called hisAccount (for the holder "Everest
Grundy", who has an account number of "2468") and credit it with 200. Then create a
new Account object referenced by a variable called herAccount (for the holder "Lucy
Nijholt", who has an account number of "1111") and credit it with 300. After you have
sent these messages, inspect each of the two objects to check that its subsequent state
is what you expect.

Keep the Accounts World open, as the Account objects will be used in the next activity.

(or
t t s

t (or t

.

;
;

;

t " a of and a
e of 0

" a of " and a e of .

DISCUSSION OF
ACTIVITY 12

Creating the new accounts in the Accounts World is just a matter of clicking on the Add
Account button, and providing a variable named hisAccount herAccount) for the
Accoun object you want to create. When you have clicked on OK, the Accoun object i

created. You should then see the variable name hisAccoun herAccoun) appear in
the Variables Pane.

Once you have created the accounts, the message-sends you should have executed
are given below

hisAccount.setHolder("Everest Grundy");
hisAccount.setNumber("2468")

hisAccount.credit(200)

herAccount.setHolder("Lucy Nijholt");
herAccount.setNumber("1111");
herAccount.credit(300)

Inspecting your newly created objects should confirm that the object referenced by the
variable hisAccoun is held by "Everest Grundy , with number "2468"
balanc 200. ; and that the object referenced by the variable herAccount is held by
"Lucy Nijholt , with number "1111 balanc 300.0

Exercise 3

t
o t

t?

The only way you have seen to make an object do anything (even to divulge its state) is to
send it a message. But in the practical activity above you managed to use an inspector to
find out the state of an object referenced by variable myAccoun immediately after it was
created, without apparently sending any message t myAccoun . Using what you know
about objects, can you think of a straightforward explanation of what happened when you
used an inspector to find out the state of myAccoun

32

o t

Exercise 4

)

,) , ".

s) and

message.

c t ,

c)

c ,

c

)

c t ,

c

c 100

c)

t
?

t
was

c to ".

(a)

(c)

(a) False

(c)

Solution...

Double-clicking a variable name creates an inspector, which is itself an object. It was the
inspector object that sent a message t myAccoun to find out its state, and then
displayed the result. Hence it still holds true that the only way to find out the state of an
object is to send it messages.

You have seen how message-sends consist of a receiver and a message. In the
practical work you have also constructed message-sends with arguments, as in
myAccount.setHolder("Grendel Barty" . In this case the message is composed of a
message name setHolder(, and an argument "Grendel Barty

For each of the message-send myAccount.setNumber("1234"

myAccount.credit(100), identify the receiver, message name, argument and

Solution...

For the message-send myAccount.setNumber("1234")

myAccoun is the receiver

setNumber(is the message name,

"1234" is the argument

setNumber("1234") is the message.

For the message-send myAccount.credit(100

myAccoun is the receiver

credit() is the message name,

is the argument,

credit(100 is the message.

SAQ 13

What is the connection between the name of the variable used to reference an Accoun
object and its holder

ANSWER...

There is no connection. If you had an Accoun object that was referenced by the
variable thisAcc and whose holder "J. Bloggs", you could still reference this
object using thisAc while sending a message to change the holder "Mary Brown

SAQ 14

Which of the following is true?

An object may be referenced by at most one variable.

(b) An object must be referenced by exactly one variable.

An object could be referenced by several variables.

ANSWER...

(b) False

True

Unit 2 Object concepts

5 A bank account class 33

5.2 t objectsExploring the protocol of Accoun
As in the previous subsection, most of your work here will consist of activities.

Now that you have three Account objects this is a good time to explore some more of the
Account protocol.

ACTIVITY 13

Go to the Accounts World and explore the protocol for the Account class. To do this, click
on the Protocol button – this will open a window displaying information about the
credit() message. On the left-hand side of the window is a set of buttons labelled with
the names of the messages in the protocol of Account objects; clicking one of these
buttons will then display the information (documentation) for that message – what it does,
what arguments it takes and what value (if any) it returns.

You can now turn your attention to changing the state of an Account object, namely that
referenced by the variable herAccount. (If you had previously closed the Accounts World
then you will need to create an Account object referenced by the variable herAccount
and set the balance of the account to 300.) Send messages to perform the actions listed
below, in the order given, by entering the relevant code in the Code Pane. After sending
each message, look in the Display Pane at the textual representation of any message
answer that is produced.

1 Use the message getHolder() to check that the holder of the account referenced by
the variable herAccount is "Lucy Nijholt".

2 Debit 100 from Lucy’s account.

3 Use the message getBalance() to check the resulting balance.

4 Set the number of Lucy’s account to "2000".

5 Send a message to check the account number of Lucy’s account.

6 Debit 3000 from Lucy’s account.

7 Use the message getBalance() to check the resulting balance of Lucy’s account.

Draw an object-state diagram to depict the object referenced by herAccount and its
current state. Add the names of the messages you have used so far to the Protocol
section of the diagram.

DISCUSSION OF
ACTIVITY 13

The corresponding Java code and message answers are as follows.

1 herAccount.getHolder();
(the textual representation of the message answer is "Lucy Nijholt").

2 herAccount.debit(100);
(the textual representation of the message answer is true).

3 herAccount.getBalance();
(the textual representation of the message answer is 200.0).

4 herAccount.setNumber("2000");
(there is no message answer).

5	 herAccount.getNumber();
(the textual representation of the message answer is "2000").

6	 herAccount.debit(3000);
(the textual representation of the message answer is false).

7	 herAccount.getBalance();
(the textual representation of the message answer is 200.0).

34 Unit 2 Object concepts

A debit() message returns the answer true if the transaction has been actioned
(because the balance represents sufficient funds) and false if it has not been actioned
(because there are insufficient funds).

Figure 6 shows the object-state diagram. Only the part of the protocol you have
discovered is shown.

holder

number

balance

credit()
debit()
getBalance()
getHolder()
setHolder()
getNumber()
setNumber()

Class bject: Account

Protocol:

"Lucy Nijholt"

"2000"

200.0

herAccount

of o

Figure 6 Object-state diagram for Account objects

The messages you have used so far are: credit(), debit(), getBalance(),
getHolder(), setHolder(), getNumber(), setNumber(). Note that, as in the
Amphibian Worlds, the message used to find the value of an attribute has a name
consisting of the name of the attribute preceded by the word get. This is a common
convention in Java programming. Similarly, a message used to set the value of an
attribute has a name based on the name of the attribute, but preceded by the word set.

SAQ 15

Will Java treat MyAccount and myAccount as the same name?

ANSWER...

No. The exact spelling and capitalisation matter in names of variables (and in names of
messages and classes).

5.3 Collaborating t objectsAccoun

In this subsection you will be using the Accounts World to explore how objects in the
Account class can collaborate.

There are some messages in the protocol of the Account class that you have not yet
tried to send. One of these is the message used to transfer money directly from one

Index 35

Account object to another. The name for this message is transfer(). In Activity 14 you
will use this message to transfer 300 from the account referenced by myAccount to that
referenced by herAccount.

The transfer() message requires two arguments. In Java, when a message requires
more than one argument, the arguments are listed between the parentheses of the
message and are separated by commas. In the case of the transfer() message, the
first argument is the Account object to which the money is to be transferred and the
second argument is the amount to be transferred. For example, to transfer 300
from the receiving object to account herAccount you would use the message
transfer(herAccount, 300).

ACTIVITY 14

In the Accounts World, make sure you have two Account objects referenced by the
variables myAccount and herAccount; if you do not have them, create them. Next, send
a message to credit myAccount with 500.

Before you start, make sure you know the current balances in myAccount and
herAccount. Now, try using transfer() to transfer 300 from myAccount to
herAccount. (Click on the Protocol button to see how to use transfer().) Then inspect
the two Account objects, referenced by myAccount and herAccount, to see if they have
changed state in the way you would expect from the sense of the message.

–

DISCUSSION OF
ACTIVITY 14

To transfer 300 between the accounts you use the message-send

myAccount.transfer(herAccount, 300)

The money has been transferred in the way you would expect. The answer from this
message is true the transfer was successful.

Exercise 5

name

of

.

(except

The purpose of this exercise is for you to think about how the receiver of a message with
transfer() will carry out its responsibility to respond to this message, in the case

where there are sufficient funds in the receiver account for the transfer to be actioned.

Imagine now that you are the object referenced by myAccount, in a state with a
balance 800. Imagine that a user of the system sends you the message
transfer(herAccount, 400), which requests you to transfer 400 to the account
referenced by herAccount

Imagine that you must carry out the responsibility to respond to this message, using a
sequence of messages. To achieve your goal, you can send any message you like

transfer()) to any Account object. To solve the problem, try to break it up into
stages. What would a person do to carry out the same responsibility step-by-step? Try to
find a message to help you carry out each stage. Draw a sequence diagram, like the one
in Subsection 4.3, to help you solve the problem and to illustrate your solution. Your
diagram should include the user and any relevant objects. Fill in a table like the following
one to show in turn each receiver, each message including any arguments, and message
answers, if relevant, of any messages you need to send to satisfy your responsibility.

Strictly speaking,
transfer() is not a
message, it is only a
message name. But most
programmers say things
like this for simplicity. This
habit is fine provided that
you make sure you are
clear about the difference.

36 Unit 2 Object concepts

Receiver Message Message answer

Hint: You may need to send a message to yourself as a necessary step in discharging
your responsibility.

Solution...

Just two messages are required. Note that the first message, debit(400), must be sent
to yourself in your role as the object myAccount.

myAccount.debit(400)

herAccount.credit(400)

These two messages can be analysed in tabular form as follows.

Receiver Message

e

) none

Message answer

myAccount debit(400) tru

herAccount credit(400

In Figure 7 the three vertical lines represent the user and the two objects myAccount
and herAccount. Objects are drawn as vertical lines so that messages sent from one
object to another can be shown clearly in order down the page. Bold arrows
represent messages. Message answers are not shown as they do not play a major
role in this case. The messages are ordered left-to-right and top-to-bottom. Reading
from left-to-right, the user first sends the message transfer(herAccount, 400) to
myAccount. To satisfy this responsibility, myAccount first sends the message
debit(400) to itself. Next, myAccount sends the message credit(400) to
herAccount. This is all that myAccount has to do to discharge the responsibility it
took on by accepting the message transfer(herAccount, 400).

user herAccount

transfer(herAccount

credit

deb

my

, 400)

(400)

it(400)

Account

Figure 7 A sequence diagram for the message-send myAccount.transfer(herAccount,400)

5 A bank account class 37

We should emphasise that we are not saying that the transfer() message is always
equivalent to a pair of messages using debit() and credit(). It will not be equivalent
in cases where the receiver of the transfer() message has insufficient funds for the
transfer. In more detail, what happens when myAccount.transfer(herAccount, 400)
is executed is that myAccount sends itself a debit(400) message and only if the
message answer is true does it then send herAccount the message credit(400).

Contrast this with the message frog1.sameColourAs(frog2), where the receiver
(frog1) always sends itself a message using setColour() after getting the colour of
frog2 by sending frog2 a getColour() message. You will be able to see how this is
done at the level of code once you move on to later units, where methods (Unit 4) and
conditions (Unit 5) are introduced.

Thus, if you were the object referenced by myAccount, with a sufficiently large balance,
and you received the message transfer(herAccount, 400), you would send
messages to appropriate receivers as follows:

1	 debit(400) to yourself

2	 credit(400) to herAccount

There is a simple way of checking that this scheme works; in your real-life role as user
(as opposed to your previous make-believe role as the object referenced by myAccount)
you could now try sending these two messages. If you do it this way yourself, the
final state of affairs should be exactly the same as if you just sent the message
transfer(herAccount, 400) to the object referenced by myAccount, and thus
requested it to take the responsibility.

ACTIVITY 15

In the Accounts World, make sure you have two Account objects referenced by the
variables myAccount and herAccount; if you do not have them, create them. Ensure that
myAccount has a balance of at least 400. Then execute the following two message­

sends one at a time in the Code Pane, and then inspect the objects to look at the resulting
state of affairs.

myAccount.debit(400);
herAccount.credit(400);

DISCUSSION OF
ACTIVITY 15

The effect on the final state of the objects is exactly the same as sending a single
message transfer(herAccount, 400) to the object referenced by myAccount,
requesting it to take responsibility for the whole transfer. We studied this example in
Exercise 5.

Whilst Exercise 5 may seem a little like a game, it is in fact an accurate description of
how an Account object discharges its responsibility of responding to a message
transfer() when there are sufficient finds for the transfer.

The receipt of the message transfer() results in the Account object, which is the
receiver, sending two messages (without any human intervention).

1 	The receiver sends a debit() message to itself. The argument to debit() is the
amount specified as the second argument of the transfer() message.

2 a t

)
)

38

The receiver sends credit() message to the Accoun object that is specified in
the first argument of the transfer() message. The argument to credit() is the
same amount that was specified in the second argument in the original transfer(
message and used in the debit(of step 1.

We say that this is an example of an object discharging its responsibility by
collaborating with other objects by sending them messages. We also say that the
objects that the receiver collaborates with are its helpers in this context.

Unit 2 Object concepts

Exercise 6

You have now seen two sequence diagrams, one in Subsection 4.3 and one in the
solution to Exercise 5. Looking at these diagrams, what interesting similarities and
differences can you see between the way the following two lines of code are carried out?

frog1.sameColourAs(frog2);

myAccount.transfer(herAccount, 400);

Solution...

This is an open-ended question. Many answers are possible. One or two possible
answers are noted below. Your answers may be different, but nevertheless correct.

Similarities

c Both involve collaboration between two objects.

c Both involve an object sending a message to itself.

c Both original responsibilities are discharged by the receiver by using exactly two
messages.

Differences

c	 In the frog example, a message answer becomes a message argument.

c	 In the account example, the message arguments in both of the messages used to
discharge the responsibility are taken directly from the message requesting the
transfer.

5.4 Recap of terminology
At this point it is useful to review some of the terminology to do with messages that you
have learnt.

The receiver is the object to which a message will be sent. The name of the message
must be one of those contained in the protocol of the receiver’s class, otherwise the
message-send will not compile. The arguments are the pieces of information required by
the message; some messages require no further information, and some require one or
more pieces of information.

So, for example, in the case of the message-send

myAccount.credit(7)

myAccount is the receiver, credit() is the message name and 7 is the argument.

Finally, some messages result in a message answer being returned.

Exercise 7

dFill in the following table for the message-sen

herAccount.transfer(myAccount, 200)

5 A bank account class 39

Receiver

Message

Message name

Argument(s)

Message-send

Solution...

Receiver t

Message)

0

herAccoun

transfer(myAccount, 200

Message name transfer()

Argument(s) myAccount, 20

Message-send herAccount.transfer(myAccount, 200)

Exercise 8

.

c a name argument.

c class.

c

c

c

c

;

;

(d) ;

(e)

Decide whether each of the following statements is true or false. If false, say why

All messages consist of and an

An object is associated with a particular

A message is an instance of a class.

Solution...

False. Some messages have no arguments; some have more than one argument.

True.

False. Messages are not objects, and so they are not instances of a class.

SAQ 16

A message may:

(a) change the state of an object

(b) make an object do something without changing its state;

(c) get back some useful information from an object

cause an object to send a message to another object

cause an object to send a message to itself.

Give an example of a message from this unit to illustrate each effect that a message can
achieve in the list above.

ANSWER...

40 Unit 2 Object concepts

Example

(a)

(b)
e

(c)
t

)

(d)
t

) –
)

(e) a 1 when

)

s
).

Effect

change the state of an object left()

make an object do something without
changing its stat

jump()

get back some useful information from
an objec

getColour(

cause an object to send a message to
another objec

sameColourAs(frog2 the receiver
sends getColour(to the argument

be used by an object to send
message to itself

frog changes its own colour
carrying out actions in response to
frog1.sameColourAs(frog2 . The
name of the message sent i

setColour(

SAQ 17

Give your understanding of the following terms and then look at the descriptions in the
Glossary. (No answer to this question is given.)

argument, attribute, class, message answer, object, polymorphism, protocol, state,
subclass.

6 Summary 41

6 Summary

After studying this unit you should understand the following key ideas.

c The values of an object’s attributes constitute its state.

c An object’s behaviour is determined by how it responds to the messages it
understands (its protocol).

c The behaviour of an object in response to a message may be dependent on its
state. An example of such state-dependent behaviour is the behaviour exhibited by
HoverFrog objects when sent the upBy() message.

c Objects are organised into classes. Objects belonging to the same class (instances
of the class) have the same set of attributes and respond to the same set of
messages, responding to each message in an identical (but often state-dependent)
manner. Classes are can be thought of as factories or templates for creating objects.

c When an object is created it has an initial state (its attributes have initial values). All
instances of the same class have the same initial state.

c A class may have subclasses. An instance of a subclass has all the attributes and
protocol of the parent class (the superclass), but the subclass may add to them.

c A subclass may modify the response to a particular inherited message, so that an
instance of the subclass will respond to that message in a different way to an
instance of the superclass. Furthermore, it is also common for instances of unrelated
classes to have the same message in their protocols, and instances of those classes
may or may not respond differently to that message. Such messages are termed
polymorphic messages.

c Messages may return a message answer, and/or change the state of a receiver, or
do neither. For example, the message getColour() merely returns the colour of the
receiver whereas setColour() changes the value of the colour attribute. In the
protocol of Frog objects, jump() neither changes the object’s state nor returns a
message answer.

c Some messages require arguments – extra information that is required for the
message to make sense. For example, the upBy() message requires an int
argument specifying what position the receiver should move to, as in the following
message-send: hoverFrog1.upBy(2).

c It is common for the protocol of an object to include pairs of messages to provide
access to each of its attributes. A getter message and the corresponding setter
message together form what is called a pair of accessor messages. For example, in the
protocol of Frog objects, the message getColour() returns the value of the receiver’s
colour attribute, and setColour() sets (changes) the receiver’s colour attribute.

c A message may cause the receiver to send a message to another object to help it
carry out the behaviour required. For example, the message-send

frog1.sameColourAs(frog2)

results in frog1 sending frog2 a getColour() message in order to determine the
colour of frog2. This behaviour is termed collaboration.

c	 A message may cause the receiver to send a message to itself. For example, the
message-send

frog1.sameColourAs(frog2)

results in frog1 sending itself the setColour() message.

42 Unit 2 Object concepts

SLEARNING OUTCOME

After studying this unit you should be able to:

c use appropriately the terms: object, message, protocol, state, attribute, argument,
class, instance, receiver, message-send, message answer, message name, getter
message, setter message, subclass, superclass, initialisation, polymorphism;

c use the microworlds in the Amphibian Worlds application to send messages to
Frog, HoverFrog and Toad objects, including messages which require arguments;

c use the Accounts World programming tool, to create and send messages to
Account objects, including messages which require arguments;

c inspect the state of objects;

c describe and explain the superclass/subclass relationship between the Frog and
HoverFrog classes;

c describe the role of accessor messages in an object’s protocol;

c discuss how two or more objects can collaborate to perform a task, and draw a
sequence diagram to depict the interactions between the objects in the form of
messages and message answers.

6 Glossary 43

Glossary
accessor message The general term for either a setter or a getter message.

argument Extra information supplied with a message. For example, when requesting
a Frog object to change its colour to that of another Frog object, it is necessary to
provide that other Frog object as an argument. This is seen in the message-send
frog1.sameColourAs(frog2).

A message can have zero, one or more arguments.

There is no argument in the message getColour().

The message setColour(OUColour.PURPLE) has one argument (namely
OUColour.PURPLE) supplying information on which colour is to be chosen.

Two arguments (yourAccount and 50) supply information in the message
transfer(yourAccount, 50).

attribute Some property or characteristic of an object, such as position for Frog
objects, or balance for Account objects.

attribute value The current value of an attribute. For example, a Frog object has the
attributes colour and position. The attribute colour of a particular object might have
the value OUColour.BLUE and the attribute position might have the value 1.

behaviour This term is used to describe the way an object responds to the messages
in its protocol.

class A class is a template that serves to describe all instances (objects) of that class.
It defines what attributes the objects should have and their protocol – what messages
they can respond to.

Instances of the same class have the same attributes, which are initialised in the same
way. They have the same instance protocol and respond in the same way to each
message.

getter message A message that returns as its message answer the value of one of a
receiver’s attributes. See setter message and accessor message.

initialisation The state of an object when it is first created depends on its initialisation.

inspector An inspector is a tool used in M255 to look at the internal state of objects in
a system. It lists the attributes of an object and displays their current values.

instance An object that belongs to a given class is described as an instance of that
class.

message A message is a request for an object to do something. The only way to make
an object do something is to send it a message.

For example, the position of a Frog object changes when it is sent the message left()
or right(); to obtain information on the value of a Frog object’s colour attribute, you
send it the message getColour().

44 Unit 2 Object concepts

message answer When a message is sent to an object then, depending on what the
message is, a message answer may be returned. A message answer is a value or an
object; it is not a message.

Sometimes a message answer is used, sometimes it is ignored. A message answer may
be used subsequently as the receiver or argument of another message.

Enquiry messages (getter messages) often return the value of an attribute, as with the
message getColour(), which returns a value such as OUColour.GREEN.

message name The name of a message does not include any arguments. For
example, the name of the message left() is left(), and the name of the message
upBy(6) is upBy().

message-send The code that sends a message to an object – for example,
frog1.right(), which consists of the receiver followed by a full stop and then the
message.

object An object is a software component that has a unique identity and responds to
messages. Each object has state and responds to a particular set of messages (its
protocol). Thus a Frog object (which has little resemblance to a real-world frog) holds
information on its position and colour as values of its attributes position and colour.

object-state diagram An object-state diagram represents an object. It shows the
class of the object, its state in terms of attribute values, and its protocol.

parameter A synonym for argument.

polymorphism Any message to which objects of more than one class can respond is
said to be polymorphic or to show polymorphism.

For example, both Toad and Frog objects respond to the message left(), but with
different behaviours. They also respond to the message green(), with identical
behaviours.

protocol The set of messages an object can respond to (understands).

receiver The object to which a message is sent.

sequence diagram A diagram that depicts the interactions between objects, in the
form of messages and message answers.

setter message A message that sets the value of one of a receiver’s attributes. See
getter message and accessor message.

state The values of the attributes of an object constitute its state. The state of an
object can vary over time as the values of its attributes change.

subclass A subclass is a new class defined in terms of an existing class (its
superclass). Instances of a subclass have all the attributes that instances of the
superclass have, but may have additional attributes. The protocol of the subclass
includes (has at least all the messages of) the protocol of the superclass, but may define
additional messages.

For example, HoverFrog is a subclass of Frog. The protocol of HoverFrog objects
includes that of Frog objects and has, in addition, the messages upBy() and downBy()
to which Frog objects cannot respond. HoverFrog objects have all the attributes of
Frog objects (colour and position) and an additional attribute – height.

superclass If B is a subclass of A, then A is the superclass of B.

Index 45

Index

A

accessor message 23

argument 17

B

behaviour 8

state-dependent 14

C

class (in programming) 8

collaborating objects 23, 26

G

getter message 23

I

initialise 8

instance 6

M
message

accessor 23

answer 23

get 23

name 18

set 23

message-send 32

O

object collaboration 23, 26

object creation 29

object-state diagram 27

P
polymorphism 10

R
responsibility 35

S

sequence diagram 24, 35

setter message 23

state-dependent behaviour 14

subclass 14

superclass 14

V

variable 27

