M255 Unit 1
UNDERGRADUATE COMPUTING

Object-oriented
programming with Java

Object-oriented
programming with Java

This publication forms part of an Open University course M255
Object-oriented programming with Java. Details of this and other
Open University courses can be obtained from the Student
Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries @open.ac.uk

Alternatively, you may visit the Open University website at
http://www.open.ac.uk where you can learn more about the wide
range of courses and packs offered at all levels by

The Open University.

To purchase a selection of Open University course materials visit
http://www.ouw.co.uk, or contact Open University Worldwide,
Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,
United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University
Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.
Copyright © 2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted or utilised in any form or by
any means, electronic, mechanical, photocopying, recording or
otherwise, without written permission from the publisher or a licence
from the Copyright Licensing Agency Ltd. Details of such licences
(for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Ltd of 90 Tottenham Court Road, London,

WAT 4LP.

Open University course materials may also be made available in
electronic formats for use by students of the University. All rights,
including copyright and related rights and database rights, in
electronic course materials and their contents are owned by or
licensed to The Open University, or otherwise used by

The Open University as permitted by applicable law.

In using electronic course materials and their contents you agree
that your use will be solely for the purposes of following an
Open University course of study or otherwise as licensed by
The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any
medium (including electronic storage or use in a website),
distribute, transmit or retransmit, broadcast, modify or show in
public such electronic materials in whole or in part without the prior
written consent of The Open University or in accordance with the
Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.
Typeset by The Open University.

Printed and bound in the United Kingdom by
The Charlesworth Group, Wakefield.

ISBN 978 0 7492 5493 3
2.1

CONTENTS

Introduction 5
1 Components of M255 6
2 Fundamental hardware and software
concepts 7
2.1 Hardware and software 7
2.2 Software: systems, applications and programs 7
2.3 The operating system 10
2.4 How programs execute on a computer 13
2.5 The computer as a layered device 16
3 Object technology 17
3.1 Procedural programming 17
3.2 Object-oriented programming 18
3.3 A short history of object-oriented technology 21
4 The origins of Java 24
4.1 In Switzerland 24
4.2 Inthe USA 25
4.3 The technologies come together 27
5 Speculating about objects 29
5.1 Objects in a StarOffice document 29
5.2 State 34
5.3 Messages in a StarOffice text document 36
6 Exploring objects in a microworld 38
6.1 Sending messages to objects 38
6.2 Grouping objects into classes 44
6.3 Grouping messages into a protocol 45
6.4 Attributes of frog objects 45
6.5 Messages that do not alter an object’s state 46
7 Classes as software components 47
8 Summary 49
Glossary 51
Index 54

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor
Lindsey Court, Author

Marion Edwards, Author and Software Developer
Philip Gray, External Assessor, University of Glasgow
Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

lan Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction

Introduction

Welcome to the first unit of M255 Object-oriented programming with Java!

As the course title suggests, the emphasis of the course is on object-oriented
programming — writing software from an object-oriented perspective. Object-oriented
programming is concerned with constructing computer systems out of interacting units
of software, called objects. Objects know nothing of how each other work, but they can
interact (when a program is executing) by sending messages to each other. As you'll
see later, one of the most powerful aspects of object-oriented programming is that the
code that produces interacting objects can be reused and interchanged between
programs, so increasing programming productivity.

Programming in an object-oriented language is more than just learning new syntax rules;
it requires a new way of thinking. The idea is not to concentrate primarily on the
fundamentals of procedural languages — data structures and algorithms — but instead to
think in terms of the objects that will carry out the required tasks.

The programming language you will use in M255 is Java. However, the purpose of the
course is not to teach you the minutiae of the Java language, but rather to teach you
fundamental object-oriented programming concepts and skills that will be transferable
to any object-oriented language. Hence, while you will certainly learn quite a lot of Java,
and write lots of program code, we will be concentrating on those aspects of the Java
language that best demonstrate object-oriented principles and good practice.

The best way to learn any language is to practise using it. Learning a new way of
programming is no different, so you will find that this course has many practical
programming activities for you to carry out! In working your way through the course and
engaging in all the activities you will gain a good understanding of object-oriented
principles, and a solid grounding in the use of the Java programming language.

After a brief review of fundamental hardware and software concepts (Section 2), this unit
introduces the basic elements of object-oriented software (Section 3) and presents a
short history of the Java programming language (Section 4). In Sections 5 and 6 you will
begin to explore objects by engaging in computer-based activities.

Since M255 is a Level 2 course, the course team has assumed that you already have
some programming experience, such as that gained from previous study or work, and
are familiar with common programming constructs such as loops, if statements,
assignment statements and variables.

See the Course Guide for
a fuller description of
prerequisite knowledge.

Unit 1 Object-oriented programming with Java

Before continuing we
suggest you install BlueJ
and the other course
software if you haven’t
already done so (refer to
the Software Guide for full
details).

Components of M255

The most obvious component of M255 is the series of printed units (you are reading
Unit 1 at the moment!). However, as described below, there is more to M255 than these
printed units.

> All units include computer-based activities; practical sessions involving the use of
your computer. The details of what you need to do for each activity, and a discussion
of the results, are contained at the appropriate points in the printed units.

» Emailis used for sending messages to and receiving them from your tutor and other
students. Your computer will need to be linked online to a network (probably via a
modem) and have the appropriate communications software running for email to
work. (Your computer will also need to be online and running appropriate software to
use the next two components described below: conferences and web pages.)

» Conferencing is supported by the FirstClass system. Your tutor-group conference,
together with your regional M255 conference, will be a focus for general academic
discussion during your study of M255. You should use them to discuss questions
and issues about the course with your fellow students. Depending on
circumstances, sub-conferences devoted to particular topics may be created within
these conferences. Remember, however, that your tutor is the person you should
contact with specific academic queries: you should not use your tutor group
conference as a means to contact your tutor on some specific issue — you should
either email your tutor directly, or make contact via phone or letter.

Sharing and discussing ideas about the course with fellow students can be an
exciting and rewarding experience and you are encouraged to make full use of
your tutor-group conference. Please note that there are some basic rules about
behaviour when using FirstClass. These are described in the Conditions of Use
sub-conference, which is available within the OU Service News conference that is
on your desktop.

It is important that you access FirstClass at least once a week to look at the postings
in your tutor-group conference and check for message in your MailBox.

> Web pages on the M255 website give you access to other components of the
course, such as a study calendar, additional learning materials, assignments, news
information (for example, to correct errors or clarify points in material), electronic
versions of some unit printed texts, further explanations on a topic, and references
and hyperlinks to further reading. It is important that you access the M255 website at
least once a week to check for announcements on the news page.

» Course software is distributed via CD-ROMs and includes the FirstClass client and
Blued, the software you will use to program in Java.

2 Fundamental hardware and software concepts

Fundamental hardware and
software concepts

Before embarking upon the main focus of the course — object-oriented programming —
we will take a look at some fundamental hardware and software concepts. In this section
you will see what is meant by terms such as hardware, software, systems, applications
and programs and then go on to look in more detail at how computers are capable of
functioning so flexibly.

m Hardware and software

Hardware consists of the tangible parts of the computer system — the parts that can be
kicked. Examples of hardware include the electronic circuits inside the casing of your
computer such as the central processing unit (CPU) and main memory, and also
peripheral devices. A peripheral device is any component of the computer that is not
part of the essential computer (i.e. the CPU and main memory). The most common
peripherals are input and output devices such as the keyboard and monitor, and storage
devices such as hard disks and CD/DVD drives. Some peripherals, such as hard disks,
are usually mounted in the same case as the processor, while others, such as printers,
are physically outside the computer and communicate with it via a wired or wireless
connection.

Software, on the other hand, is more abstract — it is a general term for all the
applications, programs and systems that run on your computer, that is, it covers
everything you cannot kick! Software consists of sets of instructions that tell a computer
(or rather the hardware) how to perform a particular task. Examples of software are
word-processor applications such as Microsoft Word, browsers such as Microsoft
Internet Explorer or Netscape, and communications software such as FirstClass.

Although software and hardware are very different in nature, they are also inextricably
related. Any instruction performed by software can also be built directly into hardware,
and instructions executed by hardware can often be simulated in software. So there is a
trade off. One could build a computer without any software; it would do just one task —
but very quickly. However, we expect computers to do a multitude of tasks: calculate our
tax returns, write a letter, play chess and maybe surf the Web. Hence it is usual to get the
computer hardware to do a lot of very simple tasks (such as adding or subtracting two
binary digits), and write software to combine these simple tasks into various
sophisticated applications.

Software: systems, applications and
programs

Although software is held as magnetic or optical patterns on a physical object (such as a
CD-ROM, DVD, memory stick or the hard disk), software itself is intangible. You cannot
see or touch software. Software is written using a programming language, and pieces of
text in such a language are often called source code or just code. This code is then

compiled into a sequence of zeros and ones, that is, binary digits or bits, which make
up the instructions and data that the hardware can execute. It is not generally useful to
consider software in terms of binary digits being interpreted by hardware as instructions
to the computer and few programmers need to think at the bit level. When programmers

Compilation is explained in
Subsection 2.4

Unit 1 Object-oriented programming with Java

do discuss software in these terms they are taking a low-level view. By this we mean
that they are considering the minute detail of how a hardware device performs a task.

To build a better understanding of what is meant by the word ‘software’ we need to
consider how we can categorise different types of software and look at the terms
‘system’, ‘application’ and ‘program’.

Systems

The term ‘system’ has subtly different meanings depending on how it is used, as can be
seen in the list below.

(a) An operating system, as in ‘How do | configure my system to allow me to use my
new scanner?’.

(b) A computer system (a combination of hardware and software), as in ‘My system
crashed four times last night. | can’t figure out whether it is a hardware problem or
that shareware game | picked up from a magazine cover disk’.

(c) A software system (usually a large piece of software) is essentially meant to run
forever (it has no start point or end point) and has to respond to a variety of events
that may occur in an unpredictable order. The system is likely to be composed of a
number of smaller units of software, called applications, which communicate with
each other. For example, ‘The patient monitoring system has eight subsystems, not
including the part that checks that the others are functioning within normal operating
parameters’.

(d) System software is categorised as software that helps the computer carry out its
basic operating tasks. It is software which is required to support the production or
execution of applications but which is not specific to any particular application.
System software typically includes:

» the operating system that controls the execution of other programs;

» user interface software such as graphical windows and menus systems or text-
based command line interpreters;

» development tools, such as compilers, for building other programs;

» utility programs (involved for example in sending data to a printer or
communicating with peripheral devices).

For most of the time we use the term system to capture the idea of a large piece of
software, as in (c) above. Such a system may be made up of many parts and may be
accessed by users in different ways and for different purposes. Occasionally, when
talking about hardware or operating systems, we use the term in the sense of (b) — a
computer system. That is, the combination of hardware and software (predominantly
the operating system) providing the technological context for the software programs in
which we are interested.

You have probably been a user of a large software system, for example, an airline seat-
reservation system. An airline seat-reservation system allows online enquiries and the
booking of airline seats from a vast worldwide network of travel agents (and perhaps
booking from your own home if you have the appropriate connections to the system).
The system at the heart of the reservation system is intended to run for 24 hours a day,
forever, and to provide real-time access to the database that identifies the available
seats on relevant flights. As a user of such a system you may not always be aware of the
other uses that the airline companies (and the travel trade) make of the complete system
(of which seat reservations are but a part). Clearly, such a system must also know about
the availability and capacity of the aeroplanes being used and their movements around
the world.

2 Fundamental hardware and software concepts

The meaning of the term ‘operating system’ as in (a) above, more or less matches our
idea of a (software) system. Unless you switch off your computer or the operating
system crashes, this (operating) system should run forever.

Programs

The notion of a program assumes a pattern of: input data — process data — output data.
That is, the software that is the program has a starting point at which it takes some input,
it then performs whatever computation is needed, and it has an end point at which
output is given and the software ceases to run. This contrasts with systems, which run
forever. However, a system might well call upon the services of a program (via the
operating system) to accomplish some simple task. For example, one (very simple)
program might display the numbers 1 to 10 on your computer screen in quick
succession. Another might calculate the conversion of pounds sterling into US dollars.
Programs may often, but not always, be ‘home brewed’, that is written by the computer
user to solve a specific small task. In this course you will be writing programs.

Exercise 1

Say whether you think the following are programs or systems according to the meanings
given to these terms in this unit. Give a reason for each of your answers.

(a) Software that converts a temperature expressed in Fahrenheit to Celsius.
(b
c
d

Software to control machinery for cutting timber into sheets of wood veneer.
Software that checks that a timber-cutting machine is correctly calibrated.

Py

Software that issues tickets for the trains running through the Channel Tunnel.

)
)
)
) Software that calculates the mean score on a particular tutor-marked assignment.

(a) This is a program. It takes a number (a temperature in Fahrenheit) as the input, and
outputs a number as a temperature in Celsius. Thus it conforms to the
input—process—output pattern.

(b) Software needed to control machinery is most likely a system. In essence, it is meant
to run forever and respond to events related to the machinery or to the materials
being processed. In practice, such a system would probably have to be stopped
and restarted for the maintenance of the machinery.

(c) Software that checks the setting of a machine is probably a program. It would take
readings as input, and output suggested adjustments to the machine’s settings. The
software may be part of a larger system.

(d) Ticketing software is usually a system or part of a larger system; unless it ran forever,
train operators would lose money.

(e) Software that calculates the mean is a program. It inputs scores, computes the
mean and outputs the result.

In the solution to Exercise 1 we have speculated about whether software might be part of
a larger system; for example, the calibration software in (c) could well be part of the
system specified in (b). It is usual for the distinction between a program and a system to
be blurred like this, especially as the system is made up from parts that are themselves
programs or systems.

Unit 1 Object-oriented programming with Java

Applications

You can liken applications to virtual computers each with a special operating system.
For example, when you use a word-processor application you turn part of your general-
purpose computer into a computer that knows only about documents and the
commands that are relevant to them. When you use a web browser application you turn
your personal computer into one that spans the world. A web browser knows about the
Web and how to display the documents that reside there. As a computer user, you can
start up these different computing applications, may have more than one running at the
same time, and can switch between applications as required. Think about the situation
where you start up a word processor, and then, without exiting from it, you start up a web
browser. Each application is a virtual computer with its own set of commands, or the
same commands with slightly different meanings (for example, the commands Open
and Save have different meanings in a word processor and a web browser).

Applications differ from systems in that they are not designed to run forever and they
generally run on a single computer and perform a single task for a single user. For
example, a word processor that resides on a personal computer can only be used by
the user of that computer and its sole purpose is the production of text documents.

Note that the terms program and application are often used synonymously.

Exercise 2

System software is categorised as software that helps the computer carry out its basic
operating tasks, a software system is software that is meant to run forever and has to

respond to a variety of events that may occur in an unpredictable order, and application
software is categorised as software that helps the user carry out a task by means of the
computer. Using these categories, describe software that:

(a) allows the user to print material on a printer;

(b) maintains a personal calendar and address book;

(c) monitors and controls the temperature inside a school.

S0 (5141 o T

(a) Since printing is a basic operating task, this software is categorised as system
software.

(b) This software is considered an application. It turns your computer into a specialised
computer — a personal assistant — that, when active, can remind you of birthdays
and meetings.

(c) This is a software system — it is designed to run forever. It may well make use of
several programs to open and shut valves and to monitor temperature periodically.

In practice, it can often be difficult to categorise software as either an application or a
software system; how complex does an application need to be before it can be called a
system? The boundary between the two can be very blurred. In a similar manner it can
often be difficult to categorise software as either a program or an application. Hence you
will find that these terms tend not to be used too precisely!

m The operating system

A computer’s operating system defines the computing experience. It is the first software
that you are aware of when you turn on the computer, and the last software you notice
when the computer is shut down (unless it crashes!). Yet most computer users cannot

2 Fundamental hardware and software concepts

say with any certainty precisely what it is that the operating system does, so it is worth
spending some time getting this clear.

An operating system (OS) is the software responsible for the control and management of
hardware and basic system operations (such as data input and output), as well as
running application software such as word-processing programs and web browsers.
Common operating systems for personal computers include Linux, Mac OS (for the
Apple Macintosh) and the various versions of Windows, e.g. Windows 2000 and
Windows XP.

In essence an operating system acts as an intermediary between the user (or an
application program) and the computer hardware, as shown in Figure 1. It essentially
enables the user to carry out a variety of complex tasks on the computer, without the
need to know anything about what goes on ‘inside the box'.

application @

=

e —

\ -‘l disk drive
Y
—_—
. operating
monitor system T~
mouse

keyboard

Of course, not all computers have operating systems. For example the computer that
controls the fuel-injection system in a car does not need an operating system. It has one
task to perform and unchanging hardware to control. Since the computer simply runs a
single program all the time, which can be configured directly on the hardware (encoded
in read-only memory or ROM), an operating system is unnecessary. Indeed to all intents
and purposes that single program is that computer’s operating system.

Figure 1 The operating system

The next seven short subsections will expand upon the work of the operating system
and will explain how it is loaded when your computer is first switched on.

Management of memory

During the execution of a program, data and instructions are stored in the computer’s
main memory. It is the job of the operating system to allocate an appropriately sized area
of memory to each program (or application), and to ensure that program instructions
and data do not interfere with each other, or with the data and instructions of other
programs.

Unit 1 Object-oriented programming with Java

Widget is the term used to
describe components
such as windows, buttons
and sliders that are used
in GUIs.

Coordination and control of peripheral devices

In order to carry out its tasks a computer may need to communicate with one or more
peripheral devices. For example, it may wish to receive input data from the keyboard or
mouse, read from a file on a storage device, send output to the monitor or printer, and
connect to a network. The operating system coordinates all these operations, ensuring
that data is moved safely and efficiently between the different components of the
system.

Scheduling of access to the processor

The operating system manages access to the processor, by prioritising jobs to be run
and ensuring that the processor is used efficiently. For example, if the currently running
program finishes, or is interrupted in order to wait for data from the hard disk, the
operating system will ensure, if possible, that another program is given access to the
processor.

Provision of basic utilities

Operating systems also provide basic utilities such as disk formatting facilities, file
management systems and software installation wizards.

Provision of an interface between applications/programs and
hardware

Another important role of the operating system is to provide a stable, consistent way for
software to communicate with the computer’s hardware without having to access that
hardware directly, or know about the details of the hardware, or even the minutiae of the
processor’s specifications. The operating system provides this through an application
programming interface (API), which is a set of high-level instructions (a protocol)
through which an application can ‘talk’ to the operating system to request services such
as printing a file or saving a file to disk. So, for example, instead of an application
program asking a printer to print a file, it instead asks the operating system (through the
API) to print the file. The operating system then communicates with the printer to carry
out the request. This abstraction allows a software developer to write an application on
one computer and have a high level of confidence that it will run on another computer
with the same operating system even if the amount of memory, makes, and types of
peripherals are different on the two machines.

Provision of a user interface

The user interface is the software that enables you to communicate with your computer.
It provides a means of inputting data and instructions, and presents output in an
understandable way.

The user interfaces of early operating systems such as CP/M and DOS were text based
(termed command line interfaces), requiring the user to learn a set of commands, which
needed to be typed in following precise rules. Output to the screen also consisted
entirely of text. Today all personal computer operating systems provide graphical user
interfaces (GUIs), although most also provide (often hidden away from the novice user)
a text-based interface.

GUI-based operating systems (of which the various versions of Microsoft Windows are
the most common examples) make use of icons, menus and other widgets, with which
the user interacts via a pointing device, usually a mouse. Most people find graphical

interfaces more intuitive, quicker to learn, and easier to use than sequences of textual
commands. A further advantage of GUIs is their availability for use by programs other
than the core software provided by the operating system. For example, programmers of

2 Fundamental hardware and software concepts

application programs (such as word processors or spreadsheet packages), do not have
to write GUIs for their programs from scratch; they can use the operating system’s API to
‘hook in’ to the GUI. In addition to providing a consistent, indirect way for application
programs to communicate with the computer’s hardware, the API also provides high-
level instructions for the creation of windows, buttons and menus, so making life much
easier for the programmer. This ensures that all applications making use of the GUI
components have a consistent ‘look and feel’, which in turn makes it easier for users to
learn how to use new applications.

Booting your computer

When you switch on a computer, the first thing it needs to do is to load an operating
system (which is usually stored on the hard disk).

To enable it to do this there is a boot program, which is implemented directly in firmware,
in the computer’s read-only memory (ROM). This program is stored into the ROM
memory chip during manufacture and is permanent. It cannot be overwritten and will not
disappear when power is lost to the computer. The boot program is executed
automatically when the computer is first switched on and it will typically run a test of the
computer’s main memory and see what peripherals are connected to the system, before
loading the operating system. The process of using a short program to load a larger
program is called bootstrapping which comes from the idea of someone pulling
themselves up by their own bootstraps. The use of the boot program for starting up a
computer has given rise to the expressions ‘booting up’ and ‘rebooting’ a computer.

SAQ 1

For each of the following functions of an operating system give one reason why the
function is important.

(a) Managing the allocation of memory.
(b) Providing a user interface.
(c) Scheduling access to the processor.

ANSWER .

(a) Memory allocation ensures that program instructions and data do not interfere with
each other or with the data and instructions of other programs.

(b) User interfaces enable the user to communicate with the computer.
(c) Scheduling access to the processor ensures that the processor is used efficiently.

m How programs execute on a computer

When writing software it is necessary to express a solution to a problem in a
programming language resembling a limited natural language that can be understood —
interpreted — by human beings. That solution (as written in a programming language) is
called the source code. It must then be translated into a primitive language called
machine code — in effect, the bits that can be understood and executed by the hardware
of a computer. Since the programming language abstracts away from the detail of the
machine code language, we call the former a high-level language and the latter a low-
level language. There are a number of models for this process. One such model can be
depicted as follows.

Software which is stored in
a ROM is called firmware;
it cannot be changed
easily.

We often use the term
‘code’ without the qualifier
‘source’ or ‘machine’ and
rely on the context to give
the correct meaning.
Except for this discussion,
we shall not be interested
in machine code in this
course, so mostly we use
‘code’ to mean ‘source
code’.

Unit 1 Object-oriented programming with Java

_ text in high-level
(text editor) language

source code

T
I
|

Y

code that can
(hardware) execute on
machine code the hardware

Figure 2 Relationship between source code and machine code

Translation of the high-level language source code to a low-level machine code program
is usually carried out by a piece of software called a compiler. Translation (but not into a
program) can also be done by an interpreter, which will translate source code line by
line into machine code as and when it is required.

During compilation a compiler must first check that the text conforms to the syntax rules
of the language, that is, it is properly formed. Only if this check does not show up
problems does the compiler proceed to produce the machine code that will be
executed. Typically, compilers will also generate some additional information not given
in the source code. This extra code is called the run-time system. It enables the
machine code to be executed at the time that a request for execution is made (that is at
run-time). This run-time system is usually specific to a particular computer system (or
platform), that is, to a particular combination of hardware and software.

The major problem with this simple model of compilation is that the compiled code is not
portable to other machine architectures, as different machine types employ different
machine code languages. If you wish to move your software onto another architecture,
for example from a PC to a Macintosh, you would have to recompile the high-level
language source code with a Macintosh-specific compiler to produce Macintosh
machine code (see Figure 3 below).

PC Macintosh
(text editor) ko= =A - > (text editor)
source code = - - - - - - - - = - - source code
traditionally to
: implement :
i software on i
: compile differont : compile
v platforms meant v
transferring
(often changing)
(hardware) and recompiling (hardware)
machine code source code machine code

Figure 3 Compiling code for different computer systems

2 Fundamental hardware and software concepts

Another, more portable, model of compilation makes use of a special layer of software
(on each real machine architecture) called a virtual machine (VM). In this model of
compilation, the high-level language source code is not compiled to some architecture-
dependent machine code. Instead, it is compiled to an intermediate code, that is, to the
machine code of the notional (virtual) machine. In Java environments, the intermediate
(virtual machine) code is usually called bytecode as it is organised into 8-bit bytes.
Using this intermediate code approach allows low-level, essentially executable, code to
be moved unchanged between different computer systems (see Figure 4).

PC Macintosh

(text editor)

source code

(text editor)

source code

I I
| |
rcompile rcompile
| |
¥ ¥

(virtual machine)

(virtual machine) o

intermediate code [« +-------—- - - 4 intermediate code

intermediate
code can be

interpret/ moved Linterpret/
compile unchanged to i compile
v the virtual v
machine on a
(hardware) different real (hardware)

architecture

machine code machine code

Figure 4 Compiling for a virtual machine

Once the intermediate code has been produced, there are three options for execution of
the software (now in intermediate code) on a real computer.

The first is to include an interpreter (a piece of software) within the virtual machine
software that simulates a real computer. Every time an application is run, the interpreter
takes the intermediate virtual machine code (intermediate code) and translates each
notional instruction, one at a time, into the real instructions for the real computer
hardware to execute. This is a relatively slow process because so much software is
involved in the interpreting, whereas the machine code from a simple compilation can
be executed directly by the hardware. The advantage of using an interpreter is that your
code can be executed on different real computer systems if that is required.

The second option is for the virtual machine to include another phase of code generation
in which all the intermediate code for a piece of software is translated into the real
machine code in one go, so that it is ready for the real machine hardware to execute.
This is the traditional approach where intermediate code is used; it originates from a
time when programs were prepared and tested as a whole rather than in component
parts, and has the disadvantage that the programmer must wait for all of the
intermediate code to be translated into machine code before the program can be
executed and tested.

There are other language
environments besides
Java which also compile to
bytecode.

In programming
environments where the
second option is used, the
programmer may never be
aware that a second
translation has taken
place.

Unit 1 Object-oriented programming with Java

This sort of approach is
also called just-in-time
compilation, for the
obvious reason.

The third option is a combination of the first two and is called dynamic compilation.
This option is particularly attractive when software is developed in relatively small
chunks — modules that can be separately compiled. This is the option used by the
Java Virtual Machine (JVM). When a request is made to compile a chunk of code, the
environment’s (in this course’s case BlueJ’s) built-in compiler produces intermediate
code (bytecode) for that chunk of code. This is then compiled into machine code by the
virtual machine software when the code is first executed, and this real machine code is
stored for subsequent executions. Therefore subsequent execution of that code has all
the speed that results from simple compilation. (Of course, any code that is never
executed will never be translated into machine code.)

In summary, the advantage of a compilation model that makes use of a virtual machine is
that it ensures that the intermediate code, no matter on what machine it was compiled,
can be translated for execution on many different computers so long as each computer
has the correct virtual machine.

m The computer as a layered device

In this section we have defined and described the terms hardware and software
(including various sub-categories), the operating system and the Java Virtual Machine.
To bring all these things together it is useful to consider a computer system as a layered
device. So, for example, a Java program runs on top of the Java Virtual Machine, which
runs on top of the operating system, which itself runs on top of the hardware.

software systems, Java programs
applications and] tual
orograms ava virtua
machine

operating system

hardware

Figure 5 The computer as a layered device

Without the layers of software in modern computers, computer systems would not be as
useful and popular as they are today. While the complexity of these underlying layers
has increased greatly in recent years, the net effect has been to make computers easier
for people to use.

3 Object technology

Object technology

Commercial programs are large, very, very large. They typically consist of hundreds of
thousands of lines of code, sometimes millions of lines. As with all complex systems,
whether or not these systems involve computers, they need to be organised in such a
way that the human mind can comprehend and deal with them. Comprehension is
greatly aided if it is possible to view a complex system as made up of simpler parts that
interact within an overall structure. Throughout the history of software development there
has been an active search for useful structuring techniques and for programming
languages that support such techniques.

This section describes one structured approach to programming that uses collections of
communicating objects to build a more complex whole — object-oriented programming.
After briefly looking at the shortcomings of procedural programming, we provide an
overview of object-oriented programming and introduce some of the terminology used
in the area. We conclude the section by seeing how object-oriented technologies have
developed over the last 40 years.

m Procedural programming

To put object-oriented technology into context it is useful for us to look at what went
before. Until fairly recently the predominant method for structuring programs was
procedural programming. Procedural programming is so called because the program
code gives a step-by-step procedure (a set of instructions i.e. an algorithm) for solving
‘the problem’. When designing a procedural program the programmer will usually break
down the problem in a top-down manner. An overall algorithm will be specified which will
be successively refined into smaller steps. This design methodology typically yields the
structure of a main program, involving a number of procedure or function calls, which
can in turn call further functions or procedures.

main
program

display print
gg'; dn eerw CgLJeStthivé/r customer volumes
details of orders
read validate read validate sort calculate
order order customer | [customer customer volumes
details details details details of orders

Figure 6 The structure of a procedural program

An algorithm is a detailed
sequence of actions to
perform to accomplish
some task (named after
the ninth century Arab
mathematician, Al-
Khwarizmi).

Unit 1 Object-oriented programming with Java

In such a design, data is of secondary importance and is placed into separate
structures (called data structures). Often this data is global to the whole program so is
visible and accessible to every function or procedure in the program (see Figure 7
below), each of which will be able to change that data.

procedure 1 procedure 2
(e.g. sort (e.g. validate
customer details) customer details)

global data

procedure 3 procedure 4
(e.g. calculate (e.g. validate
volumes of orders) order)

Figure 7 Procedures accessing global data

The ramification of so much data being global is that if a change is made to the format of
any data structure, all the functions and procedures that operate on that data will also
have to be modified to reflect the new data type. Thus one small change has a knock on
effect throughout the program, involving changes to numerous widely scattered
routines.

m Object-oriented programming

The idea of viewing software — and, indeed, of designing and writing software — in terms
of objects is not a new one. The idea has been around for 40 years, but its value has only
really become evident in the last fifteen years or so. Not all software has been designed
around the concepts of object-oriented programming, but most software with user

interfaces of windows, buttons, menus and similar icons has been built using objects.

In the object-oriented approach to software design all the processing carried out by
software is considered as being done by ‘objects’. You are already familiar and
comfortable about the concept of an object in the physical world, being surrounded by
them everyday — cars, people, toasters, DVD players, managers, etc. In object-oriented
programming, we use software objects to model real-life ones. The software objects
simulate the part of the real world (often called the application domain or problem
domain) with which we are concerned. For example, if we need a system to help
manage patients in a hospital (the domain), our software will in some sense have to
construct representations of part of the world of hospital administration. The objects we
might need are those that deal with modelling real-world patients, doctors, nurses,
wards and so on. Since the system would be a computerised one we would also need
objects for the user interface, such as windows, menus and buttons.

In the real world, people, organisations and even machines interact with one another by
exchanging requests and passing one another information. In the same way, object-
oriented programs consist of code for creating objects that can communicate by
sending messages to each other and they may get responses back, called message
answers, from other objects.

3 Object technology

There are two important aspects to an object: its attributes and its behaviour. An attribute
is some property or characteristic of an object, so a patient object might have attributes
such as condition, date admitted, medication and so on. The attribute value of ‘condition’
might be ‘malaria’ and the attribute value of ‘date admitted’ might be ‘3/1/2006'.

The behaviour of an object is the collection of actions an object knows how to carry out.
Each object has a list of messages it knows how to respond to. An object modelling a
patient might need to know how to respond to messages such as ‘take medicine’ The
message ‘take medicine’ might well be sent by a nurse object.

Although as users of a software system we cannot interact directly with software objects,
we can communicate with them via a user interface. Actions such as clicking the mouse, or
pressing a key on the keyboard, will cause messages to be sent to the appropriate objects.

Sometimes, to achieve some end, objects need to collaborate with each other,
sometimes they need to delegate work to others — a bit like teamwork. Using the hospital
example again, a doctor object may send a message to a nurse object requesting it to
give medicine to a number of patient objects. The nurse object would then in turn send
‘take medicine’ messages to those patient objects.

Figure 8 represents a simple view of what is happening inside an object-oriented program
when it is running. The ‘microscopic view’ in Figure 8 depicts a collection of objects
sending or receiving messages. Each object is represented by a rectangle. To get an
object to do something, it must be sent a message; messages are depicted as the arrows
between the objects. When an object sends a message to another object, all it needs to
know is what behaviour will result — importantly, it does not need to know how the internal
structure of the object receiving the message produces the behaviour. This illustration is
limited by the need to show arrows as being fixed; in software that is running, the
messages are sent (and received) as required in response to other messages.

Figure 8 Object-oriented software is a collection of objects sending messages

In its basic definition, an object is an entity that contains both data (in the form of
attribute values) and behaviour (the actions it takes on receiving messages). The word
both is the key difference between object-oriented programming and the more
traditional procedural approach. In a well-programmed object nothing outside the

Unit 1 Object-oriented programming with Java

object can directly change the value of the object’s attributes — indeed the only way to
get an object do anything (including perhaps, changing the values of some of its
attributes) is to send it a message. This is one benefit of the object-oriented approach —
because an object is responsible for updating its own data (the attributes), any changes
to the structure of that data only affects that type of object. Since it is usual for software
to be changed and adapted after it has been built, this is an important benefit, and there
are further benefits, such as reuse, that will emerge during the course.

Attributes and state

Different kinds of object have different kinds of attributes. A bank account object might
hold information on a balance and a credit limit, while a car object may keep a track of its
model and price. So, for example, balance and credit limit might be two of the attributes
of a bank account object; the attribute balance might have the value 100.00 and the
attribute credit limit might have the value 400.00.

For most programming languages it is usual to have to run together multi-word names,
or identifiers as they are known, such as ‘credit limit’ into single words. Thus we shall
prepare you for programming by running together the words credit and 1imit to form
the ‘word’ creditLimit, using a single upper-case letter to mark the start of the second
original word. More generally in identifiers we use a single upper-case letter to mark the
start of each word after the first, for example: startOfRace and firstPastThePost.

The values of all an object’s attributes together determine the object’s state. For
example, the state of a bank account object, as discussed above, comprises the values
of its attributes — the value of balance may be 100.00 and value of creditLimit may
be 400.00. Figure 9 is a diagrammatic representation of a bank account object. The
rectangle represents the object. The object has internal structure as represented by the
contents of the two sections within the diagram. The object has a ‘memory’ (the values of
its attributes) and it has a list of messages to which it can respond (in Figure 9, the actual
message names are omitted).

m A bank account object

current
values of the

balance attributes —
—> 100.00 <] these

creditLimit -400 .00 constitute the
object's

Messages (omitted) memory

Figure 9 Diagram of a bank account object, showing its attributes and attribute values

SAQ 2
What is the difference between the attributes of an object and the state of an object?

ANSWER .

Attributes describe the kinds of information that an object needs in order to provide the
required behaviours. The state of an object is the particular data held by all the attributes
at a given time; that is, the attribute values. For example, a bicycle object may have the
attributes manufacturer and size; its state is described by the values of these attributes —
perhaps Raleigh and 21.

3 Object technology

Messages

As mentioned earlier, the only way of getting an object to do something is to send it a
message. Thus, to change part of the state of a bank account object (that is to change
the value of one of its attributes) — for example to increase its balance — a message must
be sent to the object. Similarly, to find out the value of an attribute, for example to find out
the balance of a bank account object, a message must be sent to the object. On receipt
of a message, assuming that the object has been programmed to understand that
particular message, the object will respond with the requested action such as changing
the value of one of its attributes or returning some information. Sometimes the requested
action may involve the object sending messages to other objects. You can picture the
object with the messages it understands, as well as the information it holds (as the
values of its attributes), as illustrated in Figure 10 below.

current values
of the
attributes

A bank account object

balance 100.
N 00.00 -
creditLimit 400.00
credit ()
debit () messages the
- object can
setCreditLimit () understand

Figure 10 Diagram of a bank account object, with a partial list of the messages it understands

In the above bank account object the message credit ()would increment the value
held by the attribute balance, the message debit () would decrement the value held by
the attribute balance, and the message setCreditLimit ()would set the value held by
the attribute creditLimit. If the attribute creditLimit had a value of 400, the
message debit ()should fail if it tried to take the balance below -400.

Note the use of a pair of round brackets (parentheses) after the message names — all
message names in Java are followed by these brackets. Sometimes additional
information (called an argument) needs to be put inside these brackets when a
message is sent. For example to debit 50 pounds from the bank account object you
send it the message debit (50). You will learn more about arguments in Unit 2.

A short history of object-oriented
technology

The idea of object-oriented software originated in Norway in the mid-1960s with the
language Simula, an extension to the Algol programming language.

Simula was designed to make it easier to write programs that simulated real-world
phenomena such as industrial processes. It allowed complex systems such as a North
Sea oil terminal to be simulated (and so managed) in software. Programmers could
manipulate objects that combined information and behaviour in single units of software.
For example, adding a valve between two pipes in a Simula model of an oil refinery
simply involved creating a new valve object, setting its operating parameters, and
linking it to the appropriate pipe objects. The new valve object brought with it the ability

Just as you saw with the
names of attributes, in
Java the name of a
message must be a single
word and therefore set
credit 1imit would not
be allowed. So, to
preserve the meaning of
the phrase, while obeying
the rules of Java, we run
the words together and
use a capital letter to show
where a new word would
have begun.

Algol (ALGOrithmic
Language) was a
procedural language,
designed in the late
1950s, for programming
scientific calculations.

Unit 1 Object-oriented programming with Java

Unix is a time-sharing
operating system
implemented almost
entirely in C. By 1991,
Unix had become the most
widely used multi-user
general-purpose operating
system in the world.

to be opened and closed, altering the flow of oil appropriately. If the same refinery were
modelled using a conventional procedural programming language, the various
behaviours associated with the valve (such as opening and closing) would probably be
distributed around the program and in various procedures, and therefore harder to find
and change.

The next major development of these ideas (building systems from components that
keep together information and behaviour) took place at the Xerox company’s Palo Alto
Research Center (PARC) in Northern California in the 1970s and early 1980s and is
largely identified with Alan Kay and Adele Goldberg. They developed the first truly
object-oriented programming language Smalltalk; this was initially aimed at children, on
the assumption that if they could use it, so could adults! Indeed, many of the ideas that
define modern computing were also developed at PARC: the ideas of a personal
computer, graphical user interfaces (windows and menus), laser printers, local area
networks; the list is impressive.

Many ideas from Xerox were quickly adopted and exploited by companies that became
the leaders of the computing industry (like Apple Computers), but the object ideas as
embodied by Smalltalk were not so readily adopted. Although seminal to object
technology, and used successfully to build many large complex systems, Smalltalk
failed to find widespread success in the software industry. The reasons for this were
threefold.

> Smalltalk development environments were relatively expensive to buy.

» Compiled Smalltalk programs run on a virtual machine rather than directly on
hardware and so were relatively slow running on the computers of the 1970s and
1980s.

> The syntax was strange when compared with the popular procedural languages of
the day, so few in the industry were prepared to make such a big change.

However, one of the most widely used procedural languages in the 1980s was C, which
was used extensively on computers that ran the Unix operating system (indeed C is still
frequently used today), and in the mid-1980s two languages appeared that embodied
objects and were based on the C language.

> In 1985 Bell labs released C++ (written by Bjarne Stroustrup) that added obijects to
the C language.

» In 1986, the StepStone Corporation released Objective C (written by Brad Cox),
which was a combination of C and Smalltalk syntax. Objective C gained an early
success being adopted in 1988 as the development language for the short-lived
NeXT computer and its (Unix-based) NeXTstep operating system. Currently
Objective C is used as the principal programming language for Apple’s Mac OS X.

Additionally, Eiffel, a purely object-oriented language, also made its debut in 1986. It
introduced a number of features, including the ability to generate documentation
automatically from source code. This feature found its way into Java.

By the 1990s C++ had emerged as the market leader in object-oriented languages. Its
popularity was due, in part, to compatibility with the large existing base of C
programmers and the widespread use of Unix, which runs on many different types of
machines.

Although C++ created many converts to object-oriented ideas it does have a major

drawback. It is what is termed a hybrid language, a procedural language that has had
the capabilities for object-oriented programming bolted on. The ramifications of this are
that it is possible for a programmer to write in an object-oriented style, or a procedural
style, or a mixture of both! This can (and does) result in complicated, hard to follow code
that is difficult to maintain. It also had the result of programmers fooling themselves that

3 Object technology

they were writing object-oriented code just because they were using C++, when in fact
they were writing the same old procedural code.

In the next section you will learn about the development of the Java programming
language, a language which was built from the ground up. While its syntax superficially

resembles C, it is a fully-fledged object-oriented language owing more to the spirit of
Smalltalk than to C.

Unit 1 Object-oriented programming with Java

In a markup language the
text (and images) are
surrounded by special text
(or tags). These tags, may
be interpreted by software
to generate a display.

The origins of Java

In many ways it is a sheer accident that we are writing, and that you are studying, a
course about object-oriented programming that uses Java rather than some other
language. Object-oriented languages have been with us for decades and other
languages, notably Smalltalk, C++, Eiffel and Objective C were, until the late 1990s, the
dominant languages used in object-oriented software development. In this section we
shall look at the history of the Java language and try to answer the question as to why
Java is today such a popular language. In short the answer to this is one of convergent
technologies, and serendipity.

m In Switzerland

In the late 1980s, scientists at the European Particle Physics Laboratory (usually known
as CERN, short for the French version of the name ‘Conseil Européen pour la Recherche
Nucléaire’) were having problems accessing and sharing documents electronically.
Documents were stored on a variety of servers in a variety of incompatible formats. This
made the retrieval and viewing of documents problematic — which server was a
particular document on? What software was needed to read it? If a document referred to
another document what server was that document located on? Problems were
compounded at CERN because of the nature of the site — visiting academics and
students needed to get up to speed on projects very quickly. Furthermore, there were
many collaborators on projects who were remotely based around the world — if these
scientists wanted to share documents with colleagues based in CERN they had to
organise and format them so that they would be compatible with the main CERN
computing systems. Not surprisingly, many researchers were unwilling to expend the
extra effort to make their work conform to the CERN system.

Tim Berners-Lee, a software engineer at CERN, proposed a solution based upon the
theoretical work of Vannevar Bush who, back in the 1940s, had described a theoretical
system for storing information based on associations, and the work of Ted Nelson and
Douglas Englebart who, respectively, first coined the phrase ‘hypertext’ and developed
a successful implementation of hypertext in the 1960s. Hypertext allows documents to
be published in a nonlinear format enabling the reader to jump instantly from one
electronic document to another.

In brief, Berners-Lee proposed a distributed hypertext system, or web, that would run
over the Internet. Documents would be formatted with a simple markup language, and
then uploaded to computers running his proposed server software. Any person with a
computer connected to the Internet would be then able to read (using his viewer
software) those documents from anywhere in the world. What is more, a document on
one server could have links to any number of other documents, whether on the same
server or dispersed on servers around the world, to which the user could jump to with a
single click of a mouse.

Berners-Lee began work to develop this information system in 1989. By 1990, he had
written the Hypertext Transfer Protocol (HTTP), the language computers would use to
send hypertext documents over the Internet, and designed a scheme to give
documents addresses on the Internet, calling these addresses Universal Resource
Identifiers (URIs). By the end of the year he had also written a browser application to
retrieve and view these hypertext documents. He called this first ever web browser

4 The origins of Java

‘WorldWideWeb’. Hypertext pages were formatted using the Hypertext Markup
Language (HTML) that Berners-Lee had written. He also wrote the first web server. A
web server is the software that stores web pages on a computer and makes them
available to be accessed by other computers on the Internet. Berners-Lee set up the
first web server, known as ‘info.cern.ch’, at CERN.

In 1991, he made the source code for his WorldWideWeb browser and the web server
available freely on the Internet so that others would be encouraged to set up web
servers. The one limitation of this was that all the software was written for NeXT
computers running the NeXTstep operating system. However, by making the code freely
available he hoped that others would make the software (both browser and server)
available on other operating systems. So begins the story of the World Wide Web

] i the USA

In 1990, Patrick Naughton, a disgruntled Sun Microsystems software engineer, who was
about to leave Sun Microsystems for its rival NeXT, detailed in a letter to Sun
Microsystems’ management, the shortcomings of the company’s software division,
along with his own glowing appraisal of NeXT’s critically acclaimed NeXTstep operating
system. Shaken by Naughton's perceptive assessment of the problems their software
division faced, Sun Microsystems’s management commissioned Naughton, Bill Joy,
James Gosling, and three others to form a research group to create something new and
exciting which would allow them to catch the ‘next wave’ of computing.

In early 1991 the group met and decided to look at the application of computers to
consumer electronics devices. At this early stage the team were considering such
household items as VCRs, fridges, microwave ovens and washing machines, and
thinking about the possibilities of developing, say, a central control unit (possibly
handheld) for all the units in the system. In this way the group evolved the concept of a
network of different types of device (kitchen equipment, entertainment units, etc.) that
could all pass information between each other as necessary. A crucial part of the project
was to decide on the best programming language to achieve the team'’s objectives. This
task fell to James Gosling who initially looked at C++. However, further investigation led
to the conclusion that the difficulties encountered with C++ were best addressed by
creating an entirely new language.

Given the application, the language needed to have the following characteristics.

» Familiarity — the C and C++ languages were widely used in consumer electronics,
so basing the syntax of the new language on these existing ones would aid
acceptance and hence use.

» Platform independence — the concept was to have a range of devices (from different
manufacturers) communicating with each other, and thus the language would need
to be able to perform on a variety of processors. This characteristic meant the
language would have to be an interpreted language that could be run on virtual
machines located on each device. Under this scheme bytecode containing the
appropriate instructions could be produced on one device (for example the central
control unit), then sent around the home network for execution on the virtual machine
residing on the device requiring control (see Subsection 2.4 if you need to remind
yourself how an interpreted language is used).

» Robustness — for consumer acceptance the new technology would need to run
without failure. Thus the underlying language technology should omit various error-
prone features of C and C++, and incorporate strong in-built syntax checks.

Unit 1 Object-oriented programming with Java

» Security — as the various devices would be exchanging information within their
network, the language would need to prevent intrusion by unauthorised code
getting behind the scenes and introducing viruses or invading the file system.

» Object-orientation — as the architecture of object-oriented languages fits so well with
the architecture of client/server systems running over a network, the language
should be designed to be object-oriented from the ground up. In a client/server
system, software is split between server tasks and client tasks. A client sends
requests to a server asking for information or action, and the server responds. This
is similar to the way that objects send messages to each other and get responses
(message answers) back.

The design and architecture decisions were drawn from a variety of languages including
Eiffel, Smalltalk, Objective C and Cedar/Mesa, and Gosling completed an interpreter for
the language by August 1991. He named the language ‘Oak’, apparently after the tree
that grew outside the window of his office (although other stories abound).

None of these features were unique to Oak; for example the use of bytecode and virtual
machines had long been used in the Smalltalk and UCSD Pascal languages. However,
what was unique was that all the above features came together cleanly in a single
language.

While Gosling had been working on the language, other members of the team had been
working on the hardware side and, in August 1992, the team demonstrated a prototype
remote control like device with a touch sensitive screen called *7. When a user first

touched the screen, it displayed a cartoon world where a character named Duke (shown
in Figure 11), guided the user through a cartoon representation of the rooms of a house.

™

Figure 11 Duke — the cartoon character that first appeared in the *7 (© Sun Microsystems)

Everything was done without a keyboard — a user navigated through the house by gliding
their finger across the remote’s screen to interact with the various devices. For example,
by sliding a finger across the screen, the user could pick up a virtual TV guide on the
sofa, select a movie, drag the movie to the cartoon image of a VCR, and program the
VCR to record the show. The senior management at Sun Microsystems were ecstatic; this
was revolutionary for 1992 and, in that November, a subsidiary of Sun Microsystems
(called FirstPerson Inc.) was set up to further develop and market this new technology.

Despite great expectations, commercial success did not follow; there was no real
market for such devices, the technology was too far ahead of its time, and the world was
not ready. The future looked a little uncertain for the emerging language, so a race was
on to find a new application for Oak. In early 1993, the team heard of a Time-Warner
request for proposals for a set-top box operating system, including on-demand
interactive technology. FirstPerson Inc. worked at developing a TV set-top box based on
Oak to coordinate the transmission of video, data and money securely over a distributed
network. They presented the prototype to Time-Warner but unfortunately lost the
contract to their rivals in Silicon Valley — Silicon Graphics. That was the last straw — after
one too many failures, Sun Microsystems dissolved FirstPerson Inc and assigned the
employees to various other projects within the parent company. It looked very much like
Oak was destined to be consigned to the dustbin of history.

4 The origins of Java

m The technologies come together

In the meantime, since 1991, Tim Berners-Lee’s brainchild, the World Wide Web (WWW),
had gone from strength to strength because Berners-Lee had made the source code
public.

As the number of users on the Web grew it became more attractive as a medium.
Scientists, who were already used to sharing information on the Internet, began to
embrace the Web. It was easier to post information on the Web once than to reply
repeatedly to multiple requests for the same data. They also no longer had to worry
whether or not the other scientists used a different operating system as new browsers
were developed. Government agencies, which had responsibilities to make their
information public, also began turning toward the Web.

Berners-Lee had developed his WorldWideWeb browser on a NeXT personal computer.
As the potential of the Web was realised others, mostly students, began creating new
browsers for Mac, PC, and Unix users. For instance, students at the Helsinki University
of Technology wrote Erwise for Unix machines, Pei Wei, a UC Berkeley student wrote
Viola and colleagues of Berners-Lee at CERN wrote a browser for Mac machines called
Samba.

The Web grew exponentially, both in the number of sites and users. The number of
visitors to the original web server — info.cern.ch — grew by a factor of ten every year. By
the summer of 1993, the original site was getting ten thousand hits a day. However, at
this point the Web was still the preserve of mainly scientists and academics. The reason
for this being that the first browsers were rather complicated to use, and the documents
(web pages) that these early browsers could read were either all text or just a single
image, or a single video clip. Images, video and text could not be displayed in the same
web page — very different from the situation today — and thus the Web was not of much
interest to the general public.

This all changed in early 1993 after a graduate student at the University of Illinois’ NCSA
(National Center for Supercomputing Applications), called Marc Andreessen, together
with a team of colleagues, released the first version of a new Unix-based browser. The
browser — NCSA Mosaic for the X Window system — was especially interesting as it
offered the user a straightforward graphical user interface. Andreessen and co-workers
continued their programming and, later that year, a real landmark in the history of the
World Wide Web was reached when they released free versions of the Mosaic browser
for the Macintosh and Windows operating systems. Not only could the browser display
text, graphics and video clips on the same page (and play audio), but crucially the
browser was relatively easy to use and available for three popular operating systems.
This browser could display text, graphics and video clips on the same page and play
audio. The World Wide Web had become multimedia and the online community liked it —
in fact liked it very much. No longer was the Web an environment for dry scientific
documents; it now became a virtual world full of colour and moving images.
Subsequently Andreessen and most of his team left NCSA to form the Mosaic
Communications Corp., which later became Netscape and made them all
multimillionaires!

Until that point, the Web had been totally overlooked by large corporations such as Sun
Microsystems and Microsoft. However, public reaction to Mosaic convinced a few key
members of the original Sun Microsystems team that Oak could play a part in the Web
explosion. After all, Oak was platform independent, ran on a virtual machine and was
designed to run over a network — albeit a network of toasters and fridges and televisions.
However, if a browser were written that incorporated an Oak virtual machine, any Oak
program residing on a web server could be executed on a browser that incorporated an
interpreter. Such applications could make the Web experience far more interactive and,

Unit 1 Object-oriented programming with Java

more importantly, lead to commercial exploitation of the Web. An Oak program running
within a web browser would be able to query a database, take customer details, and
take online payments — lessons learnt from the TV set-top box prototype. A eureka
moment had been reached, and the race was back on.

In September 1994, Patrick Naughton wrote a prototype browser called WebRunner that
incorporated an Oak virtual machine. The idea that a browser could support Oak
applications (called applets) excited many and WebRunner was the perfect platform
from which to demonstrate the power of the language. Unfortunately a patent search
revealed that Oak was already a trademark and, so the story goes, the team came up
with the replacement name — Java — during a trip to a coffee shop. Thus Oak was
renamed Java and WebRunner renamed HotJava.

The first public release of Java and the HotJava web browser came on 23 May 1995, at
the SunWorld conference. The announcement was made by John Gage, the Director of
Science for Sun Microsystems. His announcement was accompanied by a surprise
announcement by Marc Andreessen, Executive Vice President of Netscape, that
Netscape would be including Java support in its browsers. As Netscape was, at the
time, the world’s most popular browser, such support gave the Java language a major
boost and significant credibility ... so much so that Microsoft soon followed suit and
implemented Java support in Internet Explorer. From then on Java’s popularity as a
programming language grew meteorically and it has now grown into a full-scale
development system, capable of being used for developing large applications that exist
outside the Web environment.

5 Speculating about objects

Speculating about objects

In this section we shall ask you to carry out a number of activities using the application
StarOffice that is supplied on the Online Applications CD-ROM. The purpose of you
carrying out these activities is so that you can visualise the object-oriented ideas
discussed so far in this unit. StarOffice can be used for both word-processing and
drawing graphics. These tasks are so familiar that we usually take them for granted and
do not stop to think that they work by using object-oriented technology but, as we shall
see, objects are very much involved!

The idea that a piece of software functions through tens, or hundreds, or thousands of
objects telling each other to carry out tasks by sending each other messages is
important. In this section you will experience how sending messages causes objects to
behave in particular ways.

m Objects in a StarOffice document

If you have not already done so, please install StarOffice, which is supplied on the
Online Applications CD-ROM. You can find details of how to do this in the booklet inside
the Online Applications CD-ROM case.

This subsection comprises a series of activities using StarOffice. If possible you should
complete it in a single session. These activities aim to reinforce the concepts introduced
in Section 3; that an object has a state (its memory), which is made up by the values of
its attributes, and that an object has behaviour (what it does in response to messages),
which may depend on its state. We also discuss how to manipulate objects that you can
apparently see (such as rectangles, words and buttons), but the things you see are
visible representations of the objects that, being software objects, you cannot see. While
concentrating on the objects you draw or type, there are other important objects that
make these actions possible, such as buttons and windows.

As you carry out the activities, you should watch for these object-oriented ideas.
Sometimes they may not be immediately obvious to you, but they will be discussed
further in this section. In particular, you should think about the memory that an object
needs — its attributes, the values of which make up an object’s state.

Unit 1 Object-oriented programming with Java

ACTIVITY 1

Launch StarOffice with a new drawing document by selecting All Programs|Star
Office 8|StarOffice Draw from the Start menu (or, if you have StarOffice open, select
from the File menu, New and then Drawing, as illustrated below in Figure 12).

i Untitled1 - StarOffice 7
i5[=W Edit Mew |nsert Format Tools Modify MWindow Help

‘@ Text Document | 3
B”‘ Open... Ctrl+0 Spreadshest —
AutoPilot ' ﬁ Presentation :
& Drawing 24
[ﬁ LCloze ﬁ
i Save Ctrl+5 '@ HThiL Documert:
E Save As.. 'ﬁ hfaster Document
aaye Al '@ Formula
% Feload E Labeis
Mersions:. '@ Buziness Cards
Export.. "‘__; Templates and Documents
Export az POE...
Send 3
@ Properties...
Templates 3
&) Print.. Ctrl+P
ﬂ% Printer Settings..
o Exit Ctri+0

Figure 12 Opening a new drawing document in StarOffice

You will then see an empty drawing document, with toolbars arranged along the top and
bottom of the drawing pane (the window into which you can draw objects).

Assume that you will be able to draw shapes, including lines, in the empty drawing pane
and spend a short time thinking about the sorts of object that might be involved in a
StarOffice drawing document.

You are now going to draw a rectangle and move it. But, before you do this, think about
the objects involved. At this stage of the course guesses are perfectly all right — the
important thing is to think about what is going on. Remember that as well as the shapes
you are drawing there are also objects such as buttons that are used for communicating
with the application. The following steps will guide you through what you need to do to
draw and move a rectangle.

1 Note which of the buttons on the left-hand side toolbar is selected when the new
drawing document is first opened and what shape the cursor is when it is over the
drawing pane.

2 Familiarise yourself with some of the buttons on the bottom toolbar, more specifically,
counting from the left, buttons two to four. Move the mouse pointer over each button.
Leave it for a few seconds and a label (a ‘tool tip’ message) will appear.

3 Find the button in the bottom toolbar for drawing a rectangle. Click the button and
move the cursor to the drawing pane. Note the changes to the button and the cursor.
Which objects do you think might have changed state?

4 Click on one position in the drawing pane, hold the mouse button down and drag the
cursor to another position: a rectangle is produced when you release the mouse
button. The rectangle remains selected (shown by the green blocks, which are
sometimes called ‘handles’). Which objects do you think might have changed state?

5 Speculating about objects m

5 Deselect the rectangle by clicking anywhere on the drawing pane outside the
rectangle. The blocks will disappear. Which object do you think might have changed
its state?

6 Note the colour of the rectangle and the colour and thickness of the lines that make
up the rectangle. These are three attributes of the rectangle object.

Making sure that the rectangle is still selected, change its colour from blue to red by
selecting Red from the dropdown menu (that at present should be labelled Blue 8) in
the toolbar immediately above the drawing pane.

7 You are now going to move the rectangle. Select your rectangle (click once inside it). To drag an object, move
When the cursor changes to an icon looking like the four points of a compass, ‘drag’ the mouse with the (left)
- . . . button in the down
the rectangle to another position on the screen. Which object(s) might have changed position.
state?

DISCUSSION OF
ACTIVITY 1

1 In the bottom toolbar, the first button (carrying an arrow icon) is selected as
indicated by its white shading and dark blue edging, and the cursor in the drawing
pane is an arrow shape.

2 Button two is for drawing lines, button three is for drawing arrows and button four is
for drawing rectangles. You can ignore the other buttons for now.

3 The Rectangle button has changed state — it is now shaded. The cursor has
changed state — its shape has changed to a crosshair and box to remind you that
you are about to draw a rectangle. The state of the drawing pane must also have
changed — it must now remember that it should draw a rectangle when you drag the
cursor across the drawing pane.

4 The state of the drawing pane object must have changed. It now contains a
rectangle, an object that has various attribute values that make up its state.

5 When first drawn, the rectangle was selected, shown by the green handles. Now we
have deselected it, and the handles are no longer displayed. The drawing pane
remembers what objects are or are not selected.

6 The default colour of the rectangle is blue (specifically Blue 8) and the lines that
make up the rectangle are black and the default line thickness is 0.00. Later you will
see how to change these attribute values. The state of the rectangle object must
include something about its position (in the drawing pane), the colour of its edges
(black), the thickness of the edges (0.00), its size and its fill colour (which you
changed to red).

7 Noting that the rectangle’s position is part of its state, it is the rectangle whose state
has changed. A second possibility, which you may have considered, is that the
drawing pane remembers the whereabouts of the objects it displays. However, it is
clearly more sensible for the rectangle to remember its own properties (including
where it is) than for the drawing pane to have to remember all the properties of all
the objects that are in it. Indeed, the whole point of having objects is so we can give
them the properties (attributes) that belong to them rather than having a single
complex object that remembers everything.

In this example, we have taken the view that the information about which objects are
currently selected is part of the state of the whole drawing pane, but it is in fact quite
possible that we could make each object remember for itself whether it is selected
currently or not.

Unit 1 Object-oriented programming with Java

ACTIVITY 2

If your rectangle from Activity 1 has been deleted, before starting this activity draw
another one.

1 Work out how to draw an ellipse and do so. Notice that it is selected. Deselect your
ellipse. Which object has changed its state and how is this shown?

2 Select the rectangle and notice how the cursor changes as it hovers over the handles
and when it is inside the rectangle. What happens when you click and hold the (left)
mouse button down on one of the handles and drag the handle?

DISCUSSION OF
ACTIVITY 2

1 Deselecting the ellipse removes its selection blocks (handles). The drawing pane
has changed its state. It now has two graphical objects. This fact is shown by both a
rectangle and an ellipse being visible. This may seem obvious because drawing a
rectangle or an ellipse like this appears to be so ‘natural’, so like what you might do
with pen and paper. However, there is no magic or ‘naturalness’ involved in software:
you interacted with the application that created the appropriate object in the
drawing pane and arranged for the shape to be shown in the drawing pane. You can
think of the drawing pane as an object that has an attribute whose value is a list of
the objects that are ‘in’ the drawing pane. Every time we draw a new shape it is
added to this list. Thus the state of the drawing pane has changed.

2 When the cursor hovers over the handles, it changes shape to a two-headed arrow,
to indicate in which direction you can resize the selected object. To resize a drawing
object, you drag one of its handles.

When the cursor is in the middle of an object it changes to the four-points-of-the-
compass icon to indicate that dragging will move the object.

ACTIVITY 3

A piece of text can be typed into a drawing as a graphical object.

Click on the Text button (the sixth button from the left in the bottom toolbar). With the Text
button selected, click and hold down the (left) mouse button in the drawing pane to mark
one corner of a rectangular area and, with the mouse button down, drag the cursor to
another position marking the opposite corner of the area. Release the mouse button and
then don’t touch the mouse. You now have two cursors: the cursor that looks like the four
points of the compass and a text insertion cursor (a thick vertical line positioned top left in
the new text box). Without touching the mouse, start typing. When you type, the insertion
position is given by the text insertion cursor inside the text box.

What attributes do you think a text box has?

DISCUSSION OF
ACTIVITY 3

Working with a text box is slightly different from working with a rectangle or ellipse —
because you need to be able to type inside the text box a text insertion cursor is shown.
Once you have typed a piece of text (a series of characters) you can go back and
change it by inserting the cursor anywhere inside the typed text.

A text box has several observable attributes — content (the text displayed in the box),
position, width and height.

5 Speculating about objects

When you type in a StarOffice document, you are inserting character objects into the
document and they appear in the order in which you type them.

In the next activity you are asked to undertake a number of tasks with a StarOffice text
document.

ACTIVITY 4

Open a new text document by selecting from the File menu, New and then

Text Document. You will then see an empty text document, with toolbars arranged along
the top and bottom of the text pane (the window into which you can type characters).
For the purposes of this activity we are only interested in the toolbar second from top,
above the text pane. Figure 13 shows the elements of this toolbar that are of interest for
this activity.

& Untitled1 - StarOffice 7

If StarOffice is not running,
you will need to launch it.

(R, &

font-size
dropdown menu

dropdown
menu

bold, italic and
underline buttons

Figure 13 StarOffice text document toolbar

The font-colour button will change selected characters to the button’s currently selected
colour (see Figure 13). The button’s selected colour can be changed by clicking on the
button and holding the left mouse button down for a few seconds. This will open up a
colour palette as illustrated in Figure 14.

(%]

Font color

|Autu:umatiu:

EEEEEEEN -
e T I
EEEEEE [
EEEEEEER
EEEEEEER
EEEEENE
EEEEEN

Blue 7|7
BEEE | =g
EEEEEEE -

Blue 7

Figure 14 StarOffice colour palette

File Edit Mew |nsert Format Tools Window Help

| A EcE| R B YRS S| @LHA|R
[pefauit bl I;horndale =] Luj B I U |§ = =iz AAV &

@ |E| |...1...><...1i..2.i 3..J._4...§. '5;"?'i'8"L9 .LD. .11l...12.i.13. 14 - .1l5. |

font-colour
button

_ Unit 1 Object-oriented programming with Java

Click on one of the colours to change the colour button’s selected colour, then close the
palette and click on the colour button.

Type a few sentences into the StarOffice text pane. Then select pieces of text and do the following.
1 Change the style of one word (as a series of characters) to bold.

Change the style of another word to italic.

Change the colour of another word to green.

Increase the font size of some words and reduce the font size of others.

Change a word to a different font.

a b~ WO DN

DISCUSSION OF
ACTIVITY 4

What you have been doing as you type characters in StarOffice is to create character
objects that have the attributes colour, size, font and style. When you selected a
series of adjacent characters (a word), and then made them bold or italic you changed
the values of each of those characters’ attributes.

1 You set the style attribute of each of the selected character objects to bold.

2 You set the style attribute of each of the selected character objects to italic.
3 You set the colour attribute of each of the selected character objects to green.
4

You set the size attribute of each of the selected character objects to whichever
point size you selected, for example 10, 12, 18.

5 You set the font attribute of each of the selected character objects to a particular
font, for example Helvetica.

In the next section we shall consider the object-oriented ideas that you met in the above
activities; specifically, that objects have attributes, and that the values of these attributes
constitute an object’s state.

m State

We shall now look at the practical work you carried out in Activities 1-4 in a more
abstract way. In particular, we shall consider which objects might have been used in
such applications, and what memory they needed so that they could provide the
appropriate behaviour in response to the messages they received.

In the following discussion we shall describe everything in terms of a StarOffice drawing
document. We shall not attempt to give a precise description of how it has been
implemented, as we do not know! Rather we are using our knowledge of other object-
oriented applications to give a plausible description. Most of the ideas can be applied
equally to a StarOffice text document.

When you selected a shape such as a rectangle and changed its colour to, for example, red,
the rectangle stayed red. It did not go back to its previous colour. This tells us that the object
remembered the change; it has a colour attribute, which was set to the new colour. Other
changes to the rectangle, such as a change in position, persist in the same way. Each
property of the rectangle is represented by an attribute, and the values of the attributes record
the current state of the rectangle. The same is true for other kinds of graphical object.

However, there is a bit more to it than just changing the values of the attributes. The
shape objects are located on a drawing pane, and when a change occurs the drawing
pane must be refreshed to show the new appearance of the object. What actually
happens is something like this.

5 Speculating about objects

A rectangle’s state is changed.

2 The drawing pane is sent a message saying the rectangle object has changed the
value of one of its attributes.

3 The drawing pane sends a message to the rectangle asking for details of the change.

4 The drawing pane uses the information it gets back to redraw the rectangle showing
the altered appearance.

The idea behind all this is that it is the rectangle object itself that is responsible for
knowing about its state. The drawing pane does not remember this information; if it
needs the details it asks the rectangle (the same is, of course, true for all the other types
of shapes).

When an object is newly created what values do its attributes have? Some of its
attributes may have default values. For example, in the case of a rectangle in StarOffice
the defaults are as follows:

» fill colour — blue
» edge colour — black
» edge thickness — 0.0

All new rectangles share these values; their fill colour is always blue, and they always
have black edges of thickness 0.0. Other attributes of rectangle objects have values
which are set by the user at the time the rectangle is created, for example:

» position
» width
» height

The user chooses the position with the first click in the drawing pane, and the width and
height by dragging. Typically, different rectangles will be created in different positions,
with different dimensions. Of course, all this just applies to the initial values that the
object starts off with. As you have seen, once an object already exists the values of its
attributes can be changed.

When listing the attributes an object is likely to have, you should give each a short
descriptive name. Try to choose names which convey clearly what the attribute
concerned represents. For example the meaning of ‘edge colour’ or ‘edge thickness’ is
instantly understandable.

Exercise 3

As you have already learnt, in Java you have to run together multi-word identifiers, such
as ‘credit limit’ into single words using a single upper-case letter to mark the start of each
word after the first.

List all the attributes of rectangle objects, running together any multi-word identifiers and
giving each a brief description.

edgeColour — colour of the edges of the rectangle.
fillColour — colour of the inside of the rectangle.
edgeThickness — thickness of the edge of the rectangle.

>

| 2

» width — width of the rectangle.
» height — height of the rectangle.
>

position — position of the rectangle.

Unit 1 Object-oriented programming with Java

So you now have a list of attributes which you could use to describe a particular
rectangle. You might say that a particular rectangle has the attribute edgeColour set to
the value red, the attribute fillColour set to the value blue, edgeThickness set to the
value 4, width set to the value 17, height set to the value 9 and position set to the
value given by column 22, row 25. Of course, the best way to represent such an object
to humans who can perceive shape and colours, is to show it the way that StarOffice
does — for people with certain visual impairments, speaking out the above description
would be better.

So far, when looking at text and drawing documents in StarOffice we have concentrated
on state, which is made up of the values of an object’s attributes. Now we shall start to
consider the behaviour of an object — how it will respond when it is sent a message. In
the next subsection we shall address these ideas in more detail.

m Messages in a StarOffice text document

In this subsection you will look in some detail at what messages might be involved in
changing the attributes of characters in a StarOffice text document. You will discover
that a whole range of objects is involved, some of which are much less obvious than
others.

As you have seen, it is possible to manipulate a sequence of characters — a word or
paragraph — in exactly the same way as you would a single character. You simply select
what you want to change and apply the appropriate command. Indeed this flexibility and
generality are reasons that word processors are now ubiquitous. We now look at how
this aspect of word processors is made possible.

What happens when you use a word processor, such as StarOffice, to alter the size of a
sequence of characters from, say, 12 point to 24 point, or to change the characters from
upright (roman) to italic? Consider the last scenario — as a user you might select the text
you want to change, then you click the Italic button. The effect is that the text you have
selected changes to italic on the screen and, of course, if you were to print the
document the changed text would appear in italics. Figure 15 depicts this.

A

With|sloping|masts

and dipping prow

With masts

and dipping prow

Figure 15 Changing characters to italic with the ltalic button

The object-oriented view of computing considers the components of an executing
program to be objects which know how to behave in some fashion and which enact their
behaviour when sent appropriate messages. So, if a text pane contained the text With
sloping masts and dipping prow, what objects might be involved in producing wWith
sloping masts and dipping prow?

5 Speculating about objects

The first object is the application itself; it needs to react to messages that the operating
system sends it concerning mouse movement, or clicks, or typing on the keyboard. For
example, is the cursor in the text pane (if so where)? Is it in a toolbar (if so where)? Here
the application needs to determine that the cursor is in the text pane (our second object)
and tell the text pane to be ready for the user to do something. The text pane then needs
to react when the user starts to select the characters in the word sloping by
highlighting the characters; it must also remember what characters have been selected.
The third object involved is the Italic button, which reacts to a ‘mouse click’ (the
application is involved in this as well — the operating system tells it where the mouse is
and that it has been clicked, and the application then tells the button object that it has
been clicked). Fourth, and most important in our list of objects, there are the character
objects whose visual representation we recognise — the sequence of letter shapes:
s 1 op ing. These objects have a memory of their attributes — shape, font, colour,
size and style. While these attributes are ones whose values have a straightforward
visual representation, character objects in StarOffice almost certainly have other
attributes whose values have no visual representation but nonetheless will be important
to themselves and to other objects in the application.

Once sloping has been selected and the Italic button has been clicked, a series of
messages is sent. Firstly, the application is told by the button that the user has requested
that some text be changed to italic. The application then relays this information to the text
pane. The text pane then checks if any characters are selected. If any are, the text pane
then tells the selected objects to change to italic; when the selected objects receive the
message to change to italic they do so. But that is not the end of the matter, the
characters must then tell the text pane that they have indeed changed, so that the text
pane can redisplay them as italics. All this happens so quickly that, as intended, it looks
to users that they have selected sloping and then ltalic and the command has directly
changed the word to sZopzng. All this is depicted in Figure 16.

While you should not slow yourself down by thinking too much about what is going on
with the applications you use, you should be aware that the apparently simple tasks you
carry out with an application may involve lots of messages being passed among
cooperating software objects to achieve what you want. You should also be aware that
the things you manipulate on screen are visual representations of software objects; they
are not the objects themselves, which you cannot, of course, see.

1
I change selected text to italic

>(StarOffice

2
change selected
text to italic
5
update display
text pane
A
The message labelled cha?wge ICe Similarly, the message labelled
3is sent to each of the yourself changed 4 is sent by each of the
selected characters. ‘o hellie TR characters to the text pane.
A
With|sloping|masts With|sloping

and dipping prow

Figure 16 A model of how the Italic command works

masts

and dipping prow

Unit 1 Object-oriented programming with Java

A microworld is a
computer-based
simulation with
opportunities for
manipulation of content
and practice of skills — in
this case sending
messages to objects and
observing their effect.

Exploring objects in a
microworld

Within the context of sending messages to objects, this section looks in more depth at
the state of an object as given by the values of its attributes. The new concepts are those
of an object being an instance of a class with a particular message protocol. We shall
also introduce to you an application, developed specifically for the course, called
Amphibian Worlds — this application contains a series of microworlds, containing
amphibian objects, which will help you to explore object-oriented ideas. In this section
you will be investigating the microworld Two Frogs — study of other microworlds forms
part of Unit 2.

The activities start with the investigation of sending messages to objects. From this
exploration you will discover what attributes an object may have and how to use the
software to inspect the state of an object at any given time.

You will also write your first piece of Java code so that you can manipulate objects via
code, rather than via a button in a user interface. You will then begin your journey into
object technology by considering classes.

To access the microworld used in this section, launch the Amphibian Worlds application
by double-clicking the shortcut that has been installed on your desktop, and then, from
the Microworld menu, select Two Frogs.

m Sending messages to objects

The microworld Two Frogs has a user interface which allows you to send messages to
two frog objects, either by clicking named message buttons, or by entering Java code
into a code pane and clicking the Execute button. The frog objects also have graphical
representations so you can observe the effects of sending messages to them. The
Inspect button in the microworld will enable you to ‘look inside’ an object to find out its
state — the values of its attributes.

= Amphibian Worlds: Two Frogs .
graphical

il e representation
of a frog object
—— —— —— —— —— "tl.u
S —
Amphibians Amphibian Messages
(left() | [rightf] | [homef] |
| upl] J { down)] (jump(] |
[green(]] [brawn) | [crak(] |
(Inspect |

list of variables that

reference frog objects —
the variable frogl is

selected

CEET

Figure 17 The microworld Two Frogs

The graphics pane at the top of the microworld Two Frogs displays graphical
representations of two frog objects. These frog objects are shown sitting on stones in a

pond. Variables are discussed in
detail in Unit 3.
In order to send messages to these objects you need some way of referring to them; for

this we use variables. A variable is a named block of computer memory into which data
can be stored. In the case of the microworld Two Frogs there are two variables, frogl
and frog2. These variables are listed in the list pane labelled Amphibians, on the left
below the graphics pane. These two variables could have been given any names we
pleased, for example x and y, or aObject and bObject. However, using frogl and
frog2 is a better choice because the names remind you what sorts of objects are
involved. The buttons to the right of the list of variables (in the pane labelled Amphibian
Messages) allow you to send messages to the two frog objects and observe their
behaviour in the graphics pane. However, before sending a message it is necessary to
indicate first to the microworld which frog object you wish to send the message to. To
select a particular frog object, you will need to highlight the appropriate variable in the
list pane by clicking once on it. Once you have selected a variable the graphics pane
will identify the graphical representation of the corresponding frog object by colouring
its stone yellow. Having selected a frog object, you will then be able to send it a
message by selecting (clicking once on) a message button.

At this point it is useful to clarify the terminology associated with variables. You may
come across informal shorthand phrases such as ‘send a message to the object frogl’,
or ‘as before frogl behaved as expected’. However, since a variable is just a label on a
block of memory, to be technically precise the phrases should be ‘send a message to
the object referenced by the variable frogl’ and ‘as before the object referenced by the
variable frogl behaved as expected’. Most programmers would be perfectly happy
using the shorthand style in casual speech (and indeed we will occasionally use it in this
and subsequent units), but you should always be prepared to use the more precise
terminology when required.

Unit 1 Object-oriented programming with Java

ACTIVITY 5

Launch the application Amphibian Worlds and then select the microworld Two Frogs
from the Microworld menu.

We want you to explore the behaviour of the two frog objects in this microworld — a few
suggestions and questions for working systematically are listed below. You may find it
useful to record the behaviours of the frog objects in response to each message. To send
the message right () to the object referenced by frogl, highlight the variable frogl in
the Amphibians list pane and then click once on the button labelled right(). The
representation of the object in the graphics pane will then move one position to the right
(to a new stone).

1 What are the colour and position of each frog object when you first open the
microworld Two Frogs?

2 Select one of the frog objects (highlight a variable in the list pane) and send it each
message in turn (by clicking once on a message button), noting the response. An
error report will appear in the window labelled Display Pane when you send some of
the messages. Read the text and then press the Clear button to remove the error
report. List the messages the frog object understands, and record the response each
such message invokes in the frog object.

3 Does the other frog object respond in the same way to each message?

4 With a frog object sitting on the rightmost black stone, send it the message right()
a few times in succession — you will see a blue arrow. What is the blue arrow
indicating? Try to reposition the frog object on the rightmost stone by sending left()
messages to the frog object.

With a frog object sitting on the leftmost black stone, send it the message left() a
few times — you will see a red arrow. What is the red arrow indicating? Try to
reposition the frog object on the leftmost stone by sending it right () messages.

5 What happens when the message up () is sent to a frog object? What happens when
the message down () is sent to a frog object?

Following from your explorations of the messages to which the frog objects respond and
their resultant behaviour, what information do you think each frog object is storing? Can
you make any guesses about the attributes of these frog objects and the state a particular
frog object may have?

DISCUSSION OF
ACTIVITY 5

1 When the microworld Two Frogs is opened, each frog object is green and is on the
leftmost stone (position 1).

2 Whichever frog object you select, it responds to the following messages with the
following behaviours:

left() — moves one position to the left;

right() — moves one position to the right;

home () — moves to (or remains on) the leftmost black stone;
Jump () — jumps, and lands again in the same position;
green() — turns green (unless already green);

brown () — turns brown (unless already brown);

croak () — croaks audibly (and displays a red !).

3 The two frog objects behave in exactly the same way when the same message is
sent to them. For example both objects move one position to the right when sent the
message right().

6 Exploring objects in a

4 If a frog object is on the rightmost black stone is sent the message right(), the
graphics pane shows a blue arrow pointing to the right to indicate that the frog
object has disappeared from view. If a frog object on the leftmost black stone is sent
the message left() the graphics pane shows a red arrow pointing to the left to
indicate that the frog object has disappeared from view.

If either a blue or a red arrow appears, then a horizontal scrollbar will appear
underneath the graphics pane, allowing you to scroll the graphics pane left or right
to view the frog object that has gone out of sight. Alternatively, a message to the frog
object to move in the opposite direction will cause it to reappear. The frog object can
also be repositioned to the leftmost black stone (position 1) by selecting the variable
that references the frog object in the list pane and pressing the home() button.

5 When the message up() or down () is sent to a frog object, a pane — the Display
Pane — opens up at the bottom of the Amphibian Worlds window, and a message in
the pane appears to inform you that an error has occurred. This is because you are
not allowed to send up() and down () to ordinary frog objects, which are not
capable of acting on these messages. However, these messages can be sent to a
more versatile kind of frog that you will investigate later, in Unit 2! To close the
Display Pane click on the — sign next to the words Display Pane.

The messages left(), right() and home () are intended to alter the position of a frog
object. (You see the icon representing the frog object move to — or remain on — a
particular stone.) The object must therefore hold information on its position, so it is likely
to have an attribute with a name like position. In fact, the attribute position holds a
number, reflected in the graphics pane by mentally numbering the stones from left to
right, with the frog object appearing on the leftmost black stone when the attribute’s
value is 1 and the frog object appearing on the rightmost black stone when the
attribute’s value is 11. As you have seen in the previous activity, frog objects can move to
positions outside the range of 1 to 11. When this happens a red or blue arrow appears in
the graphics pane to indicate that the frog has moved out of sight, but you can scroll the
graphics pane to bring the frog back into view. Stones representing positions less than
one are coloured light red, and stones representing positions greater than 11 are
coloured light blue.

A frog object’s colour can be changed by sending it the message green() or brown().
(The icon changes colour.) Information on colour must therefore be part of the object’s
state and you might guess that there is an attribute with a name like colour. This
attribute must be able to specify the colour of the frog object — including the colours
green and brown.

ACTIVITY 6

In the previous activity you made a guess at the attributes (and their values) of the frog
objects. Now you are going to ‘look inside’ each object to see what attributes each has
been given by the programmer. The formal term for ‘look inside’ is to inspect the state of
an object. The microworld provides an inspector tool for finding out an object’s attributes
and for inspecting an object’s state (the current values of the attributes). Figure 18 shows
an example of the inspector tool displaying the attributes and attribute values of a frog

object.

_ Unit 1 Object-oriented programming with Java

= Amphibian Worlds: Two Frogs

File Microworld

This cell shows the
actual colour.
Clicking this cell

Amphibians

frog2

Type

[o, O Calaur
: iti int

Figure 18 An inspector on a frog object

1 Highlight the variable frogl in the list of variables and press (click once on) the
button labelled Inspect. An inspector will open on the object referenced by the
variable frogl, enabling you to ‘look inside’ the object — that is, to ascertain the
attributes of the object referenced by frogl and its current state.

What attributes has the object referenced by frogl1? How would you describe the
current state of the object referenced by £rogl?

Close the Inspector window before proceeding.

2 Now inspect the attributes of the object referenced by frog2, following the approach
given above for frogl. Do the two frog objects have the same attributes? Do the frog
objects currently have the same state?

How can the state of a frog object (or, in general, of any object) be changed?
Close the Inspector window before proceeding.

DISCUSSION OF
ACTIVITY 6

The left-hand column of the Inspector window gives the attributes of the object being
inspected and the right-hand column gives the attribute values — its state.

1 You can see that frogl has two attributes — position and colour. If the frog object
is in its default position (the leftmost black stone) and in its original colour (green)
then the inspector will show the state of frogl to be position 1 and colour GREEN.
Note that when you click on the value of the colour attribute the text name for the
colour will be shown rather than the colour itself.

2 Both frog objects have the same attributes. They may or may not have the same
attribute values; this will depend on what messages have been sent to them. If
frogl has position set to 1 and colour set to GREEN, and frog2 has position
setto 2 and colour set to BROWN, the states of the two frog objects are not the same.

The state of an object can be changed by sending it a message.

6 Exploring objects in a

An inspector shows a snapshot of the state of an object, not a live report. If you leave an
inspector open on, say, frogl, and send a message to frogl that changes its state,
and then return to the open Inspector window, this inspector does not reflect the new
state. In order to see the new state of frogl, it is necessary to open another inspector.
The new state of the object referenced by frogl is then displayed in the new inspector.

ACTIVITY 7

The microworld Two Frogs includes a Code Pane. Instead of clicking the various named
message buttons to send messages to frog objects, you can use the Code Pane to write
Java code that will send messages to these frog objects once you click on the Execute
button.

To try this out, firstly click on the + sign next to the words Code Pane (just above Display
Pane) to open the pane up, then place the cursor in the Code Pane, type the name of a
variable that references a frog object, and then the message you wish to send. Take care
to place a full stop between the variable and the name of the message because, in the
syntax of Java, a full stop is how you indicate that a message is to be sent. Make sure
that you copy the capitalisation of each letter exactly as upper or lower case, and
complete your message with a semi-colon. An example line of code is:

frogl.brown();

If you make a typing mistake, you can correct it, much as in a word processor. Once you
are happy with what you have typed, press the Execute button. The effect of your
message will be shown in the Graphic Pane.

If you send a message with a typing mistake in it, an error report will appear in the Display
Pane. If the advice does not help, try typing the message again, making sure you have
deleted everything you don’t want before retyping. Pay particular attention to spaces (you
do not need any), capitalisation (use of upper and lower case) and spelling, as these are
the most common typing errors. Highlight and delete your message line each time before
typing the next.

Try typing a variety of messages to each frog object, including the messages up() and
down ().

DISCUSSION OF
ACTIVITY 7

Sending messages to objects using the code pane produces exactly the same results
as sending the same messages by selecting a variable in the list pane and clicking a
button.

In your work in the microworld Two Frogs you learnt that you need a way of referring to
an object — a variable — before it can be sent a message. You then sent messages to the
two frog objects and observed the results of those messages — the behaviour of the
frogs in response to the messages. You did this in two ways:

» Firstly, by selecting a variable in the list pane and then clicking an appropriate
message button to send a message to the frog object referenced by that variable.

» Secondly, by typing the Java code into the Code Pane and then clicking the Execute
button. When you did this you had to ensure that you spelled the name of the
variable and the message correctly, and used the correct syntax. Using the Code
Pane acted as your first exposure to the Java programming language.

In both cases you observed the results of sending the messages in the graphics pane of
the microworld, which displayed graphical representations of the frog objects. You also

Unit 1 Object-oriented programming with Java

As well as saying that the
‘object referenced by x
belongs to class 7, we
also use the synonymous
phrase ‘x refers to an
instance of class 2.

checked the state of the frog objects, by first selecting an appropriate variable from the
list pane and then clicking the Inspect button to open an inspector which displayed the
attributes and attribute values of the object referenced by that variable.

We call the object that is sent a message the receiver of the message, as shown in
Figure 19.

receiver
/—M
frogl.left ()

—
message

Figure 19 The message left() being sent to the receiver frogl

The code that is made up of a variable name, followed by a full stop and then a message
(as shown in Figure 19) is called a message-send.

SAQ 3

In the following code, indicate the message and the object receiving the message.

frog2.brown()

ANSWER ...

The message brown () is sent to the object referenced by the variable frog2 — this
object is the receiver.

m Grouping objects into classes

You have discovered that the variables frogl and frog2 refer to very similar objects. In
fact, these objects respond to exactly the same set of messages, have the same
attributes, and behave in exactly the same way in response to the same message.

These similarities occur because the objects referenced by frogl and frog2 belong to
the same class. When using an inspector to ‘look inside’ a frog object in the microworld
Two Frogs, the Inspector window has the title Inspector: Frog.

The two frog objects in the microworld have been created as instances of the Frog
class. A class is like a blueprint or template for the creation of objects and ensures that
all its instances have the same attributes, and respond to the same set of messages in
an identical manner. So two different objects that belong to the same class and are
referenced by the variables frogl and frog2:

> understand the same messages;
» respond in the same way to each message;
> have the same attributes.

On creation, the objects referenced by the variables frogl and frog2 each has its own
set of attributes and their states are the same, i.e. they both have the attribute position
with value 1, and the attribute colour with value GREEN. Each object has its own
independent copy of these attributes, so that it can remember its own individual state
because, although all new Frog objects are created with identical state, the state of any
particular frog will get altered during its lifetime, when it is sent messages such as

right() or brown (). For example, at a later time, frogl may still have a value of 1 for its
attribute position, whereas frog2 may have this attribute set to 3.

SAQ 4

‘Instances of a given class have the same attributes.” Explain this statement.

ANSWER .

A class defines what attributes each instance of the class will have. For example, frogl
and frog2 are instances of class Frog and have the attributes colour and position.
However, each instance has its own set of attribute values so, if the message green() is
sent to frogl and the message brown () is sent to frog2, the value of each object’s
attribute colour is different.

m Grouping messages into a protocol

The list of messages to which any instance of the Frog class can respond is called its
protocol. (Strictly speaking, the set of messages to which instances of a class can
respond is known as the instance protocol of the class.)

The protocol of a Frog object, as we know it so far, is 1eft(), right(), home(),
Jump (), green(), brown() and croak().

SAQ 5

Use the terms class and protocol to explain why a Frog object is unable to respond to
the messages up() and down ().

ANSWER ..

The class defines the set of messages (the protocol) to which an instance of that class
can respond. Frog objects are instances of class Frog and the instance protocol for this
class does not include the messages up() and down ().

m Attributes of frog objects

The only attributes a Frog object has in the microworld you have been exploring are
colour and position. The values (in our example) to which these attributes are set are
shown in Figure 20 and these values constitute the state of a Frog object.

m Class of object: Frog

|, colour -
frogl "| position

attribute values

i Protocol: left (), right(), h , messages that
variable otocol: left (), right() ome () the object can
referencing the jump (), green(), brown(), croak() understand
Frog object]

Figure 20 Diagrammatic representation of a Frog object

Unit 1 Object-oriented programming with Java

The only way that the state of a Frog object can be changed is by sending it a message.
The value of the attribute colour can be set to GREEN or BROWN. The value of the attribute
position can only be a number. (This number is reflected in the graphics pane of the
microworld Two Frogs as the stone on which the Frog object icon sits, with 1 being the
leftmost black stone and 11 the rightmost black stone.)

SAQ 6
What is the state of the Frog object depicted in Figure 207

ANSWER ..

The state of the Frog object is position set to 3 and colour set to GREEN. More
colloquially you might say something like ‘It's in position 3 and its colour is green’.

SAQ 7

Frog objects have the attributes colour and position. If the Frog object referenced by
frogl is shown in the graphics pane to be on stone 1 and is sent the message brown (),
what is its state after responding to the message”?

ANSWER ...

The state of the Frog object referenced by frogl comprises the values of its attributes.
After it has responded to the message brown (), the value of its attribute position is 1
and the value of its attribute colour is BROWN.

Messages that do not alter an object’s
state

Most of the messages you have experimented with so far altered some aspect of an
object’s state — either their colour or position. However, it is quite common to come
across messages that do not cause any state change. As an example, we have included
the message jump() in the protocol of Frog objects. Sending the message jump() to a
Frog object makes it send another message to the microworld to tell it to display it
graphically jumping, but leaves its state unaltered. You can tell that the state is still the
same, because the only attributes Frog objects have are colour and position, and
neither is affected by the message jump().

Later, in Unit 2, we discuss messages that query an object’s state, in order to return the
value of a particular attribute. Such messages do not usually change the state of the
receiver.

7 Classes as software

Classes as software
components

Now that you have had a chance to discover some of the characteristics of objects, it is
a good time to consider why object technology has become so important to the software
industry.

When forming a new product in traditional industries, such as car manufacturing, the
designer no longer designs a unique, handcrafted artefact, down to individual nuts and
bolts. The designer can take advantage of ready-made sub-assemblies (components):
for example a gearbox from Honda, an engine from Mazda, a fuel injection system from
Bosch, suspension from Lotus and a body shell from Pininfarina. All these companies
will have ensured that the fixing brackets for their products are of a standard size and
that they have holes pre-drilled to accept standard sized nuts and bolts.

Until the early 1990s the software industry was more like the early car manufacturing
industry with each part of an application or system being designed from scratch. More
recently, standard software components have been produced in a similar fashion to
car components with the aim of reuse. The same reliable, reusable software
components can be incorporated into many whole new systems, thus saving the
considerable time and effort it can take to generate new software. These possibilities
have been brought about by object technology.

A growing part of the software industry is now focused on the production of generally
useful software components (and at the other end of the scale, highly specialised
software components) that can then be bought by other software developers to speed
the development of their own applications (by avoiding reinventing the wheel!). For
example, if a company were to write a system for an online shop, it is very unlikely that
they write all the code from scratch. It is more likely they would buy a database
component from one vendor (to hold descriptive details and stock levels of the items for
sale) and a component for secure payment transactions from another vendor.

The reason why this is now possible is because objects are entities that contain both
data (in the form of attribute values) and a defined message protocol. To repeat a
mantra — objects only do something if you send them a message. They are self-
contained units of software that can be tested and proved to be robust and reliable. In
the context of object-oriented programming, a software component is a class, or more
likely, a closely related group of classes. (Note that the component is the class (not the
object); what you ‘buy’ as a component is the code for constructing and using instances
of a class, not the instances themselves.)

The concept of software components has led to the possibility of replaceable parts for
systems — not just for replacing faulty components with correct versions, but for
replacing limited components with more flexible ones. For example, imagine a
component of a word processor, say, one that allows the word processor to manipulate
documents. If the relevant component were only to accept documents of less than 6000
characters (merely a couple of pages), but you wanted the word processor to be useful
for writing a book, it would be helpful to replace the original limited component with one
that accepted, say, 2,400,000 characters. This is entirely possible so long as the classes
in the new component defined objects with the same protocol. Just as your garage can
simply replace the engine in your car with a more powerful one if the fixing brackets are
in the same place.

Unit 1 Object-oriented programming with Java

SAQ 8

Why are the components of a domestic electrical system (such as plugs and light bulbs)
a suitable analogy for the ideal software industry?

ANSWER ...

It is a suitable analogy because the domestic electrical system depends on standard

parts; you can exchange different makes of each component, such as a plug or a bulb
(at least within one country), and the system will still work. As long as each component
works as intended, its make is irrelevant.

Summary

Summary

After studying this unit you should understand the following ideas.

>

| 2

Ultimately software executes on hardware; software delivers instructions to
hardware.

Types of software can be categorised as system, application or program software
(however these categories do overlap to some extent).

An operating system (OS) is the software responsible for the control and
management of hardware, and the basic computer system operations.

Source code must be translated by a compiler into a primitive language, called
machine code, in order to run on your computer’s hardware.

The translation of source code to machine code can be a two-stage process. First it
is compiled to bytecode which is the machine code of a virtual machine. This virtual
machine will then interpret the bytecode into machine code at run-time.

The advantage of a compilation model that makes use of a virtual machine is that it
ensures that the bytecode, no matter on what machine it was compiled, can be
translated for execution on many different computers, so long as each computer
system has the correct virtual machine installed.

In object-oriented software all the processing that is carried out by a program is
done by ‘objects’.

An object can be thought of as a self-contained unit of software that holds data and
knows how to process that data.

The only way to get an object do anything is to send it a message.

All messages ask an object to perform some action — these actions constitute what
is termed the behaviour of the object.

The set of messages to which an object responds is called its protocol.

An object has attributes; the values of these attributes at any one time constitute the
state of the object.

A message may change the state of an object.

A message may make an object do something without altering its state.

Objects are organised into classes. A class defines the attributes and behaviour of
its instances. Therefore, objects belonging to the same class (instances of the class)

have the same set of attributes and respond to the same set of messages,
responding to each message in an identical manner.

Object technology has brought about the concept of software components, which
are produced with the aim of reuse. The same reliable, reusable software
components can be incorporated into many whole new systems, thus saving
considerable time and effort in producing new software.

Unit 1 Object-oriented programming with Java

LEARNING OUTCOMES

After studying this unit you should be able to:

VVYyVVYyVYVYYVYYVYY

v

v

explain the differences between hardware and software;

categorise examples of software as systems, applications or programs;

describe the role of the operating system;

explain various methods for translating source code into machine code;

describe the role of Java Virtual Machine;

describe how the advent of the World Wide Web contributed to the success of Java;
appreciate and describe what characterises object-oriented software;

explain how procedural software differs from object-oriented software;

explain the terms attribute, attribute value, state, behaviour, message and protocol
as they apply to objects;

make sensible suggestions for the sorts of object that might be used in a piece of
software and the sorts of message to use with those objects;

give an account of what happens when a user uses a button, or a menu, to change
the appearance of something on screen;

reason about what attributes a particular object might have and what values those
attributes might have at a given time;

describe how objects are organised into classes, which determine what attributes
an object has and to which messages they can respond;

explain how object technology has made possible the building of software systems
out of components.

8 Glossary

Glossary

A unit glossary highlights the key terms in the unit. Some of these terms are developed
further in subsequent units and so are present with more detail in those units’ glossaries.

application Software that turns your computer into a specialised computer, such as a
word processor or web browser.

application domain See problem domain.

attribute Some property or characteristic of an object, such as position, size or
balance.

attribute value The current value of an attribute.

behaviour Used to describe an object’s response when it receives a message.

binary digit Either of the two digits 0 and 1 in the binary number system. Binary digits
are used for the internal representation of numbers, characters and instructions. The
binary digit is the smallest unit of storage.

bit See binary digit.

bytecode The code produced by a compiler as the machine code of a virtual
computer. Bytecode is so-called because it is organised into 8-bit bytes.

class A class is a template that serves to describe all instances (objects) of that class.
It defines what attributes the objects should have and their protocol — what messages
they can respond to.

compiler A program that translates source code into bytecode or machine code.

component See software component.

domain See problem domain.

domain model That part of the software that models the problem domain and is not
directly concerned with how communication with the user is achieved.

dynamic compilation A compilation technique (used by the Java environment)
generating real machine code from bytecode (intermediate code). A chunk of bytecode
is compiled into machine code just prior to being executed. (This is different from and
faster than the piecemeal operation of an interpreter.) The real machine code is retained
so that subsequent execution of that chunk of bytecode does not require the translation
to be repeated.

high-level language A language (for example, Java) whose structure reflects the
requirements of the problem, rather than the facilities actually provided by the hardware.
It enables a software solution to a problem, or a simulation of an aspect of reality, to be
expressed in a hardware-independent manner.

instance An object that belongs to a given class is described as an instance of that
class.

intermediate code See bytecode.

just-in-time compilation See dynamic compilation.

Unit 1 Object-oriented programming with Java

low-level language A language written for direct programming of a computer’s
hardware. Each type of computer hardware needs its own low-level language.

message A request for an object to do something — right () is an example of a
message. The only way to make an object do something is to send it a message.

message-send The code that sends a message to an object — for example,
frogl.right(), which consists of the receiver followed by a full stop and then the
message.

microworld A computer-based simulation with opportunities for manipulation of
content and practice of skills.

model (verb) To simulate an entity in the problem domain.

model (noun) See domain model.

network computing The theory of connecting computers together, and the use of
such a ‘network’. A network may be local (for example, in an office or home) or global
(for example, the Internet).

object A software component that has a unique identity and responds to messages.

object-oriented technology The technology associated with viewing software as
being made up of objects.

object technology A synonym for object-oriented technology.

operating system The software that manages the resources of a computer, including
controlling the input and output, allocating system resources, managing storage space,
maintaining security, and detecting equipment failure.

peripheral device Any part of the computer that is not part of the essential computer
(i.e. the CPU and main memory). The most common peripherals are input and output
(I/O) devices such as the mouse and keyboard, and storage devices such as hard disks
and CD/DVD drives.

problem domain The collection of real-world entities within the application area that
exhibit the behaviours that the required system has to model.

program Software that has a starting point at which it takes some input, after which it
performs whatever computation is needed, and has an end point at which output is
given and the software ceases to run.

protocol The set of messages an object can respond to (understands).

receiver The object to which a message is sent.

run-time Refers to the moment when a program begins to execute, in contrast to the
time at which it has been loaded or compiled.

run-time system The code that a compiler produces to make software execute on a
real or virtual machine. This code has not been explicitly written into the source code
by the programmer.

software A general term for all the applications, programs and systems that run on
your computer.

software component A piece of software that can be combined with other pieces to
construct software.

8 Glossary

source code Program text expressed in a high-level programming language.

state The state of an object is the information it needs to implement the behaviour that
its protocol requires. The object’s state is determined by the values of its attributes.

system Software that is intended to run forever, responding to events in often complex
ways.

virtual machine A layer of software that simulates a computer capable of interpreting
bytecode.

visual representation A useful representation of a software object which, by
definition, is invisible. The visual representation may be textual, such as characters in a
word processor; or graphical, such as shapes in a drawing application.

_ Unit 1 Object-oriented programming with Java

Index

A | problem domain 18
application 10 instance 44 orocedural programming 17
application domain 18 instance protocol 45 orogram 9
argument 21 intermediate code 15 orotocol 45
attribute value 19 interpreter 14-15 .
attributes 19 J receiver 44
B Java Virtual Machine 16 run-time system 14
behaviour 19 just-in-time compilation 16 S
binary digit 7 L software 7
bit 7 low-level 8 software components 47
bytecode 15 low-level language 13 software system 8
C M source code 7
message 18

class 44 9 state 20
code 7 message answer 18 i 8

system
compiler 14 message-send 44 system software 8
component 47 microworld 38

V
computer system 8 model 18 variable 39
D o) virtual machine 15

i object 19

domain 18) visual representation 37
dynamic compilation 16 operating system 8
H P

high-level language 13 peripheral device 7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

