
Object-oriented

M255 Unit 1

Object-oriented

1Unit
programming with Java

UNDERGRADUATE COMPUTING

programming with Java

course M255

more

course

Copyright ª

or

electronic course

licensed

course

an

written

2.1

This publication forms part of an Open University

Object-oriented programming with Java. Details of this and other

Open University courses can be obtained from the Student

Registration and Enquiry Service, The Open University,

PO Box 197, Milton Keynes, MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn about the wide

range of courses and packs offered at all levels by

The Open University.

To purchase a selection of Open University materials visit

http://www.ouw.co.uk, or contact Open University Worldwide,

Michael Young Building, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom for a brochure: tel. +44 (0)1908 858785;

fax +44 (0)1908 858787; email ouwenq@open.ac.uk

The Open University

Walton Hall

Milton Keynes

MK7 6AA

First published 2006. Second edition 2008.

2006, 2008 The Open University.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, transmitted or utilised in any form or by

any means, electronic, mechanical, photocopying, recording

otherwise, without written permission from the publisher or a licence

from the Copyright Licensing Agency Ltd. Details of such licences

(for reprographic reproduction) may be obtained from the Copyright

Licensing Agency Ltd of 90 Tottenham Court Road, London,

W1T 4LP.

Open University course materials may also be made available in

electronic formats for use by students of the University. All rights,

including copyright and related rights and database rights, in

materials and their contents are owned by or

to The Open University, or otherwise used by

The Open University as permitted by applicable law.

In using electronic materials and their contents you agree

that your use will be solely for the purposes of following

Open University course of study or otherwise as licensed by

The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website),

distribute, transmit or retransmit, broadcast, modify or show in

public such electronic materials in whole or in part without the prior

consent of The Open University or in accordance with the

Copyright, Designs and Patents Act 1988.

Edited and designed by The Open University.

Typeset by The Open University.

Printed and bound in the United Kingdom by

The Charlesworth Group, Wakefield.

ISBN 978 0 7492 5493 3

CONTENTS

Introduction 5

1 Components of M255 6

2 Fundamental hardware and software
concepts 7

2.1 Hardware and software 7

2.2 Software: systems, applications and programs 7

2.3 The operating system 10

2.4 How programs execute on a computer 13

2.5 The computer as a layered device 16

3 Object technology 17

3.1 Procedural programming 17

3.2 Object-oriented programming 18

3.3 A short history of object-oriented technology 21

4 The origins of Java 24

4.1 In Switzerland 24

4.2 In the USA 25

4.3 The technologies come together 27

5 Speculating about objects 29

5.1 Objects in a StarOffice document 29

5.2 State 34

5.3 Messages in a StarOffice text document 36

6 Exploring objects in a microworld 38

6.1 Sending messages to objects 38

6.2 Grouping objects into classes 44

6.3 Grouping messages into a protocol 45

6.4 Attributes of frog objects 45

6.5 Messages that do not alter an object’s state 46

7 Classes as software components 47

8 Summary 49

Glossary 51

Index 54

M255 COURSE TEAM

Affiliated to The Open University unless otherwise stated.

Rob Griffiths, Course Chair, Author and Academic Editor

Lindsey Court, Author

Marion Edwards, Author and Software Developer

Philip Gray, External Assessor, University of Glasgow

Simon Holland, Author

Mike Innes, Course Manager

Robin Laney, Author

Sarah Mattingly, Critical Reader

Percy Mett, Academic Editor

Barbara Segal, Author

Rita Tingle, Author

Richard Walker, Author and Critical Reader

Robin Walker, Critical Reader

Julia White, Course Manager

Ian Blackham, Editor

Phillip Howe, Compositor

John O’Dwyer, Media Project Manager

Andy Seddon, Media Project Manager

Andrew Whitehead, Graphic Artist

Thanks are due to the Desktop Publishing Unit, Faculty of Mathematics and Computing.

Introduction 5

Introduction
Welcome to the first unit of M255 Object-oriented programming with Java!

As the course title suggests, the emphasis of the course is on object-oriented

programming – writing software from an object-oriented perspective. Object-oriented

programming is concerned with constructing computer systems out of interacting units

of software, called objects. Objects know nothing of how each other work, but they can

interact (when a program is executing) by sending messages to each other. As you’ll

see later, one of the most powerful aspects of object-oriented programming is that the

code that produces interacting objects can be reused and interchanged between

programs, so increasing programming productivity.

Programming in an object-oriented language is more than just learning new syntax rules;

it requires a new way of thinking. The idea is not to concentrate primarily on the

fundamentals of procedural languages – data structures and algorithms – but instead to

think in terms of the objects that will carry out the required tasks.

The programming language you will use in M255 is Java. However, the purpose of the

course is not to teach you the minutiae of the Java language, but rather to teach you

fundamental object-oriented programming concepts and skills that will be transferable

to any object-oriented language. Hence, while you will certainly learn quite a lot of Java,

and write lots of program code, we will be concentrating on those aspects of the Java

language that best demonstrate object-oriented principles and good practice.

The best way to learn any language is to practise using it. Learning a new way of

programming is no different, so you will find that this course has many practical

programming activities for you to carry out! In working your way through the course and

engaging in all the activities you will gain a good understanding of object-oriented

principles, and a solid grounding in the use of the Java programming language.

After a brief review of fundamental hardware and software concepts (Section 2), this unit

introduces the basic elements of object-oriented software (Section 3) and presents a

short history of the Java programming language (Section 4). In Sections 5 and 6 you will

begin to explore objects by engaging in computer-based activities.

Since M255 is a Level 2 course, the course team has assumed that you already have

some programming experience, such as that gained from previous study or work, and

are familiar with common programming constructs such as loops, if statements,

assignment statements and variables.

See the Course Guide for
a fuller description of
prerequisite knowledge.

6 Unit 1 Object-oriented programming with Java

Components of M255 1

The most obvious component of M255 is the series of printed units (you are reading

Unit 1 at the moment!). However, as described below, there is more to M255 than these

printed units.

c All units include computer-based activities; practical sessions involving the use of

your computer. The details of what you need to do for each activity, and a discussion

of the results, are contained at the appropriate points in the printed units.

c Email is used for sending messages to and receiving them from your tutor and other

students. Your computer will need to be linked online to a network (probably via a

modem) and have the appropriate communications software running for email to

work. (Your computer will also need to be online and running appropriate software to

use the next two components described below: conferences and web pages.)

c Conferencing is supported by the FirstClass system. Your tutor-group conference,

together with your regional M255 conference, will be a focus for general academic

discussion during your study of M255. You should use them to discuss questions

and issues about the course with your fellow students. Depending on

circumstances, sub-conferences devoted to particular topics may be created within

these conferences. Remember, however, that your tutor is the person you should

contact with specific academic queries: you should not use your tutor group

conference as a means to contact your tutor on some specific issue – you should

either email your tutor directly, or make contact via phone or letter.

Sharing and discussing ideas about the course with fellow students can be an

exciting and rewarding experience and you are encouraged to make full use of

your tutor-group conference. Please note that there are some basic rules about

behaviour when using FirstClass. These are described in the Conditions of Use

sub-conference, which is available within the OU Service News conference that is

on your desktop.

It is important that you access FirstClass at least once a week to look at the postings

in your tutor-group conference and check for message in your MailBox.

c Web pages on the M255 website give you access to other components of the

course, such as a study calendar, additional learning materials, assignments, news

information (for example, to correct errors or clarify points in material), electronic

versions of some unit printed texts, further explanations on a topic, and references

and hyperlinks to further reading. It is important that you access the M255 website at

Before continuing we least once a week to check for announcements on the news page.
suggest you install BlueJ
and the other course c Course software is distributed via CD-ROMs and includes the FirstClass client and

software if you haven’t BlueJ, the software you will use to program in Java.
already done so (refer to
the Software Guide for full
details).

2 Fundamental hardware and software concepts 7

2 Fundamental hardware and
software concepts

Before embarking upon the main focus of the course – object-oriented programming –

we will take a look at some fundamental hardware and software concepts. In this section

you will see what is meant by terms such as hardware, software, systems, applications

and programs and then go on to look in more detail at how computers are capable of

functioning so flexibly.

2.1 Hardware and software

Hardware consists of the tangible parts of the computer system – the parts that can be

kicked. Examples of hardware include the electronic circuits inside the casing of your

computer such as the central processing unit (CPU) and main memory, and also

peripheral devices. A peripheral device is any component of the computer that is not

part of the essential computer (i.e. the CPU and main memory). The most common

peripherals are input and output devices such as the keyboard and monitor, and storage

devices such as hard disks and CD/DVD drives. Some peripherals, such as hard disks,

are usually mounted in the same case as the processor, while others, such as printers,

are physically outside the computer and communicate with it via a wired or wireless

connection.

Software, on the other hand, is more abstract – it is a general term for all the

applications, programs and systems that run on your computer, that is, it covers

everything you cannot kick! Software consists of sets of instructions that tell a computer

(or rather the hardware) how to perform a particular task. Examples of software are

word-processor applications such as Microsoft Word, browsers such as Microsoft

Internet Explorer or Netscape, and communications software such as FirstClass.

Although software and hardware are very different in nature, they are also inextricably

related. Any instruction performed by software can also be built directly into hardware,

and instructions executed by hardware can often be simulated in software. So there is a

trade off. One could build a computer without any software; it would do just one task –

but very quickly. However, we expect computers to do a multitude of tasks: calculate our

tax returns, write a letter, play chess and maybe surf the Web. Hence it is usual to get the

computer hardware to do a lot of very simple tasks (such as adding or subtracting two

binary digits), and write software to combine these simple tasks into various

sophisticated applications.

2.2 Software: systems, applications and
programs

Although software is held as magnetic or optical patterns on a physical object (such as a Compilation is explained in

CD-ROM, DVD, memory stick or the hard disk), software itself is intangible. You cannot Subsection 2.4

see or touch software. Software is written using a programming language, and pieces of

text in such a language are often called source code or just code. This code is then

compiled into a sequence of zeros and ones, that is, binary digits or bits, which make

up the instructions and data that the hardware can execute. It is not generally useful to

consider software in terms of binary digits being interpreted by hardware as instructions

to the computer and few programmers need to think at the bit level. When programmers

8 Unit 1 Object-oriented programming with Java

do discuss software in these terms they are taking a low-level view. By this we mean

that they are considering the minute detail of how a hardware device performs a task.

To build a better understanding of what is meant by the word ‘software’ we need to

consider how we can categorise different types of software and look at the terms

‘system’, ‘application’ and ‘program’.

Systems
The term ‘system’ has subtly different meanings depending on how it is used, as can be

seen in the list below.

(a)	 An operating system, as in ‘How do I configure my system to allow me to use my

new scanner?’.

(b) A computer system (a combination of hardware and software), as in ‘My system

crashed four times last night. I can’t figure out whether it is a hardware problem or

that shareware game I picked up from a magazine cover disk’.

(c)	 A software system (usually a large piece of software) is essentially meant to run

forever (it has no start point or end point) and has to respond to a variety of events

that may occur in an unpredictable order. The system is likely to be composed of a

number of smaller units of software, called applications, which communicate with

each other. For example, ‘The patient monitoring system has eight subsystems, not

including the part that checks that the others are functioning within normal operating

parameters’.

(d)	 System software is categorised as software that helps the computer carry out its

basic operating tasks. It is software which is required to support the production or

execution of applications but which is not specific to any particular application.

System software typically includes:

c the operating system that controls the execution of other programs;

c user interface software such as graphical windows and menus systems or text­

based command line interpreters;

c development tools, such as compilers, for building other programs;

c utility programs (involved for example in sending data to a printer or

communicating with peripheral devices).

For most of the time we use the term system to capture the idea of a large piece of

software, as in (c) above. Such a system may be made up of many parts and may be

accessed by users in different ways and for different purposes. Occasionally, when

talking about hardware or operating systems, we use the term in the sense of (b) – a

computer system. That is, the combination of hardware and software (predominantly

the operating system) providing the technological context for the software programs in

which we are interested.

You have probably been a user of a large software system, for example, an airline seat­

reservation system. An airline seat-reservation system allows online enquiries and the

booking of airline seats from a vast worldwide network of travel agents (and perhaps

booking from your own home if you have the appropriate connections to the system).

The system at the heart of the reservation system is intended to run for 24 hours a day,

forever, and to provide real-time access to the database that identifies the available

seats on relevant flights. As a user of such a system you may not always be aware of the

other uses that the airline companies (and the travel trade) make of the complete system

(of which seat reservations are but a part). Clearly, such a system must also know about

the availability and capacity of the aeroplanes being used and their movements around

the world.

2 Fundamental hardware and software concepts 9

The meaning of the term ‘operating system’ as in (a) above, more or less matches our

idea of a (software) system. Unless you switch off your computer or the operating

system crashes, this (operating) system should run forever.

Programs
The notion of a program assumes a pattern of: input data – process data – output data.

That is, the software that is the program has a starting point at which it takes some input,

it then performs whatever computation is needed, and it has an end point at which

output is given and the software ceases to run. This contrasts with systems, which run

forever. However, a system might well call upon the services of a program (via the

operating system) to accomplish some simple task. For example, one (very simple)

program might display the numbers 1 to 10 on your computer screen in quick

succession. Another might calculate the conversion of pounds sterling into US dollars.

Programs may often, but not always, be ‘home brewed’, that is written by the computer

user to solve a specific small task. In this course you will be writing programs.

Exercise 1

Say whether you think the following are programs or systems according to the meanings

given to these terms in this unit. Give a reason for each of your answers.

(a)	 Software that converts a temperature expressed in Fahrenheit to Celsius.

(b)	 Software to control machinery for cutting timber into sheets of wood veneer.

(c)	 Software that checks that a timber-cutting machine is correctly calibrated.

(d)	 Software that issues tickets for the trains running through the Channel Tunnel.

(e)	 Software that calculates the mean score on a particular tutor-marked assignment.

Solution ...

(a)	 This is a program. It takes a number (a temperature in Fahrenheit) as the input, and

outputs a number as a temperature in Celsius. Thus it conforms to the

input–process–output pattern.

(b) Software needed to control machinery is most likely a system. In essence, it is meant

to run forever and respond to events related to the machinery or to the materials

being processed. In practice, such a system would probably have to be stopped

and restarted for the maintenance of the machinery.

(c)	 Software that checks the setting of a machine is probably a program. It would take

readings as input, and output suggested adjustments to the machine’s settings. The

software may be part of a larger system.

(d) Ticketing software is usually a system or part of a larger system; unless it ran forever,

train operators would lose money.

(e)	 Software that calculates the mean is a program. It inputs scores, computes the

mean and outputs the result.

In the solution to Exercise 1 we have speculated about whether software might be part of

a larger system; for example, the calibration software in (c) could well be part of the

system specified in (b). It is usual for the distinction between a program and a system to

be blurred like this, especially as the system is made up from parts that are themselves

programs or systems.

10 Unit 1 Object-oriented programming with Java

Applications
You can liken applications to virtual computers each with a special operating system.

For example, when you use a word-processor application you turn part of your general­

purpose computer into a computer that knows only about documents and the

commands that are relevant to them. When you use a web browser application you turn

your personal computer into one that spans the world. A web browser knows about the

Web and how to display the documents that reside there. As a computer user, you can

start up these different computing applications, may have more than one running at the

same time, and can switch between applications as required. Think about the situation

where you start up a word processor, and then, without exiting from it, you start up a web

browser. Each application is a virtual computer with its own set of commands, or the

same commands with slightly different meanings (for example, the commands Open

and Save have different meanings in a word processor and a web browser).

Applications differ from systems in that they are not designed to run forever and they

generally run on a single computer and perform a single task for a single user. For

example, a word processor that resides on a personal computer can only be used by

the user of that computer and its sole purpose is the production of text documents.

Note that the terms program and application are often used synonymously.

Exercise 2

System software is categorised as software that helps the computer carry out its basic

operating tasks, a software system is software that is meant to run forever and has to

respond to a variety of events that may occur in an unpredictable order, and application

software is categorised as software that helps the user carry out a task by means of the

computer. Using these categories, describe software that:

(a)	 allows the user to print material on a printer;

(b)	 maintains a personal calendar and address book;

(c)	 monitors and controls the temperature inside a school.

Solution ...

(a)	 Since printing is a basic operating task, this software is categorised as system

software.

(b) This software is considered an application. It turns your computer into a specialised

computer – a personal assistant – that, when active, can remind you of birthdays

and meetings.

(c)	 This is a software system – it is designed to run forever. It may well make use of

several programs to open and shut valves and to monitor temperature periodically.

In practice, it can often be difficult to categorise software as either an application or a

software system; how complex does an application need to be before it can be called a

system? The boundary between the two can be very blurred. In a similar manner it can

often be difficult to categorise software as either a program or an application. Hence you

will find that these terms tend not to be used too precisely!

2.3 The operating system

A computer’s operating system defines the computing experience. It is the first software

that you are aware of when you turn on the computer, and the last software you notice

when the computer is shut down (unless it crashes!). Yet most computer users cannot

2 Fundamental hardware and software concepts 11

say with any certainty precisely what it is that the operating system does, so it is worth

spending some time getting this clear.

An operating system (OS) is the software responsible for the control and management of

hardware and basic system operations (such as data input and output), as well as

running application software such as word-processing programs and web browsers.

Common operating systems for personal computers include Linux, Mac OS (for the

Apple Macintosh) and the various versions of Windows, e.g. Windows 2000 and

Windows XP.

In essence an operating system acts as an intermediary between the user (or an

application program) and the computer hardware, as shown in Figure 1. It essentially

enables the user to carry out a variety of complex tasks on the computer, without the

need to know anything about what goes on ‘inside the box’.

monitor
mouse

printer

application

disk drive

operating
system

keyboard

Figure 1 The operating system

Of course, not all computers have operating systems. For example the computer that

controls the fuel-injection system in a car does not need an operating system. It has one

task to perform and unchanging hardware to control. Since the computer simply runs a

single program all the time, which can be configured directly on the hardware (encoded

in read-only memory or ROM), an operating system is unnecessary. Indeed to all intents

and purposes that single program is that computer’s operating system.

The next seven short subsections will expand upon the work of the operating system

and will explain how it is loaded when your computer is first switched on.

Management of memory
During the execution of a program, data and instructions are stored in the computer’s

main memory. It is the job of the operating system to allocate an appropriately sized area

of memory to each program (or application), and to ensure that program instructions

and data do not interfere with each other, or with the data and instructions of other

programs.

12 Unit 1 Object-oriented programming with Java

Widget is the term used to
describe components
such as windows, buttons
and sliders that are used
in GUIs.

Coordination and control of peripheral devices
In order to carry out its tasks a computer may need to communicate with one or more

peripheral devices. For example, it may wish to receive input data from the keyboard or

mouse, read from a file on a storage device, send output to the monitor or printer, and

connect to a network. The operating system coordinates all these operations, ensuring

that data is moved safely and efficiently between the different components of the

system.

Scheduling of access to the processor
The operating system manages access to the processor, by prioritising jobs to be run

and ensuring that the processor is used efficiently. For example, if the currently running

program finishes, or is interrupted in order to wait for data from the hard disk, the

operating system will ensure, if possible, that another program is given access to the

processor.

Provision of basic utilities
Operating systems also provide basic utilities such as disk formatting facilities, file

management systems and software installation wizards.

Provision of an interface between applications/programs and
hardware
Another important role of the operating system is to provide a stable, consistent way for

software to communicate with the computer’s hardware without having to access that

hardware directly, or know about the details of the hardware, or even the minutiae of the

processor’s specifications. The operating system provides this through an application

programming interface (API), which is a set of high-level instructions (a protocol)

through which an application can ‘talk’ to the operating system to request services such

as printing a file or saving a file to disk. So, for example, instead of an application

program asking a printer to print a file, it instead asks the operating system (through the

API) to print the file. The operating system then communicates with the printer to carry

out the request. This abstraction allows a software developer to write an application on

one computer and have a high level of confidence that it will run on another computer

with the same operating system even if the amount of memory, makes, and types of

peripherals are different on the two machines.

Provision of a user interface
The user interface is the software that enables you to communicate with your computer.

It provides a means of inputting data and instructions, and presents output in an

understandable way.

The user interfaces of early operating systems such as CP/M and DOS were text based

(termed command line interfaces), requiring the user to learn a set of commands, which

needed to be typed in following precise rules. Output to the screen also consisted

entirely of text. Today all personal computer operating systems provide graphical user

interfaces (GUIs), although most also provide (often hidden away from the novice user)

a text-based interface.

GUI-based operating systems (of which the various versions of Microsoft Windows are

the most common examples) make use of icons, menus and other widgets, with which

the user interacts via a pointing device, usually a mouse. Most people find graphical

interfaces more intuitive, quicker to learn, and easier to use than sequences of textual

commands. A further advantage of GUIs is their availability for use by programs other

than the core software provided by the operating system. For example, programmers of

2 Fundamental hardware and software concepts 13

application programs (such as word processors or spreadsheet packages), do not have

to write GUIs for their programs from scratch; they can use the operating system’s API to

‘hook in’ to the GUI. In addition to providing a consistent, indirect way for application

programs to communicate with the computer’s hardware, the API also provides high­

level instructions for the creation of windows, buttons and menus, so making life much

easier for the programmer. This ensures that all applications making use of the GUI

components have a consistent ‘look and feel’, which in turn makes it easier for users to

learn how to use new applications.

Booting your computer
When you switch on a computer, the first thing it needs to do is to load an operating

system (which is usually stored on the hard disk).

To enable it to do this there is a boot program, which is implemented directly in firmware,

in the computer’s read-only memory (ROM). This program is stored into the ROM

memory chip during manufacture and is permanent. It cannot be overwritten and will not

disappear when power is lost to the computer. The boot program is executed

automatically when the computer is first switched on and it will typically run a test of the

computer’s main memory and see what peripherals are connected to the system, before

loading the operating system. The process of using a short program to load a larger

program is called bootstrapping which comes from the idea of someone pulling

themselves up by their own bootstraps. The use of the boot program for starting up a

computer has given rise to the expressions ‘booting up’ and ‘rebooting’ a computer.

SAQ 1

For each of the following functions of an operating system give one reason why the

function is important.

(a)	 Managing the allocation of memory.

(b) Providing a user interface.

(c)	 Scheduling access to the processor.

ANSWER ...

(a)	 Memory allocation ensures that program instructions and data do not interfere with

each other or with the data and instructions of other programs.

(b) User interfaces enable the user to communicate with the computer.

(c)	 Scheduling access to the processor ensures that the processor is used efficiently.

Software which is stored in
a ROM is called firmware;
it cannot be changed
easily.

2.4 How programs execute on a computer

When writing software it is necessary to express a solution to a problem in a

programming language resembling a limited natural language that can be understood –

interpreted – by human beings. That solution (as written in a programming language) is

called the source code. It must then be translated into a primitive language called

machine code – in effect, the bits that can be understood and executed by the hardware

of a computer. Since the programming language abstracts away from the detail of the

machine code language, we call the former a high-level language and the latter a low­

level language. There are a number of models for this process. One such model can be

depicted as follows.

We often use the term
‘code’ without the qualifier
‘source’ or ‘machine’ and
rely on the context to give
the correct meaning.
Except for this discussion,
we shall not be interested
in machine code in this
course, so mostly we use
‘code’ to mean ‘source
code’.

14 Unit 1 Object-oriented programming with Java

code that can
execute on

(text editor)
source code

machine code

text in high - level
language

the hardware
(hardware)

Figure 2 Relationship between source code and machine code

Translation of the high-level language source code to a low-level machine code program

is usually carried out by a piece of software called a compiler. Translation (but not into a

program) can also be done by an interpreter, which will translate source code line by

line into machine code as and when it is required.

During compilation a compiler must first check that the text conforms to the syntax rules

of the language, that is, it is properly formed. Only if this check does not show up

problems does the compiler proceed to produce the machine code that will be

executed. Typically, compilers will also generate some additional information not given

in the source code. This extra code is called the run-time system. It enables the

machine code to be executed at the time that a request for execution is made (that is at

run-time). This run-time system is usually specific to a particular computer system (or

platform), that is, to a particular combination of hardware and software.

The major problem with this simple model of compilation is that the compiled code is not

portable to other machine architectures, as different machine types employ different

machine code languages. If you wish to move your software onto another architecture,

for example from a PC to a Macintosh, you would have to recompile the high-level

language source code with a Macintosh-specific compiler to produce Macintosh

machine code (see Figure 3 below).

(text editor)
source code

machine code

PC

compile

traditionally to
implement

transferring
(often changing)

Macintosh

(text editor)
source code

machine code

compile

(hardware)

software on
different

platforms meant

and recompiling
source code

(hardware)

Figure 3 Compiling code for different computer systems

2 Fundamental hardware and software concepts

Another, more portable, model of compilation makes use of a special layer of software

(on each real machine architecture) called a virtual machine (VM). In this model of

compilation, the high-level language source code is not compiled to some architecture­

dependent machine code. Instead, it is compiled to an intermediate code, that is, to the

machine code of the notional (virtual) machine. In Java environments, the intermediate

(virtual machine) code is usually called bytecode as it is organised into 8-bit bytes.

Using this intermediate code approach allows low-level, essentially executable, code to

be moved unchanged between different computer systems (see Figure 4).

15

There are other language
environments besides
Java which also compile to
bytecode.

(text editor)
source code

intermediate code

PC

compile

Macintosh

(text editor)
source code

intermediate code

compile

code can be
moved

unchanged to

machine on a

machine code

compile

machine code

compile

(virtual machine)

intermediate

the virtual

different real
architecture

(hardware)

interpret/

(hardware)

interpret/

(virtual machine)

Figure 4 Compiling for a virtual machine

Once the intermediate code has been produced, there are three options for execution of

the software (now in intermediate code) on a real computer.

The first is to include an interpreter (a piece of software) within the virtual machine

software that simulates a real computer. Every time an application is run, the interpreter

takes the intermediate virtual machine code (intermediate code) and translates each

notional instruction, one at a time, into the real instructions for the real computer

hardware to execute. This is a relatively slow process because so much software is

involved in the interpreting, whereas the machine code from a simple compilation can

be executed directly by the hardware. The advantage of using an interpreter is that your

code can be executed on different real computer systems if that is required.

The second option is for the virtual machine to include another phase of code generation

in which all the intermediate code for a piece of software is translated into the real

machine code in one go, so that it is ready for the real machine hardware to execute.

This is the traditional approach where intermediate code is used; it originates from a

time when programs were prepared and tested as a whole rather than in component

parts, and has the disadvantage that the programmer must wait for all of the

intermediate code to be translated into machine code before the program can be

executed and tested.

In programming
environments where the
second option is used, the
programmer may never be
aware that a second
translation has taken
place.

16

This sort of approach is
also called just-in-time
compilation, for the
obvious reason.

Unit 1 Object-oriented programming with Java

The third option is a combination of the first two and is called dynamic compilation.

This option is particularly attractive when software is developed in relatively small

chunks – modules that can be separately compiled. This is the option used by the

Java Virtual Machine (JVM). When a request is made to compile a chunk of code, the

environment’s (in this course’s case BlueJ’s) built-in compiler produces intermediate

code (bytecode) for that chunk of code. This is then compiled into machine code by the

virtual machine software when the code is first executed, and this real machine code is

stored for subsequent executions. Therefore subsequent execution of that code has all

the speed that results from simple compilation. (Of course, any code that is never

executed will never be translated into machine code.)

In summary, the advantage of a compilation model that makes use of a virtual machine is

that it ensures that the intermediate code, no matter on what machine it was compiled,

can be translated for execution on many different computers so long as each computer

has the correct virtual machine.

2.5 The computer as a layered device

In this section we have defined and described the terms hardware and software

(including various sub-categories), the operating system and the Java Virtual Machine.

To bring all these things together it is useful to consider a computer system as a layered

device. So, for example, a Java program runs on top of the Java Virtual Machine, which

runs on top of the operating system, which itself runs on top of the hardware.

software systems,
applications and

programs

Java programs

Java virtual
machine

operating system

hardware

Figure 5 The computer as a layered device

Without the layers of software in modern computers, computer systems would not be as

useful and popular as they are today. While the complexity of these underlying layers

has increased greatly in recent years, the net effect has been to make computers easier

for people to use.

3 Object technology 17

Object technology 3

Commercial programs are large, very, very large. They typically consist of hundreds of

thousands of lines of code, sometimes millions of lines. As with all complex systems,

whether or not these systems involve computers, they need to be organised in such a

way that the human mind can comprehend and deal with them. Comprehension is

greatly aided if it is possible to view a complex system as made up of simpler parts that

interact within an overall structure. Throughout the history of software development there

has been an active search for useful structuring techniques and for programming

languages that support such techniques.

This section describes one structured approach to programming that uses collections of

communicating objects to build a more complex whole – object-oriented programming.

After briefly looking at the shortcomings of procedural programming, we provide an

overview of object-oriented programming and introduce some of the terminology used

in the area. We conclude the section by seeing how object-oriented technologies have

developed over the last 40 years.

3.1 Procedural programming

To put object-oriented technology into context it is useful for us to look at what went

before. Until fairly recently the predominant method for structuring programs was

procedural programming. Procedural programming is so called because the program

code gives a step-by-step procedure (a set of instructions i.e. an algorithm) for solving

‘the problem’. When designing a procedural program the programmer will usually break

down the problem in a top-down manner. An overall algorithm will be specified which will

be successively refined into smaller steps. This design methodology typically yields the

structure of a main program, involving a number of procedure or function calls, which

can in turn call further functions or procedures.

calculate
volumescustomer

details

validate
customer

details
customer

details

validate

details

get new get new
customer

display
customer

details

print
volumes

main

of orders

sort read

order

read
order

order of orders

program

An algorithm is a detailed
sequence of actions to
perform to accomplish
some task (named after
the ninth century Arab
mathematician, Al-
Khwarizmi).

Figure 6 The structure of a procedural program

18 Unit 1 Object-oriented programming with Java

In such a design, data is of secondary importance and is placed into separate

structures (called data structures). Often this data is global to the whole program so is

visible and accessible to every function or procedure in the program (see Figure 7

below), each of which will be able to change that data.

procedure_1

global data

procedure_2

procedure_3 procedure_4

(e.g. validate
customer details)

(e.g. calculate (e.g. validate

customer details)

volumes of orders) order)

(e.g. sort

Figure 7 Procedures accessing global data

The ramification of so much data being global is that if a change is made to the format of

any data structure, all the functions and procedures that operate on that data will also

have to be modified to reflect the new data type. Thus one small change has a knock on

effect throughout the program, involving changes to numerous widely scattered

routines.

3.2 Object-oriented programming

The idea of viewing software – and, indeed, of designing and writing software – in terms

of objects is not a new one. The idea has been around for 40 years, but its value has only

really become evident in the last fifteen years or so. Not all software has been designed

around the concepts of object-oriented programming, but most software with user

interfaces of windows, buttons, menus and similar icons has been built using objects.

In the object-oriented approach to software design all the processing carried out by

software is considered as being done by ‘objects’. You are already familiar and

comfortable about the concept of an object in the physical world, being surrounded by

them everyday – cars, people, toasters, DVD players, managers, etc. In object-oriented

programming, we use software objects to model real-life ones. The software objects

simulate the part of the real world (often called the application domain or problem

domain) with which we are concerned. For example, if we need a system to help

manage patients in a hospital (the domain), our software will in some sense have to

construct representations of part of the world of hospital administration. The objects we

might need are those that deal with modelling real-world patients, doctors, nurses,

wards and so on. Since the system would be a computerised one we would also need

objects for the user interface, such as windows, menus and buttons.

In the real world, people, organisations and even machines interact with one another by

exchanging requests and passing one another information. In the same way, object­

oriented programs consist of code for creating objects that can communicate by

sending messages to each other and they may get responses back, called message

answers, from other objects.

3 Object technology 19

There are two important aspects to an object: its attributes and its behaviour. An attribute

is some property or characteristic of an object, so a patient object might have attributes

such as condition, date admitted, medication and so on. The attribute value of ‘condition’

might be ‘malaria’ and the attribute value of ‘date admitted’ might be ‘3/1/2006’.

The behaviour of an object is the collection of actions an object knows how to carry out.

Each object has a list of messages it knows how to respond to. An object modelling a

patient might need to know how to respond to messages such as ‘take medicine’ The

message ‘take medicine’ might well be sent by a nurse object.

Although as users of a software system we cannot interact directly with software objects,

we can communicate with them via a user interface. Actions such as clicking the mouse, or

pressing a key on the keyboard, will cause messages to be sent to the appropriate objects.

Sometimes, to achieve some end, objects need to collaborate with each other,

sometimes they need to delegate work to others – a bit like teamwork. Using the hospital

example again, a doctor object may send a message to a nurse object requesting it to

give medicine to a number of patient objects. The nurse object would then in turn send

‘take medicine’ messages to those patient objects.

Figure 8 represents a simple view of what is happening inside an object-oriented program

when it is running. The ‘microscopic view’ in Figure 8 depicts a collection of objects

sending or receiving messages. Each object is represented by a rectangle. To get an

object to do something, it must be sent a message; messages are depicted as the arrows

between the objects. When an object sends a message to another object, all it needs to

know is what behaviour will result – importantly, it does not need to know how the internal

structure of the object receiving the message produces the behaviour. This illustration is

limited by the need to show arrows as being fixed; in software that is running, the

messages are sent (and received) as required in response to other messages.

Figure 8 Object-oriented software is a collection of objects sending messages

In its basic definition, an object is an entity that contains both data (in the form of

attribute values) and behaviour (the actions it takes on receiving messages). The word

both is the key difference between object-oriented programming and the more

traditional procedural approach. In a well-programmed object nothing outside the

20 Unit 1 Object-oriented programming with Java

object can directly change the value of the object’s attributes – indeed the only way to

get an object do anything (including perhaps, changing the values of some of its

attributes) is to send it a message. This is one benefit of the object-oriented approach –

because an object is responsible for updating its own data (the attributes), any changes

to the structure of that data only affects that type of object. Since it is usual for software

to be changed and adapted after it has been built, this is an important benefit, and there

are further benefits, such as reuse, that will emerge during the course.

Attributes and state
Different kinds of object have different kinds of attributes. A bank account object might

hold information on a balance and a credit limit, while a car object may keep a track of its

model and price. So, for example, balance and credit limit might be two of the attributes

of a bank account object; the attribute balance might have the value 100.00 and the

attribute credit limit might have the value 400.00.

For most programming languages it is usual to have to run together multi-word names,

or identifiers as they are known, such as ‘credit limit’ into single words. Thus we shall

prepare you for programming by running together the words credit and limit to form

the ‘word’ creditLimit, using a single upper-case letter to mark the start of the second

original word. More generally in identifiers we use a single upper-case letter to mark the

start of each word after the first, for example: startOfRace and firstPastThePost.

The values of all an object’s attributes together determine the object’s state. For

example, the state of a bank account object, as discussed above, comprises the values

of its attributes – the value of balance may be 100.00 and value of creditLimit may

be 400.00. Figure 9 is a diagrammatic representation of a bank account object. The

rectangle represents the object. The object has internal structure as represented by the

contents of the two sections within the diagram. The object has a ‘memory’ (the values of

its attributes) and it has a list of messages to which it can respond (in Figure 9, the actual

message names are omitted).

balance

A bank account object

Messages (omitted)

100.00

creditLimit 400.00

attributes
values of the
attributes –

these
constitute the

object's

current

memory

Figure 9 Diagram of a bank account object, showing its attributes and attribute values

SAQ 2

What is the difference between the attributes of an object and the state of an object?

ANSWER ...

Attributes describe the kinds of information that an object needs in order to provide the

required behaviours. The state of an object is the particular data held by all the attributes

at a given time; that is, the attribute values. For example, a bicycle object may have the

attributes manufacturer and size; its state is described by the values of these attributes –

perhaps Raleigh and 21.

3 Object technology 21

Messages
As mentioned earlier, the only way of getting an object to do something is to send it a

message. Thus, to change part of the state of a bank account object (that is to change

the value of one of its attributes) – for example to increase its balance – a message must

be sent to the object. Similarly, to find out the value of an attribute, for example to find out

the balance of a bank account object, a message must be sent to the object. On receipt

of a message, assuming that the object has been programmed to understand that

particular message, the object will respond with the requested action such as changing

the value of one of its attributes or returning some information. Sometimes the requested

action may involve the object sending messages to other objects. You can picture the

object with the messages it understands, as well as the information it holds (as the

values of its attributes), as illustrated in Figure 10 below.

balance

A bank account object

100.00

creditLimit 400.00

attributes of the
attributes

credit()

debit()

setCreditLimit()

messages the
object can
understand

current values

Figure 10 Diagram of a bank account object, with a partial list of the messages it understands

In the above bank account object the message credit()would increment the value

held by the attribute balance, the message debit()would decrement the value held by

the attribute balance, and the message setCreditLimit()would set the value held by
the attribute creditLimit. If the attribute creditLimit had a value of 400, the
message debit()should fail if it tried to take the balance below -400.

Note the use of a pair of round brackets (parentheses) after the message names – all

message names in Java are followed by these brackets. Sometimes additional

information (called an argument) needs to be put inside these brackets when a

message is sent. For example to debit 50 pounds from the bank account object you

send it the message debit(50). You will learn more about arguments in Unit 2.

Just as you saw with the
names of attributes, in
Java the name of a
message must be a single
word and therefore set
credit limit would not
be allowed. So, to
preserve the meaning of
the phrase, while obeying
the rules of Java, we run
the words together and
use a capital letter to show
where a new word would
have begun.

3.3 A short history of object-oriented
technology

The idea of object-oriented software originated in Norway in the mid-1960s with the

language Simula, an extension to the Algol programming language.

Simula was designed to make it easier to write programs that simulated real-world

phenomena such as industrial processes. It allowed complex systems such as a North

Sea oil terminal to be simulated (and so managed) in software. Programmers could

manipulate objects that combined information and behaviour in single units of software.

For example, adding a valve between two pipes in a Simula model of an oil refinery

simply involved creating a new valve object, setting its operating parameters, and

linking it to the appropriate pipe objects. The new valve object brought with it the ability

Algol (ALGOrithmic
Language) was a
procedural language,
designed in the late
1950s, for programming
scientific calculations.

22 Unit 1 Object-oriented programming with Java

Unix is a time-sharing
operating system
implemented almost
entirely in C. By 1991,
Unix had become the most
widely used multi-user
general-purpose operating
system in the world.

to be opened and closed, altering the flow of oil appropriately. If the same refinery were

modelled using a conventional procedural programming language, the various

behaviours associated with the valve (such as opening and closing) would probably be

distributed around the program and in various procedures, and therefore harder to find

and change.

The next major development of these ideas (building systems from components that

keep together information and behaviour) took place at the Xerox company’s Palo Alto

Research Center (PARC) in Northern California in the 1970s and early 1980s and is

largely identified with Alan Kay and Adele Goldberg. They developed the first truly

object-oriented programming language Smalltalk; this was initially aimed at children, on

the assumption that if they could use it, so could adults! Indeed, many of the ideas that

define modern computing were also developed at PARC: the ideas of a personal

computer, graphical user interfaces (windows and menus), laser printers, local area

networks; the list is impressive.

Many ideas from Xerox were quickly adopted and exploited by companies that became

the leaders of the computing industry (like Apple Computers), but the object ideas as

embodied by Smalltalk were not so readily adopted. Although seminal to object

technology, and used successfully to build many large complex systems, Smalltalk

failed to find widespread success in the software industry. The reasons for this were

threefold.

c Smalltalk development environments were relatively expensive to buy.

c Compiled Smalltalk programs run on a virtual machine rather than directly on

hardware and so were relatively slow running on the computers of the 1970s and

1980s.

c The syntax was strange when compared with the popular procedural languages of

the day, so few in the industry were prepared to make such a big change.

However, one of the most widely used procedural languages in the 1980s was C, which

was used extensively on computers that ran the Unix operating system (indeed C is still

frequently used today), and in the mid-1980s two languages appeared that embodied

objects and were based on the C language.

c	 In 1985 Bell labs released C++ (written by Bjarne Stroustrup) that added objects to

the C language.

c	 In 1986, the StepStone Corporation released Objective C (written by Brad Cox),

which was a combination of C and Smalltalk syntax. Objective C gained an early

success being adopted in 1988 as the development language for the short-lived

NeXT computer and its (Unix-based) NeXTstep operating system. Currently

Objective C is used as the principal programming language for Apple’s Mac OS X.

Additionally, Eiffel, a purely object-oriented language, also made its debut in 1986. It

introduced a number of features, including the ability to generate documentation

automatically from source code. This feature found its way into Java.

By the 1990s C++ had emerged as the market leader in object-oriented languages. Its

popularity was due, in part, to compatibility with the large existing base of C

programmers and the widespread use of Unix, which runs on many different types of

machines.

Although C++ created many converts to object-oriented ideas it does have a major

drawback. It is what is termed a hybrid language, a procedural language that has had

the capabilities for object-oriented programming bolted on. The ramifications of this are

that it is possible for a programmer to write in an object-oriented style, or a procedural

style, or a mixture of both! This can (and does) result in complicated, hard to follow code

that is difficult to maintain. It also had the result of programmers fooling themselves that

3 Object technology 23

they were writing object-oriented code just because they were using C++, when in fact

they were writing the same old procedural code.

In the next section you will learn about the development of the Java programming

language, a language which was built from the ground up. While its syntax superficially

resembles C, it is a fully-fledged object-oriented language owing more to the spirit of

Smalltalk than to C.

24 Unit 1 Object-oriented programming with Java

In a markup language the
text (and images) are
surrounded by special text
(or tags). These tags, may
be interpreted by software
to generate a display.

The origins of Java 4

In many ways it is a sheer accident that we are writing, and that you are studying, a

course about object-oriented programming that uses Java rather than some other

language. Object-oriented languages have been with us for decades and other

languages, notably Smalltalk, C++, Eiffel and Objective C were, until the late 1990s, the

dominant languages used in object-oriented software development. In this section we

shall look at the history of the Java language and try to answer the question as to why

Java is today such a popular language. In short the answer to this is one of convergent

technologies, and serendipity.

4.1 In Switzerland

In the late 1980s, scientists at the European Particle Physics Laboratory (usually known

as CERN, short for the French version of the name ‘Conseil Europé en pour la Recherche

Nuclé aire’) were having problems accessing and sharing documents electronically.

Documents were stored on a variety of servers in a variety of incompatible formats. This

made the retrieval and viewing of documents problematic – which server was a

particular document on? What software was needed to read it? If a document referred to

another document what server was that document located on? Problems were

compounded at CERN because of the nature of the site – visiting academics and

students needed to get up to speed on projects very quickly. Furthermore, there were

many collaborators on projects who were remotely based around the world – if these

scientists wanted to share documents with colleagues based in CERN they had to

organise and format them so that they would be compatible with the main CERN

computing systems. Not surprisingly, many researchers were unwilling to expend the

extra effort to make their work conform to the CERN system.

Tim Berners-Lee, a software engineer at CERN, proposed a solution based upon the

theoretical work of Vannevar Bush who, back in the 1940s, had described a theoretical

system for storing information based on associations, and the work of Ted Nelson and

Douglas Englebart who, respectively, first coined the phrase ‘hypertext’ and developed

a successful implementation of hypertext in the 1960s. Hypertext allows documents to

be published in a nonlinear format enabling the reader to jump instantly from one

electronic document to another.

In brief, Berners-Lee proposed a distributed hypertext system, or web, that would run

over the Internet. Documents would be formatted with a simple markup language, and

then uploaded to computers running his proposed server software. Any person with a

computer connected to the Internet would be then able to read (using his viewer

software) those documents from anywhere in the world. What is more, a document on

one server could have links to any number of other documents, whether on the same

server or dispersed on servers around the world, to which the user could jump to with a

single click of a mouse.

Berners-Lee began work to develop this information system in 1989. By 1990, he had

written the Hypertext Transfer Protocol (HTTP), the language computers would use to

send hypertext documents over the Internet, and designed a scheme to give

documents addresses on the Internet, calling these addresses Universal Resource

Identifiers (URIs). By the end of the year he had also written a browser application to

retrieve and view these hypertext documents. He called this first ever web browser

4 The origins of Java 25

‘WorldWideWeb’. Hypertext pages were formatted using the Hypertext Markup

Language (HTML) that Berners-Lee had written. He also wrote the first web server. A

web server is the software that stores web pages on a computer and makes them

available to be accessed by other computers on the Internet. Berners-Lee set up the

first web server, known as ‘info.cern.ch’, at CERN.

In 1991, he made the source code for his WorldWideWeb browser and the web server

available freely on the Internet so that others would be encouraged to set up web

servers. The one limitation of this was that all the software was written for NeXT

computers running the NeXTstep operating system. However, by making the code freely

available he hoped that others would make the software (both browser and server)

available on other operating systems. So begins the story of the World Wide Web

4.2 In the USA

In 1990, Patrick Naughton, a disgruntled Sun Microsystems software engineer, who was

about to leave Sun Microsystems for its rival NeXT, detailed in a letter to Sun

Microsystems’ management, the shortcomings of the company’s software division,

along with his own glowing appraisal of NeXT’s critically acclaimed NeXTstep operating

system. Shaken by Naughton’s perceptive assessment of the problems their software

division faced, Sun Microsystems’s management commissioned Naughton, Bill Joy,

James Gosling, and three others to form a research group to create something new and

exciting which would allow them to catch the ‘next wave’ of computing.

In early 1991 the group met and decided to look at the application of computers to

consumer electronics devices. At this early stage the team were considering such

household items as VCRs, fridges, microwave ovens and washing machines, and

thinking about the possibilities of developing, say, a central control unit (possibly

handheld) for all the units in the system. In this way the group evolved the concept of a

network of different types of device (kitchen equipment, entertainment units, etc.) that

could all pass information between each other as necessary. A crucial part of the project

was to decide on the best programming language to achieve the team’s objectives. This

task fell to James Gosling who initially looked at C++. However, further investigation led

to the conclusion that the difficulties encountered with C++ were best addressed by

creating an entirely new language.

Given the application, the language needed to have the following characteristics.

c Familiarity – the C and C++ languages were widely used in consumer electronics,

so basing the syntax of the new language on these existing ones would aid

acceptance and hence use.

c Platform independence – the concept was to have a range of devices (from different

manufacturers) communicating with each other, and thus the language would need

to be able to perform on a variety of processors. This characteristic meant the

language would have to be an interpreted language that could be run on virtual

machines located on each device. Under this scheme bytecode containing the

appropriate instructions could be produced on one device (for example the central

control unit), then sent around the home network for execution on the virtual machine

residing on the device requiring control (see Subsection 2.4 if you need to remind

yourself how an interpreted language is used).

c Robustness – for consumer acceptance the new technology would need to run

without failure. Thus the underlying language technology should omit various error­

prone features of C and C++, and incorporate strong in-built syntax checks.

26 Unit 1 Object-oriented programming with Java

c Security – as the various devices would be exchanging information within their

network, the language would need to prevent intrusion by unauthorised code

getting behind the scenes and introducing viruses or invading the file system.

c Object-orientation – as the architecture of object-oriented languages fits so well with

the architecture of client/server systems running over a network, the language

should be designed to be object-oriented from the ground up. In a client/server

system, software is split between server tasks and client tasks. A client sends

requests to a server asking for information or action, and the server responds. This

is similar to the way that objects send messages to each other and get responses

(message answers) back.

The design and architecture decisions were drawn from a variety of languages including

Eiffel, Smalltalk, Objective C and Cedar/Mesa, and Gosling completed an interpreter for

the language by August 1991. He named the language ‘Oak’, apparently after the tree

that grew outside the window of his office (although other stories abound).

None of these features were unique to Oak; for example the use of bytecode and virtual

machines had long been used in the Smalltalk and UCSD Pascal languages. However,

what was unique was that all the above features came together cleanly in a single

language.

While Gosling had been working on the language, other members of the team had been

working on the hardware side and, in August 1992, the team demonstrated a prototype

remote control like device with a touch sensitive screen called *7. When a user first

touched the screen, it displayed a cartoon world where a character named Duke (shown

in Figure 11), guided the user through a cartoon representation of the rooms of a house.

TM

Figure 11 Duke – the cartoon character that first appeared in the *7 (ª Sun Microsystems)

Everything was done without a keyboard – a user navigated through the house by gliding

their finger across the remote’s screen to interact with the various devices. For example,

by sliding a finger across the screen, the user could pick up a virtual TV guide on the

sofa, select a movie, drag the movie to the cartoon image of a VCR, and program the

VCR to record the show. The senior management at Sun Microsystems were ecstatic; this

was revolutionary for 1992 and, in that November, a subsidiary of Sun Microsystems

(called FirstPerson Inc.) was set up to further develop and market this new technology.

Despite great expectations, commercial success did not follow; there was no real

market for such devices, the technology was too far ahead of its time, and the world was

not ready. The future looked a little uncertain for the emerging language, so a race was

on to find a new application for Oak. In early 1993, the team heard of a Time-Warner

request for proposals for a set-top box operating system, including on-demand

interactive technology. FirstPerson Inc. worked at developing a TV set-top box based on

Oak to coordinate the transmission of video, data and money securely over a distributed

network. They presented the prototype to Time-Warner but unfortunately lost the

contract to their rivals in Silicon Valley – Silicon Graphics. That was the last straw – after

one too many failures, Sun Microsystems dissolved FirstPerson Inc and assigned the

employees to various other projects within the parent company. It looked very much like

Oak was destined to be consigned to the dustbin of history.

4 The origins of Java 27

4.3 The technologies come together

In the meantime, since 1991, Tim Berners-Lee’s brainchild, the World Wide Web (WWW),

had gone from strength to strength because Berners-Lee had made the source code

public.

As the number of users on the Web grew it became more attractive as a medium.

Scientists, who were already used to sharing information on the Internet, began to

embrace the Web. It was easier to post information on the Web once than to reply

repeatedly to multiple requests for the same data. They also no longer had to worry

whether or not the other scientists used a different operating system as new browsers

were developed. Government agencies, which had responsibilities to make their

information public, also began turning toward the Web.

Berners-Lee had developed his WorldWideWeb browser on a NeXT personal computer.

As the potential of the Web was realised others, mostly students, began creating new

browsers for Mac, PC, and Unix users. For instance, students at the Helsinki University

of Technology wrote Erwise for Unix machines, Pei Wei, a UC Berkeley student wrote

Viola and colleagues of Berners-Lee at CERN wrote a browser for Mac machines called

Samba.

The Web grew exponentially, both in the number of sites and users. The number of

visitors to the original web server – info.cern.ch – grew by a factor of ten every year. By

the summer of 1993, the original site was getting ten thousand hits a day. However, at

this point the Web was still the preserve of mainly scientists and academics. The reason

for this being that the first browsers were rather complicated to use, and the documents

(web pages) that these early browsers could read were either all text or just a single

image, or a single video clip. Images, video and text could not be displayed in the same

web page – very different from the situation today – and thus the Web was not of much

interest to the general public.

This all changed in early 1993 after a graduate student at the University of Illinois’ NCSA

(National Center for Supercomputing Applications), called Marc Andreessen, together

with a team of colleagues, released the first version of a new Unix-based browser. The

browser – NCSA Mosaic for the X Window system – was especially interesting as it

offered the user a straightforward graphical user interface. Andreessen and co-workers

continued their programming and, later that year, a real landmark in the history of the

World Wide Web was reached when they released free versions of the Mosaic browser

for the Macintosh and Windows operating systems. Not only could the browser display

text, graphics and video clips on the same page (and play audio), but crucially the

browser was relatively easy to use and available for three popular operating systems.

This browser could display text, graphics and video clips on the same page and play

audio. The World Wide Web had become multimedia and the online community liked it –

in fact liked it very much. No longer was the Web an environment for dry scientific

documents; it now became a virtual world full of colour and moving images.

Subsequently Andreessen and most of his team left NCSA to form the Mosaic

Communications Corp., which later became Netscape and made them all

multimillionaires!

Until that point, the Web had been totally overlooked by large corporations such as Sun

Microsystems and Microsoft. However, public reaction to Mosaic convinced a few key

members of the original Sun Microsystems team that Oak could play a part in the Web

explosion. After all, Oak was platform independent, ran on a virtual machine and was

designed to run over a network – albeit a network of toasters and fridges and televisions.

However, if a browser were written that incorporated an Oak virtual machine, any Oak

program residing on a web server could be executed on a browser that incorporated an

interpreter. Such applications could make the Web experience far more interactive and,

28 Unit 1 Object-oriented programming with Java

more importantly, lead to commercial exploitation of the Web. An Oak program running

within a web browser would be able to query a database, take customer details, and

take online payments – lessons learnt from the TV set-top box prototype. A eureka

moment had been reached, and the race was back on.

In September 1994, Patrick Naughton wrote a prototype browser called WebRunner that

incorporated an Oak virtual machine. The idea that a browser could support Oak

applications (called applets) excited many and WebRunner was the perfect platform

from which to demonstrate the power of the language. Unfortunately a patent search

revealed that Oak was already a trademark and, so the story goes, the team came up

with the replacement name – Java – during a trip to a coffee shop. Thus Oak was

renamed Java and WebRunner renamed HotJava.

The first public release of Java and the HotJava web browser came on 23 May 1995, at

the SunWorld conference. The announcement was made by John Gage, the Director of

Science for Sun Microsystems. His announcement was accompanied by a surprise

announcement by Marc Andreessen, Executive Vice President of Netscape, that

Netscape would be including Java support in its browsers. As Netscape was, at the

time, the world’s most popular browser, such support gave the Java language a major

boost and significant credibility ... so much so that Microsoft soon followed suit and

implemented Java support in Internet Explorer. From then on Java’s popularity as a

programming language grew meteorically and it has now grown into a full-scale

development system, capable of being used for developing large applications that exist

outside the Web environment.

5 Speculating about objects 29

Speculating about objects 5

In this section we shall ask you to carry out a number of activities using the application

StarOffice that is supplied on the Online Applications CD-ROM. The purpose of you

carrying out these activities is so that you can visualise the object-oriented ideas

discussed so far in this unit. StarOffice can be used for both word-processing and

drawing graphics. These tasks are so familiar that we usually take them for granted and

do not stop to think that they work by using object-oriented technology but, as we shall

see, objects are very much involved!

The idea that a piece of software functions through tens, or hundreds, or thousands of

objects telling each other to carry out tasks by sending each other messages is

important. In this section you will experience how sending messages causes objects to

behave in particular ways.

5.1 Objects in a StarOffice document

If you have not already done so, please install StarOffice, which is supplied on the

Online Applications CD-ROM. You can find details of how to do this in the booklet inside

the Online Applications CD-ROM case.

This subsection comprises a series of activities using StarOffice. If possible you should

complete it in a single session. These activities aim to reinforce the concepts introduced

in Section 3; that an object has a state (its memory), which is made up by the values of

its attributes, and that an object has behaviour (what it does in response to messages),

which may depend on its state. We also discuss how to manipulate objects that you can

apparently see (such as rectangles, words and buttons), but the things you see are

visible representations of the objects that, being software objects, you cannot see. While

concentrating on the objects you draw or type, there are other important objects that

make these actions possible, such as buttons and windows.

As you carry out the activities, you should watch for these object-oriented ideas.

Sometimes they may not be immediately obvious to you, but they will be discussed

further in this section. In particular, you should think about the memory that an object

needs – its attributes, the values of which make up an object’s state.

30 Unit 1 Object-oriented programming with Java

ACTIVITY 1

Launch StarOffice with a new drawing document by selecting All Programs|Star

Office 8|StarOffice Draw from the Start menu (or, if you have StarOffice open, select

from the File menu, New and then Drawing, as illustrated below in Figure 12).

Figure 12 Opening a new drawing document in StarOffice

You will then see an empty drawing document, with toolbars arranged along the top and

bottom of the drawing pane (the window into which you can draw objects).

Assume that you will be able to draw shapes, including lines, in the empty drawing pane

and spend a short time thinking about the sorts of object that might be involved in a

StarOffice drawing document.

You are now going to draw a rectangle and move it. But, before you do this, think about

the objects involved. At this stage of the course guesses are perfectly all right – the

important thing is to think about what is going on. Remember that as well as the shapes

you are drawing there are also objects such as buttons that are used for communicating

with the application. The following steps will guide you through what you need to do to

draw and move a rectangle.

1	 Note which of the buttons on the left-hand side toolbar is selected when the new

drawing document is first opened and what shape the cursor is when it is over the

drawing pane.

2	 Familiarise yourself with some of the buttons on the bottom toolbar, more specifically,

counting from the left, buttons two to four. Move the mouse pointer over each button.

Leave it for a few seconds and a label (a ‘tool tip’ message) will appear.

3	 Find the button in the bottom toolbar for drawing a rectangle. Click the button and

move the cursor to the drawing pane. Note the changes to the button and the cursor.

Which objects do you think might have changed state?

4	 Click on one position in the drawing pane, hold the mouse button down and drag the

cursor to another position: a rectangle is produced when you release the mouse

button. The rectangle remains selected (shown by the green blocks, which are

sometimes called ‘handles’). Which objects do you think might have changed state?

5 Speculating about objects 31

5 Deselect the rectangle by clicking anywhere on the drawing pane outside the

rectangle. The blocks will disappear. Which object do you think might have changed

its state?

6 Note the colour of the rectangle and the colour and thickness of the lines that make

up the rectangle. These are three attributes of the rectangle object.

Making sure that the rectangle is still selected, change its colour from blue to red by

selecting Red from the dropdown menu (that at present should be labelled Blue 8) in

the toolbar immediately above the drawing pane.

7 You are now going to move the rectangle. Select your rectangle (click once inside it). To drag an object, move

When the cursor changes to an icon looking like the four points of a compass, ‘drag’ the mouse with the (left)
button in the down

the rectangle to another position on the screen. Which object(s) might have changed position.

state?

DISCUSSION OF
ACTIVITY 1

1 In the bottom toolbar, the first button (carrying an arrow icon) is selected as

indicated by its white shading and dark blue edging, and the cursor in the drawing

pane is an arrow shape.

2 Button two is for drawing lines, button three is for drawing arrows and button four is

for drawing rectangles. You can ignore the other buttons for now.

3 The Rectangle button has changed state – it is now shaded. The cursor has

changed state – its shape has changed to a crosshair and box to remind you that

you are about to draw a rectangle. The state of the drawing pane must also have

changed – it must now remember that it should draw a rectangle when you drag the

cursor across the drawing pane.

4 The state of the drawing pane object must have changed. It now contains a

rectangle, an object that has various attribute values that make up its state.

5 When first drawn, the rectangle was selected, shown by the green handles. Now we

have deselected it, and the handles are no longer displayed. The drawing pane

remembers what objects are or are not selected.

6 The default colour of the rectangle is blue (specifically Blue 8) and the lines that

make up the rectangle are black and the default line thickness is 0.00. Later you will

see how to change these attribute values. The state of the rectangle object must

include something about its position (in the drawing pane), the colour of its edges

(black), the thickness of the edges (0.00), its size and its fill colour (which you

changed to red).

7 Noting that the rectangle’s position is part of its state, it is the rectangle whose state

has changed. A second possibility, which you may have considered, is that the

drawing pane remembers the whereabouts of the objects it displays. However, it is

clearly more sensible for the rectangle to remember its own properties (including

where it is) than for the drawing pane to have to remember all the properties of all

the objects that are in it. Indeed, the whole point of having objects is so we can give

them the properties (attributes) that belong to them rather than having a single

complex object that remembers everything.

In this example, we have taken the view that the information about which objects are

currently selected is part of the state of the whole drawing pane, but it is in fact quite

possible that we could make each object remember for itself whether it is selected

currently or not.

32 Unit 1 Object-oriented programming with Java

ACTIVITY 2

If your rectangle from Activity 1 has been deleted, before starting this activity draw

another one.

1	 Work out how to draw an ellipse and do so. Notice that it is selected. Deselect your

ellipse. Which object has changed its state and how is this shown?

2	 Select the rectangle and notice how the cursor changes as it hovers over the handles

and when it is inside the rectangle. What happens when you click and hold the (left)

mouse button down on one of the handles and drag the handle?

DISCUSSION OF
ACTIVITY 2

1	 Deselecting the ellipse removes its selection blocks (handles). The drawing pane

has changed its state. It now has two graphical objects. This fact is shown by both a

rectangle and an ellipse being visible. This may seem obvious because drawing a

rectangle or an ellipse like this appears to be so ‘natural’, so like what you might do

with pen and paper. However, there is no magic or ‘naturalness’ involved in software:

you interacted with the application that created the appropriate object in the

drawing pane and arranged for the shape to be shown in the drawing pane. You can

think of the drawing pane as an object that has an attribute whose value is a list of

the objects that are ‘in’ the drawing pane. Every time we draw a new shape it is

added to this list. Thus the state of the drawing pane has changed.

2	 When the cursor hovers over the handles, it changes shape to a two-headed arrow,

to indicate in which direction you can resize the selected object. To resize a drawing

object, you drag one of its handles.

When the cursor is in the middle of an object it changes to the four-points-of-the-

compass icon to indicate that dragging will move the object.

ACTIVITY 3

A piece of text can be typed into a drawing as a graphical object.

Click on the Text button (the sixth button from the left in the bottom toolbar). With the Text

button selected, click and hold down the (left) mouse button in the drawing pane to mark

one corner of a rectangular area and, with the mouse button down, drag the cursor to

another position marking the opposite corner of the area. Release the mouse button and

then don’t touch the mouse. You now have two cursors: the cursor that looks like the four

points of the compass and a text insertion cursor (a thick vertical line positioned top left in

the new text box). Without touching the mouse, start typing. When you type, the insertion

position is given by the text insertion cursor inside the text box.

What attributes do you think a text box has?

DISCUSSION OF
ACTIVITY 3

Working with a text box is slightly different from working with a rectangle or ellipse –

because you need to be able to type inside the text box a text insertion cursor is shown.

Once you have typed a piece of text (a series of characters) you can go back and

change it by inserting the cursor anywhere inside the typed text.

A text box has several observable attributes – content (the text displayed in the box),

position, width and height.

5 Speculating about objects 33

When you type in a StarOffice document, you are inserting character objects into the

document and they appear in the order in which you type them.

In the next activity you are asked to undertake a number of tasks with a StarOffice text

document.

ACTIVITY 4

Open a new text document by selecting from the File menu, New and then	 If StarOffice is not running,
you will need to launch it. Text Document. You will then see an empty text document, with toolbars arranged along

the top and bottom of the text pane (the window into which you can type characters).

For the purposes of this activity we are only interested in the toolbar second from top,

above the text pane. Figure 13 shows the elements of this toolbar that are of interest for

this activity.

font-colour
button

font-size
font

menu
bold, italic and

underline buttons
dropdown menu

dropdown

Figure 13 StarOffice text document toolbar

The font-colour button will change selected characters to the button’s currently selected

colour (see Figure 13). The button’s selected colour can be changed by clicking on the

button and holding the left mouse button down for a few seconds. This will open up a

colour palette as illustrated in Figure 14.

Figure 14 StarOffice colour palette

34 Unit 1 Object-oriented programming with Java

Click on one of the colours to change the colour button’s selected colour, then close the

palette and click on the colour button.

Type a few sentences into the StarOffice text pane. Then select pieces of text and do the following.

1 Change the style of one word (as a series of characters) to bold.

2 Change the style of another word to italic.

3 Change the colour of another word to green.

4 Increase the font size of some words and reduce the font size of others.

5 Change a word to a different font.

DISCUSSION OF
ACTIVITY 4

What you have been doing as you type characters in StarOffice is to create character

objects that have the attributes colour, size, font and style. When you selected a

series of adjacent characters (a word), and then made them bold or italic you changed

the values of each of those characters’ attributes.

1 You set the style attribute of each of the selected character objects to bold.

2 You set the style attribute of each of the selected character objects to italic.

3 You set the colour attribute of each of the selected character objects to green.

4 You set the size attribute of each of the selected character objects to whichever
point size you selected, for example 10, 12, 18.

5 You set the font attribute of each of the selected character objects to a particular
font, for example Helvetica.

In the next section we shall consider the object-oriented ideas that you met in the above

activities; specifically, that objects have attributes, and that the values of these attributes

constitute an object’s state.

5.2 State

We shall now look at the practical work you carried out in Activities 1–4 in a more

abstract way. In particular, we shall consider which objects might have been used in

such applications, and what memory they needed so that they could provide the

appropriate behaviour in response to the messages they received.

In the following discussion we shall describe everything in terms of a StarOffice drawing

document. We shall not attempt to give a precise description of how it has been

implemented, as we do not know! Rather we are using our knowledge of other object­

oriented applications to give a plausible description. Most of the ideas can be applied

equally to a StarOffice text document.

When you selected a shape such as a rectangle and changed its colour to, for example, red,

the rectangle stayed red. It did not go back to its previous colour. This tells us that the object

remembered the change; it has a colour attribute, which was set to the new colour. Other

changes to the rectangle, such as a change in position, persist in the same way. Each

property of the rectangle is represented by an attribute, and the values of the attributes record

the current state of the rectangle. The same is true for other kinds of graphical object.

However, there is a bit more to it than just changing the values of the attributes. The

shape objects are located on a drawing pane, and when a change occurs the drawing

pane must be refreshed to show the new appearance of the object. What actually

happens is something like this.

5 Speculating about objects 35

1 A rectangle’s state is changed.

2 The drawing pane is sent a message saying the rectangle object has changed the

value of one of its attributes.

3 The drawing pane sends a message to the rectangle asking for details of the change.

4 The drawing pane uses the information it gets back to redraw the rectangle showing

the altered appearance.

The idea behind all this is that it is the rectangle object itself that is responsible for

knowing about its state. The drawing pane does not remember this information; if it

needs the details it asks the rectangle (the same is, of course, true for all the other types

of shapes).

When an object is newly created what values do its attributes have? Some of its

attributes may have default values. For example, in the case of a rectangle in StarOffice

the defaults are as follows:

c fill colour – blue

c edge colour – black

c edge thickness – 0.0

All new rectangles share these values; their fill colour is always blue, and they always

have black edges of thickness 0.0. Other attributes of rectangle objects have values

which are set by the user at the time the rectangle is created, for example:

c position

c width

c height

The user chooses the position with the first click in the drawing pane, and the width and

height by dragging. Typically, different rectangles will be created in different positions,

with different dimensions. Of course, all this just applies to the initial values that the

object starts off with. As you have seen, once an object already exists the values of its

attributes can be changed.

When listing the attributes an object is likely to have, you should give each a short

descriptive name. Try to choose names which convey clearly what the attribute

concerned represents. For example the meaning of ‘edge colour’ or ‘edge thickness’ is

instantly understandable.

Exercise 3

As you have already learnt, in Java you have to run together multi-word identifiers, such

as ‘credit limit’ into single words using a single upper-case letter to mark the start of each

word after the first.

List all the attributes of rectangle objects, running together any multi-word identifiers and

giving each a brief description.

Solution ...

c edgeColour – colour of the edges of the rectangle.

c fillColour – colour of the inside of the rectangle.

c edgeThickness – thickness of the edge of the rectangle.

c width – width of the rectangle.

c height – height of the rectangle.

c position – position of the rectangle.

36 Unit 1 Object-oriented programming with Java

So you now have a list of attributes which you could use to describe a particular

rectangle. You might say that a particular rectangle has the attribute edgeColour set to
the value red, the attribute fillColour set to the value blue, edgeThickness set to the
value 4, width set to the value 17, height set to the value 9 and position set to the
value given by column 22, row 25. Of course, the best way to represent such an object

to humans who can perceive shape and colours, is to show it the way that StarOffice

does – for people with certain visual impairments, speaking out the above description

would be better.

So far, when looking at text and drawing documents in StarOffice we have concentrated

on state, which is made up of the values of an object’s attributes. Now we shall start to

consider the behaviour of an object – how it will respond when it is sent a message. In

the next subsection we shall address these ideas in more detail.

5.3 Messages in a StarOffice text document

In this subsection you will look in some detail at what messages might be involved in

changing the attributes of characters in a StarOffice text document. You will discover

that a whole range of objects is involved, some of which are much less obvious than

others.

As you have seen, it is possible to manipulate a sequence of characters – a word or

paragraph – in exactly the same way as you would a single character. You simply select

what you want to change and apply the appropriate command. Indeed this flexibility and

generality are reasons that word processors are now ubiquitous. We now look at how

this aspect of word processors is made possible.

What happens when you use a word processor, such as StarOffice, to alter the size of a

sequence of characters from, say, 12 point to 24 point, or to change the characters from

upright (roman) to italic? Consider the last scenario – as a user you might select the text

you want to change, then you click the Italic button. The effect is that the text you have

selected changes to italic on the screen and, of course, if you were to print the

document the changed text would appear in italics. Figure 15 depicts this.

With sloping masts

and dipping prow

and dipping prow

With sloping masts

Figure 15 Changing characters to italic with the Italic button

The object-oriented view of computing considers the components of an executing

program to be objects which know how to behave in some fashion and which enact their

behaviour when sent appropriate messages. So, if a text pane contained the text With
sloping masts and dipping prow, what objects might be involved in producing With
sloping masts and dipping prow?

5 Speculating about objects 37

The first object is the application itself; it needs to react to messages that the operating

system sends it concerning mouse movement, or clicks, or typing on the keyboard. For

example, is the cursor in the text pane (if so where)? Is it in a toolbar (if so where)? Here

the application needs to determine that the cursor is in the text pane (our second object)

and tell the text pane to be ready for the user to do something. The text pane then needs

to react when the user starts to select the characters in the word sloping by
highlighting the characters; it must also remember what characters have been selected.

The third object involved is the Italic button, which reacts to a ‘mouse click’ (the

application is involved in this as well – the operating system tells it where the mouse is

and that it has been clicked, and the application then tells the button object that it has

been clicked). Fourth, and most important in our list of objects, there are the character

objects whose visual representation we recognise – the sequence of letter shapes:

s l o p i n g. These objects have a memory of their attributes – shape, font, colour,
size and style. While these attributes are ones whose values have a straightforward

visual representation, character objects in StarOffice almost certainly have other

attributes whose values have no visual representation but nonetheless will be important

to themselves and to other objects in the application.

Once sloping has been selected and the Italic button has been clicked, a series of
messages is sent. Firstly, the application is told by the button that the user has requested

that some text be changed to italic. The application then relays this information to the text

pane. The text pane then checks if any characters are selected. If any are, the text pane

then tells the selected objects to change to italic; when the selected objects receive the

message to change to italic they do so. But that is not the end of the matter, the

characters must then tell the text pane that they have indeed changed, so that the text

pane can redisplay them as italics. All this happens so quickly that, as intended, it looks

to users that they have selected sloping and then Italic and the command has directly

changed the word to sloping. All this is depicted in Figure 16.

While you should not slow yourself down by thinking too much about what is going on

with the applications you use, you should be aware that the apparently simple tasks you

carry out with an application may involve lots of messages being passed among

cooperating software objects to achieve what you want. You should also be aware that

the things you manipulate on screen are visual representations of software objects; they

are not the objects themselves, which you cannot, of course, see.

With sloping masts

and dipping prow

With sloping masts

The message labelled
3 is sent to each of the
selected characters.

4 is sent by each of the
characters to the text pane.

1
change selected text to italic

2
change selected

text to italic

3
change
yourself
to italic

4
I’ve

changed
to italic

5
update display

text pane

and dipping prow

Similarly, the message labelled

StarOffice

Figure 16 A model of how the Italic command works

38 Unit 1 Object-oriented programming with Java

A microworld is a
computer-based
simulation with
opportunities for
manipulation of content
and practice of skills – in
this case sending
messages to objects and
observing their effect.

6 Exploring objects in a microworld

Within the context of sending messages to objects, this section looks in more depth at

the state of an object as given by the values of its attributes. The new concepts are those

of an object being an instance of a class with a particular message protocol. We shall

also introduce to you an application, developed specifically for the course, called

Amphibian Worlds – this application contains a series of microworlds, containing

amphibian objects, which will help you to explore object-oriented ideas. In this section

you will be investigating the microworld Two Frogs – study of other microworlds forms

part of Unit 2.

The activities start with the investigation of sending messages to objects. From this

exploration you will discover what attributes an object may have and how to use the

software to inspect the state of an object at any given time.

You will also write your first piece of Java code so that you can manipulate objects via

code, rather than via a button in a user interface. You will then begin your journey into

object technology by considering classes.

To access the microworld used in this section, launch the Amphibian Worlds application

by double-clicking the shortcut that has been installed on your desktop, and then, from

the Microworld menu, select Two Frogs.

6.1 Sending messages to objects

The microworld Two Frogs has a user interface which allows you to send messages to

two frog objects, either by clicking named message buttons, or by entering Java code

into a code pane and clicking the Execute button. The frog objects also have graphical

representations so you can observe the effects of sending messages to them. The

Inspect button in the microworld will enable you to ‘look inside’ an object to find out its

state – the values of its attributes.

6 Exploring objects in a 39

graphical

list of variables that

the variable frog1 is
selected

representation
of a frog object

reference frog objects –

Figure 17 The microworld Two Frogs

The graphics pane at the top of the microworld Two Frogs displays graphical

representations of two frog objects. These frog objects are shown sitting on stones in a

pond.

In order to send messages to these objects you need some way of referring to them; for

this we use variables. A variable is a named block of computer memory into which data

can be stored. In the case of the microworld Two Frogs there are two variables, frog1
and frog2. These variables are listed in the list pane labelled Amphibians, on the left

below the graphics pane. These two variables could have been given any names we

pleased, for example x and y, or aObject and bObject. However, using frog1 and
frog2 is a better choice because the names remind you what sorts of objects are

involved. The buttons to the right of the list of variables (in the pane labelled Amphibian

Messages) allow you to send messages to the two frog objects and observe their

behaviour in the graphics pane. However, before sending a message it is necessary to

indicate first to the microworld which frog object you wish to send the message to. To

select a particular frog object, you will need to highlight the appropriate variable in the

list pane by clicking once on it. Once you have selected a variable the graphics pane

will identify the graphical representation of the corresponding frog object by colouring

its stone yellow. Having selected a frog object, you will then be able to send it a

message by selecting (clicking once on) a message button.

At this point it is useful to clarify the terminology associated with variables. You may

come across informal shorthand phrases such as ‘send a message to the object frog1’,
or ‘as before frog1 behaved as expected’. However, since a variable is just a label on a
block of memory, to be technically precise the phrases should be ‘send a message to

the object referenced by the variable frog1’ and ‘as before the object referenced by the
variable frog1 behaved as expected’. Most programmers would be perfectly happy

using the shorthand style in casual speech (and indeed we will occasionally use it in this

and subsequent units), but you should always be prepared to use the more precise

terminology when required.

Variables are discussed in
detail in Unit 3.

40 Unit 1 Object-oriented programming with Java

ACTIVITY 5

Launch the application Amphibian Worlds and then select the microworld Two Frogs

from the Microworld menu.

We want you to explore the behaviour of the two frog objects in this microworld – a few

suggestions and questions for working systematically are listed below. You may find it

useful to record the behaviours of the frog objects in response to each message. To send

the message right() to the object referenced by frog1, highlight the variable frog1 in
the Amphibians list pane and then click once on the button labelled right(). The

representation of the object in the graphics pane will then move one position to the right

(to a new stone).

1	 What are the colour and position of each frog object when you first open the

microworld Two Frogs?

2	 Select one of the frog objects (highlight a variable in the list pane) and send it each

message in turn (by clicking once on a message button), noting the response. An

error report will appear in the window labelled Display Pane when you send some of

the messages. Read the text and then press the Clear button to remove the error

report. List the messages the frog object understands, and record the response each

such message invokes in the frog object.

3	 Does the other frog object respond in the same way to each message?

4	 With a frog object sitting on the rightmost black stone, send it the message right()
a few times in succession – you will see a blue arrow. What is the blue arrow

indicating? Try to reposition the frog object on the rightmost stone by sending left()
messages to the frog object.

With a frog object sitting on the leftmost black stone, send it the message left() a

few times – you will see a red arrow. What is the red arrow indicating? Try to

reposition the frog object on the leftmost stone by sending it right() messages.

5	 What happens when the message up() is sent to a frog object? What happens when

the message down() is sent to a frog object?

Following from your explorations of the messages to which the frog objects respond and

their resultant behaviour, what information do you think each frog object is storing? Can

you make any guesses about the attributes of these frog objects and the state a particular

frog object may have?

DISCUSSION OF
ACTIVITY 5

1	 When the microworld Two Frogs is opened, each frog object is green and is on the

leftmost stone (position 1).

2	 Whichever frog object you select, it responds to the following messages with the

following behaviours:

left() – moves one position to the left;

right() – moves one position to the right;

home() – moves to (or remains on) the leftmost black stone;

jump() – jumps, and lands again in the same position;

green() – turns green (unless already green);

brown() – turns brown (unless already brown);

croak() – croaks audibly (and displays a red !).

3	 The two frog objects behave in exactly the same way when the same message is

sent to them. For example both objects move one position to the right when sent the

message right().

6 Exploring objects in a 41

4	 If a frog object is on the rightmost black stone is sent the message right(), the
graphics pane shows a blue arrow pointing to the right to indicate that the frog

object has disappeared from view. If a frog object on the leftmost black stone is sent

the message left() the graphics pane shows a red arrow pointing to the left to

indicate that the frog object has disappeared from view.

If either a blue or a red arrow appears, then a horizontal scrollbar will appear

underneath the graphics pane, allowing you to scroll the graphics pane left or right

to view the frog object that has gone out of sight. Alternatively, a message to the frog

object to move in the opposite direction will cause it to reappear. The frog object can

also be repositioned to the leftmost black stone (position 1) by selecting the variable

that references the frog object in the list pane and pressing the home() button.

5	 When the message up() or down() is sent to a frog object, a pane – the Display

Pane – opens up at the bottom of the Amphibian Worlds window, and a message in

the pane appears to inform you that an error has occurred. This is because you are

not allowed to send up() and down() to ordinary frog objects, which are not

capable of acting on these messages. However, these messages can be sent to a

more versatile kind of frog that you will investigate later, in Unit 2 ! To close the

Display Pane click on the – sign next to the words Display Pane.

The messages left(), right() and home() are intended to alter the position of a frog

object. (You see the icon representing the frog object move to – or remain on – a

particular stone.) The object must therefore hold information on its position, so it is likely

to have an attribute with a name like position. In fact, the attribute position holds a
number, reflected in the graphics pane by mentally numbering the stones from left to

right, with the frog object appearing on the leftmost black stone when the attribute’s

value is 1 and the frog object appearing on the rightmost black stone when the

attribute’s value is 11. As you have seen in the previous activity, frog objects can move to

positions outside the range of 1 to 11. When this happens a red or blue arrow appears in

the graphics pane to indicate that the frog has moved out of sight, but you can scroll the

graphics pane to bring the frog back into view. Stones representing positions less than

one are coloured light red, and stones representing positions greater than 11 are

coloured light blue.

A frog object’s colour can be changed by sending it the message green() or brown().
(The icon changes colour.) Information on colour must therefore be part of the object’s

state and you might guess that there is an attribute with a name like colour. This
attribute must be able to specify the colour of the frog object – including the colours

green and brown.

ACTIVITY 6

In the previous activity you made a guess at the attributes (and their values) of the frog

objects. Now you are going to ‘look inside’ each object to see what attributes each has

been given by the programmer. The formal term for ‘look inside’ is to inspect the state of

an object. The microworld provides an inspector tool for finding out an object’s attributes

and for inspecting an object’s state (the current values of the attributes). Figure 18 shows

an example of the inspector tool displaying the attributes and attribute values of a frog

object.

42 Unit 1 Object-oriented programming with Java

This cell shows the

Clicking this cell
shows the name

actual colour.

of the colour.

Figure 18 An inspector on a frog object

1	 Highlight the variable frog1 in the list of variables and press (click once on) the
button labelled Inspect. An inspector will open on the object referenced by the

variable frog1, enabling you to ‘look inside’ the object – that is, to ascertain the
attributes of the object referenced by frog1 and its current state.

What attributes has the object referenced by frog1? How would you describe the
current state of the object referenced by frog1?

Close the Inspector window before proceeding.

2	 Now inspect the attributes of the object referenced by frog2, following the approach
given above for frog1. Do the two frog objects have the same attributes? Do the frog

objects currently have the same state?

How can the state of a frog object (or, in general, of any object) be changed?

Close the Inspector window before proceeding.

DISCUSSION OF
ACTIVITY 6

The left-hand column of the Inspector window gives the attributes of the object being

inspected and the right-hand column gives the attribute values – its state.

1	 You can see that frog1 has two attributes – position and colour. If the frog object
is in its default position (the leftmost black stone) and in its original colour (green)

then the inspector will show the state of frog1 to be position 1 and colour GREEN.
Note that when you click on the value of the colour attribute the text name for the

colour will be shown rather than the colour itself.

2	 Both frog objects have the same attributes. They may or may not have the same

attribute values; this will depend on what messages have been sent to them. If

frog1 has position set to 1 and colour set to GREEN, and frog2 has position
set to 2 and colour set to BROWN, the states of the two frog objects are not the same.

The state of an object can be changed by sending it a message.

6 Exploring objects in a 43

An inspector shows a snapshot of the state of an object, not a live report. If you leave an

inspector open on, say, frog1, and send a message to frog1 that changes its state,
and then return to the open Inspector window, this inspector does not reflect the new

state. In order to see the new state of frog1, it is necessary to open another inspector.
The new state of the object referenced by frog1 is then displayed in the new inspector.

ACTIVITY 7

The microworld Two Frogs includes a Code Pane. Instead of clicking the various named

message buttons to send messages to frog objects, you can use the Code Pane to write

Java code that will send messages to these frog objects once you click on the Execute

button.

To try this out, firstly click on the + sign next to the words Code Pane (just above Display

Pane) to open the pane up, then place the cursor in the Code Pane, type the name of a

variable that references a frog object, and then the message you wish to send. Take care

to place a full stop between the variable and the name of the message because, in the

syntax of Java, a full stop is how you indicate that a message is to be sent. Make sure

that you copy the capitalisation of each letter exactly as upper or lower case, and

complete your message with a semi-colon. An example line of code is:

frog1.brown();

If you make a typing mistake, you can correct it, much as in a word processor. Once you

are happy with what you have typed, press the Execute button. The effect of your

message will be shown in the Graphic Pane.

If you send a message with a typing mistake in it, an error report will appear in the Display

Pane. If the advice does not help, try typing the message again, making sure you have

deleted everything you don’t want before retyping. Pay particular attention to spaces (you

do not need any), capitalisation (use of upper and lower case) and spelling, as these are

the most common typing errors. Highlight and delete your message line each time before

typing the next.

Try typing a variety of messages to each frog object, including the messages up() and

down().

DISCUSSION OF
ACTIVITY 7

Sending messages to objects using the code pane produces exactly the same results

as sending the same messages by selecting a variable in the list pane and clicking a

button.

In your work in the microworld Two Frogs you learnt that you need a way of referring to

an object – a variable – before it can be sent a message. You then sent messages to the

two frog objects and observed the results of those messages – the behaviour of the

frogs in response to the messages. You did this in two ways:

c Firstly, by selecting a variable in the list pane and then clicking an appropriate

message button to send a message to the frog object referenced by that variable.

c Secondly, by typing the Java code into the Code Pane and then clicking the Execute

button. When you did this you had to ensure that you spelled the name of the

variable and the message correctly, and used the correct syntax. Using the Code

Pane acted as your first exposure to the Java programming language.

In both cases you observed the results of sending the messages in the graphics pane of

the microworld, which displayed graphical representations of the frog objects. You also

44 Unit 1 Object-oriented programming with Java

As well as saying that the
‘object referenced by x
belongs to class A’, we
also use the synonymous
phrase ‘x refers to an
instance of class A’.

checked the state of the frog objects, by first selecting an appropriate variable from the

list pane and then clicking the Inspect button to open an inspector which displayed the

attributes and attribute values of the object referenced by that variable.

We call the object that is sent a message the receiver of the message, as shown in

Figure 19.

message

frog1.left()

receiver

Figure 19 The message left() being sent to the receiver frog1

The code that is made up of a variable name, followed by a full stop and then a message

(as shown in Figure 19) is called a message-send.

SAQ 3

In the following code, indicate the message and the object receiving the message.

frog2.brown()

ANSWER ...

The message brown() is sent to the object referenced by the variable frog2 – this
object is the receiver.

6.2 Grouping objects into classes

You have discovered that the variables frog1 and frog2 refer to very similar objects. In

fact, these objects respond to exactly the same set of messages, have the same

attributes, and behave in exactly the same way in response to the same message.

These similarities occur because the objects referenced by frog1 and frog2 belong to
the same class. When using an inspector to ‘look inside’ a frog object in the microworld

Two Frogs, the Inspector window has the title Inspector: Frog.

The two frog objects in the microworld have been created as instances of the Frog
class. A class is like a blueprint or template for the creation of objects and ensures that

all its instances have the same attributes, and respond to the same set of messages in

an identical manner. So two different objects that belong to the same class and are

referenced by the variables frog1 and frog2:

c understand the same messages;

c respond in the same way to each message;

c have the same attributes.

On creation, the objects referenced by the variables frog1 and frog2 each has its own
set of attributes and their states are the same, i.e. they both have the attribute position
with value 1, and the attribute colour with value GREEN. Each object has its own
independent copy of these attributes, so that it can remember its own individual state

because, although all new Frog objects are created with identical state, the state of any
particular frog will get altered during its lifetime, when it is sent messages such as

6 Exploring objects in a 45

right()or brown(). For example, at a later time, frog1 may still have a value of 1 for its
attribute position, whereas frog2 may have this attribute set to 3.

SAQ 4

‘Instances of a given class have the same attributes.’ Explain this statement.

ANSWER ...

A class defines what attributes each instance of the class will have. For example, frog1
and frog2 are instances of class Frog and have the attributes colour and position.
However, each instance has its own set of attribute values so, if the message green() is

sent to frog1 and the message brown() is sent to frog2, the value of each object’s
attribute colour is different.

6.3 Grouping messages into a protocol

The list of messages to which any instance of the Frog class can respond is called its
protocol. (Strictly speaking, the set of messages to which instances of a class can

respond is known as the instance protocol of the class.)

The protocol of a Frog object, as we know it so far, is left(), right(), home(),
jump(), green(), brown() and croak().

SAQ 5

Use the terms class and protocol to explain why a Frog object is unable to respond to
the messages up() and down().

ANSWER ...

The class defines the set of messages (the protocol) to which an instance of that class

can respond. Frog objects are instances of class Frog and the instance protocol for this
class does not include the messages up() and down().

6.4 Attributes of frog objects

The only attributes a Frog object has in the microworld you have been exploring are

colour and position. The values (in our example) to which these attributes are set are

shown in Figure 20 and these values constitute the state of a Frog object.

attributes

variable

object

messages that
the object can

understand

attribute valuesClass of object:

Protocol:

colour GREEN
position 3

Frog

jump(), green(), brown(), croak()

frog1

Frog
referencing the

left(), right(), home(),

Figure 20 Diagrammatic representation of a Frog object

46 Unit 1 Object-oriented programming with Java

The only way that the state of a Frog object can be changed is by sending it a message.

The value of the attribute colour can be set to GREEN or BROWN. The value of the attribute
position can only be a number. (This number is reflected in the graphics pane of the

microworld Two Frogs as the stone on which the Frog object icon sits, with 1 being the
leftmost black stone and 11 the rightmost black stone.)

SAQ 6

What is the state of the Frog object depicted in Figure 20?

ANSWER ...

The state of the Frog object is position set to 3 and colour set to GREEN. More

colloquially you might say something like ‘It’s in position 3 and its colour is green’.

SAQ 7

Frog objects have the attributes colour and position. If the Frog object referenced by
frog1 is shown in the graphics pane to be on stone 1 and is sent the message brown(),
what is its state after responding to the message?

ANSWER ...

The state of the Frog object referenced by frog1 comprises the values of its attributes.

After it has responded to the message brown(), the value of its attribute position is 1
and the value of its attribute colour is BROWN.

6.5 Messages that do not alter an object’s
state

Most of the messages you have experimented with so far altered some aspect of an

object’s state – either their colour or position. However, it is quite common to come

across messages that do not cause any state change. As an example, we have included

the message jump() in the protocol of Frog objects. Sending the message jump() to a

Frog object makes it send another message to the microworld to tell it to display it

graphically jumping, but leaves its state unaltered. You can tell that the state is still the

same, because the only attributes Frog objects have are colour and position, and
neither is affected by the message jump().

Later, in Unit 2, we discuss messages that query an object’s state, in order to return the

value of a particular attribute. Such messages do not usually change the state of the

receiver.

7 Classes as software 47

7 Classes as software components

Now that you have had a chance to discover some of the characteristics of objects, it is

a good time to consider why object technology has become so important to the software

industry.

When forming a new product in traditional industries, such as car manufacturing, the

designer no longer designs a unique, handcrafted artefact, down to individual nuts and

bolts. The designer can take advantage of ready-made sub-assemblies (components):

for example a gearbox from Honda, an engine from Mazda, a fuel injection system from

Bosch, suspension from Lotus and a body shell from Pininfarina. All these companies

will have ensured that the fixing brackets for their products are of a standard size and

that they have holes pre-drilled to accept standard sized nuts and bolts.

Until the early 1990s the software industry was more like the early car manufacturing

industry with each part of an application or system being designed from scratch. More

recently, standard software components have been produced in a similar fashion to

car components with the aim of reuse. The same reliable, reusable software

components can be incorporated into many whole new systems, thus saving the

considerable time and effort it can take to generate new software. These possibilities

have been brought about by object technology.

A growing part of the software industry is now focused on the production of generally

useful software components (and at the other end of the scale, highly specialised

software components) that can then be bought by other software developers to speed

the development of their own applications (by avoiding reinventing the wheel!). For

example, if a company were to write a system for an online shop, it is very unlikely that

they write all the code from scratch. It is more likely they would buy a database

component from one vendor (to hold descriptive details and stock levels of the items for

sale) and a component for secure payment transactions from another vendor.

The reason why this is now possible is because objects are entities that contain both

data (in the form of attribute values) and a defined message protocol. To repeat a

mantra – objects only do something if you send them a message. They are self­

contained units of software that can be tested and proved to be robust and reliable. In

the context of object-oriented programming, a software component is a class, or more

likely, a closely related group of classes. (Note that the component is the class (not the

object); what you ‘buy’ as a component is the code for constructing and using instances

of a class, not the instances themselves.)

The concept of software components has led to the possibility of replaceable parts for

systems – not just for replacing faulty components with correct versions, but for

replacing limited components with more flexible ones. For example, imagine a

component of a word processor, say, one that allows the word processor to manipulate

documents. If the relevant component were only to accept documents of less than 6000

characters (merely a couple of pages), but you wanted the word processor to be useful

for writing a book, it would be helpful to replace the original limited component with one

that accepted, say, 2,400,000 characters. This is entirely possible so long as the classes

in the new component defined objects with the same protocol. Just as your garage can

simply replace the engine in your car with a more powerful one if the fixing brackets are

in the same place.

48 Unit 1 Object-oriented programming with Java

SAQ 8

Why are the components of a domestic electrical system (such as plugs and light bulbs)

a suitable analogy for the ideal software industry?

ANSWER ...

It is a suitable analogy because the domestic electrical system depends on standard

parts; you can exchange different makes of each component, such as a plug or a bulb

(at least within one country), and the system will still work. As long as each component

works as intended, its make is irrelevant.

Summary 49

Summary8
After studying this unit you should understand the following ideas.

c Ultimately software executes on hardware; software delivers instructions to

hardware.

c Types of software can be categorised as system, application or program software

(however these categories do overlap to some extent).

c An operating system (OS) is the software responsible for the control and

management of hardware, and the basic computer system operations.

c Source code must be translated by a compiler into a primitive language, called

machine code, in order to run on your computer’s hardware.

c The translation of source code to machine code can be a two-stage process. First it

is compiled to bytecode which is the machine code of a virtual machine. This virtual

machine will then interpret the bytecode into machine code at run-time.

c The advantage of a compilation model that makes use of a virtual machine is that it

ensures that the bytecode, no matter on what machine it was compiled, can be

translated for execution on many different computers, so long as each computer

system has the correct virtual machine installed.

c In object-oriented software all the processing that is carried out by a program is

done by ‘objects’.

c An object can be thought of as a self-contained unit of software that holds data and

knows how to process that data.

c The only way to get an object do anything is to send it a message.

c All messages ask an object to perform some action – these actions constitute what

is termed the behaviour of the object.

c The set of messages to which an object responds is called its protocol.

c An object has attributes; the values of these attributes at any one time constitute the

state of the object.

c A message may change the state of an object.

c A message may make an object do something without altering its state.

c Objects are organised into classes. A class defines the attributes and behaviour of

its instances. Therefore, objects belonging to the same class (instances of the class)

have the same set of attributes and respond to the same set of messages,

responding to each message in an identical manner.

c Object technology has brought about the concept of software components, which

are produced with the aim of reuse. The same reliable, reusable software

components can be incorporated into many whole new systems, thus saving

considerable time and effort in producing new software.

50 Unit 1 Object-oriented programming with Java

LEARNING OUTCOMES

After studying this unit you should be able to:

c explain the differences between hardware and software;

c categorise examples of software as systems, applications or programs;

c describe the role of the operating system;

c explain various methods for translating source code into machine code;

c describe the role of Java Virtual Machine;

c describe how the advent of the World Wide Web contributed to the success of Java;

c appreciate and describe what characterises object-oriented software;

c explain how procedural software differs from object-oriented software;

c explain the terms attribute, attribute value, state, behaviour, message and protocol

as they apply to objects;

c make sensible suggestions for the sorts of object that might be used in a piece of

software and the sorts of message to use with those objects;

c give an account of what happens when a user uses a button, or a menu, to change

the appearance of something on screen;

c reason about what attributes a particular object might have and what values those

attributes might have at a given time;

c describe how objects are organised into classes, which determine what attributes

an object has and to which messages they can respond;

c explain how object technology has made possible the building of software systems

out of components.

8 Glossary 51

Glossary

A unit glossary highlights the key terms in the unit. Some of these terms are developed

further in subsequent units and so are present with more detail in those units’ glossaries.

application Software that turns your computer into a specialised computer, such as a

word processor or web browser.

application domain See problem domain.

attribute Some property or characteristic of an object, such as position, size or
balance.

attribute value The current value of an attribute.

behaviour Used to describe an object’s response when it receives a message.

binary digit Either of the two digits 0 and 1 in the binary number system. Binary digits

are used for the internal representation of numbers, characters and instructions. The

binary digit is the smallest unit of storage.

bit See binary digit.

bytecode The code produced by a compiler as the machine code of a virtual

computer. Bytecode is so-called because it is organised into 8-bit bytes.

class A class is a template that serves to describe all instances (objects) of that class.

It defines what attributes the objects should have and their protocol – what messages

they can respond to.

compiler A program that translates source code into bytecode or machine code.

component See software component.

domain See problem domain.

domain model That part of the software that models the problem domain and is not

directly concerned with how communication with the user is achieved.

dynamic compilation A compilation technique (used by the Java environment)

generating real machine code from bytecode (intermediate code). A chunk of bytecode

is compiled into machine code just prior to being executed. (This is different from and

faster than the piecemeal operation of an interpreter.) The real machine code is retained

so that subsequent execution of that chunk of bytecode does not require the translation

to be repeated.

high-level language A language (for example, Java) whose structure reflects the

requirements of the problem, rather than the facilities actually provided by the hardware.

It enables a software solution to a problem, or a simulation of an aspect of reality, to be

expressed in a hardware-independent manner.

instance An object that belongs to a given class is described as an instance of that

class.

intermediate code See bytecode.

just-in-time compilation See dynamic compilation.

52 Unit 1 Object-oriented programming with Java

low-level language A language written for direct programming of a computer’s

hardware. Each type of computer hardware needs its own low-level language.

message A request for an object to do something – right() is an example of a

message. The only way to make an object do something is to send it a message.

message-send The code that sends a message to an object – for example,

frog1.right(), which consists of the receiver followed by a full stop and then the
message.

microworld A computer-based simulation with opportunities for manipulation of

content and practice of skills.

model (verb) To simulate an entity in the problem domain.

model (noun) See domain model.

network computing The theory of connecting computers together, and the use of

such a ‘network’. A network may be local (for example, in an office or home) or global

(for example, the Internet).

object A software component that has a unique identity and responds to messages.

object-oriented technology The technology associated with viewing software as

being made up of objects.

object technology A synonym for object-oriented technology.

operating system The software that manages the resources of a computer, including

controlling the input and output, allocating system resources, managing storage space,

maintaining security, and detecting equipment failure.

peripheral device Any part of the computer that is not part of the essential computer

(i.e. the CPU and main memory). The most common peripherals are input and output

(I/O) devices such as the mouse and keyboard, and storage devices such as hard disks

and CD/DVD drives.

problem domain The collection of real-world entities within the application area that

exhibit the behaviours that the required system has to model.

program Software that has a starting point at which it takes some input, after which it

performs whatever computation is needed, and has an end point at which output is

given and the software ceases to run.

protocol The set of messages an object can respond to (understands).

receiver The object to which a message is sent.

run-time Refers to the moment when a program begins to execute, in contrast to the

time at which it has been loaded or compiled.

run-time system The code that a compiler produces to make software execute on a

real or virtual machine. This code has not been explicitly written into the source code

by the programmer.

software A general term for all the applications, programs and systems that run on

your computer.

software component A piece of software that can be combined with other pieces to

construct software.

8 Glossary 53

source code Program text expressed in a high-level programming language.

state The state of an object is the information it needs to implement the behaviour that

its protocol requires. The object’s state is determined by the values of its attributes.

system Software that is intended to run forever, responding to events in often complex

ways.

virtual machine A layer of software that simulates a computer capable of interpreting

bytecode.

visual representation A useful representation of a software object which, by

definition, is invisible. The visual representation may be textual, such as characters in a

word processor; or graphical, such as shapes in a drawing application.

54 Unit 1 Object-oriented programming with Java

Index

A

application 10

application domain 18

argument 21

attribute value 19

attributes 19

I

instance 44

instance protocol 45

intermediate code 15

interpreter 14–15

J

Java Virtual Machine 16
B

behaviour 19 just-in-time compilation 16

binary digit 7
 L

bit 7 low-level 8

bytecode 15 low-level language 13

C

class 44

code 7

compiler 14

component 47

computer system 8

D

domain 18

dynamic compilation 16

H

high-level language 13

M

message 18

message answer 18

message-send 44

microworld 38

model 18

O

object 19

operating system 8

P

peripheral device 7

problem domain 18

procedural programming 17

program 9

protocol 45

R

receiver 44

run-time system 14

S

software 7

software components 47

software system 8

source code 7

state 20

system 8

system software 8

V

variable 39

virtual machine 15

visual representation 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

